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The profound fact that the dimension-four operators in the effective chiral Lagrangian, including

quartic-derivative terms, are uniquely determined by the integration of spurious (nontopological)
chiral anomalies has rich applications to low-energy hadron physics. The form factor f and the
G8an-Treiman relation in EI3 decays, the axial-vector E~~ form factors, and the structure-
dependent form factor g in n ~eve+e are derived from the effective Lagrangian. A discussion of
the parameter y in ~eak radiative m and EC decays is also given.

Although thus far the equations of QCD have not been
solved, they can be studied in two extreme cases: one is
the short-distance regime where perturbative QCD is
applicable, the other is the low-energy domain where the
chiral structure of QCD together with PCAC (partial con-
servation of axial-vector current) enables us to elaborate
on the infrared properties of QCD. It is known that the
integration of the proper chiral (Bardeen) anomaly gives
the Wess-Zumino (WZ) effective action. ' Likewise, it
has been shown that the integration of spurious (non-
topological) chiral anomalies arising from the quark loop
yields a unique dimension-four low-energy chiral La-
grangian for QCD, which cannot be eliminated by adding
some local counterterms. The nontopological chiral
anomaly is uniquely determined and independent of the
choice of the regularization scheme as long as it respects
vector gauge invariance. A quartic-derivative Lagrang-
ian was obtained by Nepomechiei by evaluating the finite
variation of the fermionic determinant before and after
the chiral rotation. A complete dimension-four chiral La-
grangian including external gauge fields V„and A„was
independently derived by Balog, by Seo, and by Andri-
anov. s Following the notation of Ref. 5, the chiral La-
grangian reads

A=(64rr f /8)'i =2v 2nf-1 GeV (4)

is the scale of chiral-symmetry breaking. '

Many low-energy phenomena beyond tbe current alge-
bra or the lowest-order effective Lagrangian can now be
studied -S.ome applications of the chiral Lagrangian Wz
have been discussed by Balog. The purpose of this paper
is to elaborate on the physics and to add some further ap-
plications. Before proceeding to the low-energy dynamics,
we would like to get some insight into the chiral Lagrang-
lall Wi.

Using the SU(3} trace identity

Tr(ABAB)= —2Tr(A 8 )+ —,'TrA Tr8 +[Tr(AB)]

(5)

one may write, for the 3-fiavor case,

Wwz is the Wess-Zumino effective Lagrangian, ' and
P=P'A, ' describes the Goldstone-boson fields. To write
down &2, use has been made of three colors for quarks
and the lowest-order equation of motion:

U D~D~ U = —Dp U D~ U . (3)

It should be noticed that the chiral Lagrangian W& can be
derived in many different ways. ' From Eq. (1) it is evi-
dent that contributions from the quartic-derivative La-
grangian are suppressed by factors of p /A at low ener-

gies, where

Tr[(D„UtD„U)1

64
+4(R""Dq U D„U+L""D~UD„U }

+2U L""UR~„]+&wz,

D~ U =BpU+I.p U —UEp,

Lp ——Vp +A~, E~ ——V~ —A~,

R„„=d„R„dQ„+[R„,R „],—

W2 ——g&[Tr(D&U D&U)] +gi[Tr(D"U D„U)]

+giTr(DI'U D„U)

+g9Tr(R""D„U D„U+Ll'"D„UD„U )

—gipTr(U L""URq„),

where

l
Bg& =4g2 = —2g3 =g9 = —2gio =

16m

(6)

Lq„d„L„d+q+[Lp,——L„], —
U =exp(iv 2$'I, /f), f=130 MeV .

