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We develop an effective Lagrangian for QCD in terms of order parameters of the gluon conden-

sate. (A useful analogy to the Ginzburg-Landau theory of superconductivity may be made. ) In this

work the order parameters are identified with averages of the low-momentum components of the

vector potential. The theory is formulated such that only a single order parameter, which describes

the number of gluon pairs in the condensate (of all colors), is relevant. This order parameter be-

comes spatially dependent in the presence of quarks and one obtains a dynamical model for the for-

mation of hadrons as nontopological soliton solutions of the effective Lagrangian of our model.

I. INTRODUCTION

If we are to introduce order parameters (or Higgs fields)
to describe the condensates in the @CD vacuum, it is
necessary to say something about length scales. For ex-
ample, let us consider the corresponding situation in the
Ginzburg-Landau theory of superconductivity. ' There a
(complex) order-parameter field %(x) is introduced so that

~

4(x)
~

is proportional to the density of condensed elec-
tron pairs, n,'. However, it is clear that 4(x) cannot ex-
hibit an arbitrary spatial variation. For example, if we are
to construct a local theory, we cannot consider a variation
of %(x) over a length scale smail compared to the coher-
ence length of the condensate, (o. Therefore, we see that
the introduction of condensate order parameters requires a
specification of the length scale at which the theory is to
be used.

If we turn to the theory of quantum chromodynamics
(QCD) we see no length scale in the Lagrangian since the
coupling constant is dimensionless; however, the theory
develops its own length scale. For example, the string
tension or the parameter A, which sets the scale for the
running coupling constant, could be used to specifs the
length scale. Another scale might be the coherence length
of the gluon condensate, Pq . We do not have a precise
value of gP; however, this quantity will play an impor-
tant role in our discussion. (A value of —,

' or —,', fm might
be appropriate —see the Appendix. ) We will be interested
in discussinp momenta that are either smaller or greater
than I/g~ . It is only the former momenta that will be
relevant in characterizing the condensate structure.

As we will see, the introduction of condensate order pa-
rameters, which tell us how the system is correlated over a
finite space-time volume, leads to a loss of local gauge in-
variance at the original length scale. Under certain as-
sumptions we can restore gauge invariance to the model
by specifying the gauge transformation properties of the
order parameters at the new length scale appropriate to
the effective Lagrangian of our model. This is quite
analogous to the gauge invariance exhibited in the
Ginzburg-Landau theory of superconductivity.

Our notation is such that pI'=i 8' =i8/Bx„,

Wx)-q (x)=e-'""'e(x), (1.2)

if the vector potential undergoes a gauge transformation

A~ (x) A~ (x)—e&) (x) .

[This U(1) invariance implies that the phase of 4(x) is ar-
bitrary and not a physical observable. ] We see that we
must assume specific transformation properties of the
order-parameter field if gauge invariance is to be
preserved at the new length scale. The transformation
property given in Eq. (1.2) is seen to be consistent with the
BCS microscopic theory since the Ginzburg-Landau wave
function is proportional to the gap parameter b,(x) which
is related to the electron field operators t}'t(x) and gt(x)
by

5'(x) = —G(g, (x)tit, (x) ) (1.4)

h(x)= —G(tit, (x)g, (x)) .

Under gauge transformation, we have

Q( x )~Q'(x ) =e "r'"'p(x ),
from which Eq. (1.2) follows.

When we consider QCD, we find that
(vac

~

(ct, /tr)G„'„(0)Gf (0)
~

vac) might be a useful
gauge-invariant order parameter to describe the gluon
condensate. It is much more convenient, however, to
work with a "pairing" order parameter
( vac

~
g A „'(0)A,"(0)

~

vac ), which is clearly not gauge in-

x&=(t, —x), and x"=(t,x) In t.he case of electromagne-
tism we achieve gauge invariance by replacing p" by
[p" qA",—m(x, t)], where q is the charge of the particle
coupled to the electromagnetic field. Thus, in a relativis-
tic version of the Ginzburg-Landau theory, the covariant
derivative &" is given by

i&"=[p" e'A", —(x,t)],
where e'=2e &0, e being the charge of an electron.
Therefore the gauge invariance of that theory requires
that the order parameter %(x) should transform as
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variant. However, we can show that, if rlie condens«& ii&&

only lou-momentum components,

(vac
~
(a, /n )G„'„(0)G,""(0)

i
vac)