It was observed by Gasser and Leutwyler" that in the
chiral limit and in the absence of external gauge fields, the
most general expression for the quartic-derivative
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+ [Tr(cPU B„U)]
64

Denoting i„=U B&U, we may write

1Tr[l„,l„] + 1 [Tr(iPUtB„U)]',
32e' "' " se'

~SU(2)
2

with

(10)

Langrangian contains three independent terms. For the
2 fl-avor case, we have the trace identity

Tr(A 8 )= —,'TrA Tr81 (8)

in addition to Eq. (5). This explains why in the SU(2} case
there exist only two independent quartic-derivative terms:

[Tr(P'U BqU)]
1

128m

1e =2'f7~ p= 4

The first term of (10}is the celebrated Skyrme term. ' At
the SU(2) level the Skyrme coupling constant e was es-
timated to be 5.45 by fitting the mass of the soliton
baryon to N and b (Ref. 13), and the parameter y was ex-
tracted to be 0.16+0.04 from the measured D-wave mn.

scattering data.
Explicit chiral-symmetry breaking adds a term

f Tr(M U+MUt)/8 to &0, where (isospin symmetry is
assumed)

MJ ——0 (i&j),
m =M i i

——M11, mx ——(Mii+Mii )/2,2

and the following terms to &1 (Ref. 11):

&1——Eq. (6)+g4Tr(D"U D„U)Tr(M U+MU }+g&Tr[D"U D„U(M U+MU }]+g6[Tr(MtU+MUt)]1

+g7[Tr(MtU —MUt)] +g,Tr(MtUMtU+MUtMUt) . (12)

In principle, the coupling constants g4, . . . , gs are deriv-
able from @CD. It has been shown that Eq. (12) is the
most general expression for the dimension-four effective
Lagrangian. The coupling constants gi, . . . ,gio have
been determined in Ref. 11 from available experimental
data. However, a direct comparison of them with the
theoretical values (7) is dangerous because one-loop
corrections are taken into account in Ref. 11 in extracting
the coupling constants, as we are going to discuss. Al-
though an exponential form for the unitary matrix U is
chosen in Eq. (2), all nonlinear realizations are equivalent
for the physical amphtudes. Up to fourth order in P, the
general expression for U is"

U =1+2i/if —2/1/f iaido /f 1+2(ai ——1)p lf
(13)

Realization independence is ensured by the Chisholm
theorem, 's which states that S-matrix elements (i.e., on-
mass-shell amplitudes) are independent of the value of a3.

In spite of the fact that the effective Lagrangian (12) is
nonrenormalizable, the presence of the meson loop, which
is necessary to preserve unitarity in the low-energy limit,
is not an obstacle. Since at the one-loop level the neces-
sary counterterms are of the same structure as that of &1
(Refs. 11 and 17) the divergence of the one-loop graphs
can be eliminated by defining rcnormahzed coupling con-
stants

g;(p, )=g; ' b;ln(Alp) (i =—1, . . . , 10), (14)

where g
' are the bare coupling constants. The resulting

amplitude is thus finite and calculable. Since the physical
rcsul'ts Illust bc independent of thc arbitrary rc11omlaliza-
tion scale p, the renormalization-group method leads to'

g;(p) =b;»(It!@0)', (15)

The coefficients b; have been calculated in the paper of
Gasser and Wut~yler. " The unknown scale p, can b
deterniined if the relation between the renormalized cou-

pling constants g;(p, ) and the regularization-independent
"physical" constants g; [i.e., Eq. (7)] is known. 's In Ref.
11 the coupling constants g;(p) [which we call g;(I)4„~,]
rather than g; are obtained from the analyses of experi-
mental low-energy information. Unfortunately, a direct
comparison of g;(p),„~, with g;(p, ),h„~ is not possible at
present because we have not been able to derive p, o, and
hence g;(i4},h ~. However, it is found empirically that
g;(p, ),„~, are close to the theoretical values of g; [Eq. (7)]
when p =m„(except for gio} (Ref. 11). Unitarity correc-
tions are normally expected to be small compared to the
contribution from the dimension-four Lagrangian due to
the large-N, argument The meson loop is suppressed
by at least a factor of 1/N, (N, being the number of the
colors) relative to the quark loop in the large-N, limit.
Indeed, for all physical quantities we shall consider later,
contributions from the effective dimension-four Lagrang-
ian dominate over the loop corrections. Nevertheless, it is
known that the one-loop correction can be of the nonana-
lytic form m~ lnm 1 or even lnm 1, which is not negligi-
ble owing to the small mass of the pion. A complete
and satisfactory agreement with experiment generally re-
quires the inclusion of meson loop contributions.

Some applications of the effective Lagrangian &1 are
already discussed in Ref. 5. In the following we elaborate
on the details of the physics and add some further exam-
ples.

f+ (t)=f+ (0) I+&+ (17)

A. It )3

Experimentally, the form factors in Kti decays,

{n (q)
~
V„~E (k)) =f+(t)(k+q)„+f (t)(k q)„, —

(16)
are often analyzed by assuming a linear dependence on
t =(k —q),
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Slope parameters A, +(0) and the form factor f (0},which
are not predictable by current algebra, can now be calcu-
lated using the chiral Lagrangian, Eq. (1). The result is

(m (q) i V„ i
E (k) }= 1+ (k+q)„

m fx
mx —m» f»2 2

With the experimental value

ftt If = 1.22+0.01,
we obtain

(27)

(k —q )(k —q)„. (18) g(0) = —0.13, Q =0.017, (28)

Hence

2

=O.
4W f

8 [(mx'+m i)(k +q)p+(mx' m» )(k—q)p] .—(20)

Since the gq term also contributes to the kinetic term of a
meson, it becomes necessary to normalize the meson field,
{()~P/Z. For instance, for charged pions

The slope parameter A, + originates from the gs term of
W2. When external mesons are on the mass shell, there is
an additional contribution arising from the g5 term in
(12),

which are consistent with the measurements from E„ide-

cays,

g(0) = —0.11+0.09, +=0.025+0.006 .

Unfortunately, current experimental results for /{0) and

Q as determined from E„+q (Ref. 25) are not consistent
with those determined from E„i

/{0}= —0.35+0.15, Ag
——0.004+0.007 .

This needs to be clarified by future precise experiments.
Two remarks are in order.

(a) The quark model tends to predict a large f . For
example, a calculation of f (0) based on the Isgur model
gives

fK» ~gfK+» 0 30
Z + =(1+16g,m. 'Zf2)-'".

As a result, we have

f+(0)=1,
PFEg —l?2 ~

2 2
fly g —Nl ~

2 2

f (0)=—
2 +Sgs fi

(21)
(b) At the tree level the slope parameter A, + is uniquely

determined by the spurious chiral anomaly. The excellent
agreement between theory and experiment (measured from
E,& decays) for A.+ leaves almost no room for the loop
corrections.

In the SU(3) limit, f+(0)=1 and f (0)=0, as it should

From (0
~ &„~P }=ifr p„and the normalization of a

meson field, it turns out that fxlf —1 is proportional to
the coupling constant g5 (Ref. 21):

fit mx ™»2 2

f i—1=Sg5 (23)

Therefore,

f (0) mx —m fttg(0)=, = — ~, +

At t =ms, we obtain the relation

f+(rnid )+f (mx )=f~lf +O(rn ), (25)

which is known as the Callan-Treiman relation for Et&
decays. Without the quartic-derivative Lagrangian, the
Callan-Treiman relation would be vahd at t =0 rather
than t =mtti (Ref. 23). In this case f (0), and hence
g(0), would be positive, wllich is iil contiadictioii with ex-
periment. The slope parameter A,D of the scalar form fac-
tor,

+ ff{p++p ) +g(p'+ p )—-
+ r(k —p~ —p )„] . (29)

The vcetor form factor h, arising from the proper anoma-
ly, can be calculated from the Wess-Zumino effective
Langr 811glan:

h =my l(2n f» ) . (30)

The lowest-order chiral-Lagrangian or current-algebra
predictions for the axial-vector form factors f and g, as
we shall see, are

f=g =motif. . (31)

There are four form factors needed to describe the Etq
decay:

(it+(p+)n (p )
~ Vq —A„~E+(k))

, e, trk"{p++p ) (p+ p )~—-
Nl@

fo(t)=f+(t)+

is given by

f (t) —=f+ (0) 1+AD
PPl g —Vl ~ EPV ~

Ii =2.77, f=g =3.80,
to be compared with the experimental values measured
froiri E»4 decays,