A&(x)~A'&(x)=U(x)A "(x)U '(x)

——i) U(x}U '(x) . (2.5)

II. ORDER PARAMETERS OF THE @CD VACUUM

In quantum chromodynamics the covariant derivative

D& is given by
T

iD„= iBq+gA„'(x)
2

(2.1)

It is useful to write the vector potential as

(2.2)

so that if the quark field q (x) transforms as

q(x)~q'(x)= U(x)q(x),

with

U(x) ciao~(x)A'ii.

(2.3)

(2.4)

is proportional to the square of
(vac

~ g A „'(0)A,"(0)
~

vac ) . To the extent that this is
true, (vac~g A„'(0)A,"{0)

~

vac) is a useful, essentially
gauge invariant, characterization of the condensate. %'e

have seen in an earlier work how a specification of a non-
perturbative value for

(vac
~
(a, /n )G„'„(0)G,""(0)

~

vac)

allows us to specify the value of dynamical masses for
quarks and gluons of low momentum. (A dynamical
gluon mass has been extensively discussed by Cornwall
and collaborators~ and the number suggested for that
quantity is consistent with the value obtained in our
model. )

In Sec. II we begin with a discussion of the local gauge
invariance of @CD. We then introduce order parameters
which are used to describe ihe gluon condensate. In Sec.
III we construct an effective Lagrangian in terms of these
order parameters. In that section we specify matrix ele-
ments of the condensate field in the QCD vacuum and use
these elements in the development of our effective La-
grangian. We then show that (essentially) the same La-
grangian may be obtained if the condensate field is re-
placed by a classical field. This field must be averaged in
a specific manner to reproduce the effective Lagrangian
obtained using the erst method.

In Sec. IV we introduce still another method to obtain a
similar effective Lagrangian. In that section we develop
the analogy to the Ginzburg-Landau theory of supercon-
ductivity. We show that averaging over the gauge group
in a specific fashion leads to the effective Lagrangian ob-
tained in Sec, II.

In Sec. V we describe the modification of the theory re-
quired in the presence of quarks. Finally, Sec. VI con-
tains some concluding remarks and a summary of the
properties of the effective Lagrangians developed at vari-
olls stages of tllls allalysis.

If co'(x)~5co'{x), an infinitesimal quantity, Eq. (2.5) be-
comes

A„'(x)~A,'"(x)=A,"(x) f'—b'5cob(x)A,"(x)

(2.6)

where we have used

ifob2'2 '
2

(2.7)

Now, the spatial variation of co, (x) can, in principle, be
extremely rapid, that is, the Fourier transform of co, (x)
can have very-high-momentum components. Such rapid
spatial variation is certainly a possible characteristic of a
local gauge transformation however, in order to discuss
the gluon condensate we should limit our consideration to
distances greater than go~ or momenta smaller than
1/gq as discussed in the previous section.

We now decompose the modes of the gluon field into
those with momenta greater than and less than 1/gP
%'e will write

(2.8)

where A", (x) contains only low momenta, as defi~ed
above. Indeed, let us introduce the Fourier transform of
Eq. (2.8),

A,"(k}=A",(k}+W",(k), (2.9)

where A", (k) is nonzero for k «1/go and W, (k) is
nonzero for k ~1/gP . We will see that in this model
A ",(k) and M", (k) have quite different magnitudes.