REMARKS ON THE DIMENSION-FOUR CHIRAL LAGRANGIAN

h =2.68+0.68, f=5.59+0.14, g =4.77+0.27 . (32)

It has been proposed that the discrepancy between theory
and experiment for the axial-vector form factors could
be improved by the so-called pole-enhanced chiral-
Lagrangian model. %e argue, however, that ibis
discrepancy is actually a test of the dimension-four chiral

Lagrangian. Before proceeding to compute the spurious
anomaly's contribution, we note that in order to describe
the form factor r, it is necessary to include the tree graph
of IC~Emlr followed by the weak E~ev transition.
However, in K,& decays one may neglect terms propor-
tional to q„:—(k —p+ —p )„due to the small electron
mass. The relevant Lagrangian for E,4 is

(33)

From this we obtain

(Ir+Ir —
~

—A„~E+)= (2@+—p +k)„

+, , (k p +q'i2)(p+)„.~3f 3

(34)
To simplify the calculation we have dropped all terms
proportional to q„. Comparing (34) with (29), it follows
that

tromagnetic currents. For the radiative decay the
structure-dependent amplitude is of the same form, except
that j& is replaced by the photon polarization vector e&,
and k =0. As in the KI4 decay, the vector form factor
fv arises from the topological chiral anomaly, i.e., the
Wess-Zumino term; the axial-vector form factors fz and

fz originate from the spurious anomaly. Both the g9 and

glo terms of &3 contribute to fz, but fg rCCClvCS a coll-
tribution only from the glo term. In addition to the re-
sults for fv and fz in pion decays

f=g= 1+ k p
1 q

f ' (35)
m~ m~fv= f~ =8(g9+glo)

4 1r

(38)

Since the E,4 experiment is performed near the threshold,

k p =m~m, q =m~ +4m —4m+ m

hence

given in Ref. 5, we also obtain

f~= —8glom ~f
From Eq. (7) it follows that

(39)

f=g= 1+ 3 (m» +4m 2m»m )—m»

f '
f~y=
fv

=1,
fv

(40)

=4.86. (36)

Now the agreement with experiment for g is excellent,
and the small remaining discrepancy for the form factor f
might be attributed to the loop corrections. At any rate,
the quartic-derivative Lagrangian (i.e., g9 term of Z3) ac-
counts for the major corrections to soft-pion theorems.

It is of interest to note that there exists only one single-
loop graph contributing to the structure-dependent ampli-
tude as depicted in Fig. 1. A simple calculation shows

C. m, E~lvy, lve+e

The amplitude describing the weak radiative decay and
the related process consists of two parts —one is the inner
bremsstrahlung amplitude, the other is the structure-
dependent amplitude. The structure-dependent amplitude
for Ir~lve+e is of the form

t'

eG+cos8c
~sD= I"J'"tfv&„pV k

&2m

(37)

where p, k are the momenta of pion, photon, respectively,
aIld l~ and J~ al'c, respectively, 'thc lcptolllc alld clcc-

FIG. 1. The one-loop diagram which can contribute to the
axial-vector form factors in Eq. (37).
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that the (divergent) one-loop integral is proportional to
k2, and hence it contributes only to the form factor fq,
the prediction y = 1 is thus free ofmeson lo-op corrections.

As one can see from the hterature, both theoretical pre-
dictions and experimental measurements of the form fac-
tor f„are very diverse and confusing (for an extensive re-
view, see Ref. 30). This is one of the reasons that this
problem receives constant attention from time to time.
Let us first focus on the parameter y and denote the
fermion- and meson-loop contributions by y and y,
respectively, so that y=y +y . The value of y depends
on the type of fermion involved. For the color quark loop
the prediction of y in the relativistic quark model (or the
cr-quark model) should be the same as that of Eq. (40)
since the dimension-four chiral Lagrangian is equivalent
to the nonlinear tr-quark model with the quark fields be-
ing integrated out. Realistic calculations in the quark
model indeed give y =1 (Refs. 31—33). (An earlier cal-
culation in the relativistic quark model leads to y= —1.
The sign ambiguity is clarified in Refs. 31 and 32.) If the
fermion in the loop is a nucleon (as in the cr-nucleon
model), y = —,

' (Ref. 35) due to the lack of color. To cal-
culate the meson-loop contribution to y, it becomes neces-
sary to consider the model in which the PCAC relation is
respected and the chiral symmetry is realized. If the reali-
zation of the spontaneously broken chiral symmetry is
nonhnear, then y =0 because of the absence of the
meson-loop correction, as we discussed in passing. In the
linear cr model in which the chiral symmetry is realized
linearly, y = ——,

' in the soft-pion hmit (or, equivalently,
in the m ~ao limit). It should be stressed that the
linear tr model with m ~ ce is not equivalent to the non-
linear o model at the one-loop level. Consequently, we
have y= 1 (

—', } in the nonHnear (linear) o-quark model,
and y = —,

'
(0) in the nonlinear (linear) o-nucleon model.

We will not pursue the cr-nucleon model further, since
the use of the nucleon loo~ would lead to a charge radius
of a pion, (r )~=(2m f )

' (Ref. 37), which disagrees
with the experimental measurement by at least a factor
of 3, the number of colors. Now we have reduced the
problem to that of deciding which model, the renormaliz-
able linear o-quark model or the nonrenormalizable non-
linear o-quark model, gives the correct description. As
emphasized by Gasser and Leutwyler, " despite the fact
that to lowest order the low-energy behavior of the two
models is the same, renormalizability of the linear cr
model does not guarantee that it is still the correct model
when goes beyond the leading order. (By contrast, non-
renormahzability does not prevent the nonlinear o' model
having a finite and calculable S matrix. } Some realistic
linear o models in the one-loop approximation have been
worked out" and lead to results which are not borne

out by experiment. We thus conclude ' that the axial-
vector form factor f„should be equal to fv, as predicted
by the chiral Lagrangian or by the nonlinear 0-quark
model. It would be striking if the prediction y= 1 were
not confirmed by future experiments.

For the weak radiative decay of a pion, two values of y,
0.44+0.12 and —2.36+0.12, were obtained by Stetz
et al. Two experiments at SIN and TRIUMF are under
way. For kaons, there are two measurements:

i fv+fg i
=0.153+0.1 1

[Heintze et al. (1979) (Ref. 44)],

I fv+fa I
&0 2» —2 5 & (fv —f~ ) & 0 3

[Akiba et al. (1985) (Ref. 45)],
to be compared with the theoretical value

fv ——fg ——mal(4&f )=0.092 .

The g parameter has not been measured. Various model
predictions of g are discussed in details by Lee. '

In all the above three examples, we did not calculate
one-loop corrections (except for the y parameter in the
weak radiative decay of m and E which receives no contri-
bution from the meson loop) for the reason that we have
not been able to derive the constant po in Eq. (15), so we
could not have predictions for the coupling constants
g;(p, ). Nevertheless, the agreement of theoretical values
derived from the tree Lagrangian with experiment implies
that corrections to the soft-pion theorem are dominated
by the dimension-four chiral Lagrangian, as expected
from the large-iV, argument. Of course, this does not
mean the meson-loop contribution is always negligible at
all. As we noted in passing, a complete agreement with
the experimental measurements for physical quantities,
such as the form factor f in Kt4 decays, the charge radius
of a pion, . . . , etc., is possible only if the loop correction
is taken into account.¹teadded in proof. The prediction y= —, [Eq. (10)]
was also noticed by I. J. R. Aitchison, C. M. Fraser, and
P. J. Miron [Phys. Rev. D 33, 1994 (1986}].This parame-
ter was discussed recently by B. A. Li and M. L. Yan
[ibid 33, 1492 (1.986}];M. Mashaal, T. N. Pham, and T.
N. Truog [Phys. Rev. Lett. 56, 436 (1986)];A. A. Andri-
anov, V. A. Andrianov, and V. Yu. Novozhilov [ibid 56, .
1882 (1986}].
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