For definiteness let us consider the condensate to be in
the k =0 mode. We note that local gauge transformations
will mix the A ", and M", modes. Therefore in order to
make a separation such as that in Eq. (2.9}, we should
work in a fixed gauge. In any gauge we will find that the
relevant physical quantities will be proportional to the to-
tal number of gluons (of all colors) in the condensate and
the order parameters of the theory will be real. For the
model discussed here we can also see that the condensate
is color neutral and thus there is no color current associat-
ed with the flow of the condensate. (This is in contrast
with the theory of superconductivity where the condensate
is charged and one therefore requires a complex order pa-
rameter. ')

In order to keep the notation simple let us take g'P& to
be "large" and concentrate on the k =0 mode. Thus we
will write A&(0) rather that A&(k) in the following. As a
next step we will assume that the mode A &(0) is macro
scopically occupied This assump. tion is characteristic of
any analysis of a boson condensate. For example, in the
nonrelativistic theory of a boson condensate one separates
off the k =0 mode in the expansion of the field:



8(x)=e' 80+ g ci,e' ".
k~O

(2.10) 6,""(x)=8'A,"(x) —8"3"(x)+gf' Af(x)A,"(x),

and wr1te

(2.11)

The phase may be taken equal to zero and Ho is then seen

to be ~nz, where no X——o/(vol} is the density of particles
in the condensate. Therefore if Ns is the number of con-
densed gluons in some volume, the magnitude of A „' aver-

aged over that volume is of order QNs larger than the
characteristic magnitude of the average of M&(x). In
@CD we have an octet of fields, A„'(0} and these are
(Lorentz) vector fields. Therefore we can consider gluons
condensed into each of eight color states and also consider
various spatial directions. However, toe should describe
the condensate in a manner such that gauge inuart'ance and
Lorentz i nuariance are preserved.

Let us consider the field operator

(2.12)

where

G,""(x)=gf' 'Ag(x) A,"(x) . (2.13)

We now recall that from the @CD sum-rule analysis one
obtains'

vac Ga„(0)Ga"(Ol vac) =0.012 GeV~ ~ (2.14)

We identify this quantity, which is fundamentally nonper-
turbative, with

vac G&„(0)G","(0) vac =
z
f' f '(vac ~g Ag(0) A,"(0)A&(0) A'„(0)

~

vac) .
m 4m

(2.15)

As discussed in an earlier work, we equate b and d and c and e to obtain the coherent part of the last expression:

vac — G„'„(0)G","(0) vac = [(vac~g Ag(0) A„(0)
~
vac)]

32
(2.16)

or

(vac
~ g A ~s(0) A &(0)

~
vac) = —1.12 GeV (2.17)

We have chosen a negative sign in Eq. (2.17), since that
sign leads to positive dynamical masses for quarks and
gluons. Indeed, we have shown in a previous work that
the value of the condensate parameters given in Eq. (2.17)
leads to a dynamical gluon mass of mo ——649 MeV and a
dynamical quark mass of me = —,'mo ——434 MeV. (In
Ref. 2 we also discussed the momentum dependence of
the dynamical mass parameters. In order to describe that
momentum dependence we must discuss the nature of the
theory at length scales significantly smaller than those
considered here. ) As we will see, mo can be put into
correspondence with the inverse of the Landau penetra-
tion length (A,t ) in the theory of superconductivity. Simi-
larly the dynamical quark mass mz is analogous to the
gap parameter b, in the theory of superconductivity.

Up to this point we have not been careful to distinguish
between the operator A. ", and a corresponding classical
variable. We make this distinction in the next section
where we present values for vacuum matrix elements of
the operator A", and various products of such operators.
We then go on to show how one can replace A. ", by a e
number:

III. AN EFFECTIVE LAGRANGIAN

Aq(x) = A „'+Mq(x), (3.1)

where, for simplicity, we will take A„' to represent the
zero-rnornentum mode. From symmetry considerations
we must have

In this section we will show how the separation of the
vector potential into a condensate field plus an additional
field allows one to construct an effective Lagrangian.
Since color symmetry is not broken we require special
techniques for the description of the condensate fields,
which will become apparent as we proceed.

We note that in the conventional approach to spontane-
ous symmetry breaking one writes a Lagrangian which
has some continuous symmetry. This Lagrangian may
contain a Higgs field or chiral fields such as o(x) and
ir(x). One then has a continuous infinity of degenerate
vacuum states. By choosing a specific vacuum state one
breaks the symmetry of the ground state. Now we note
that this procedure cannot be used without modification
in the case of QCD since the gauge symmetry is not bro-
ken.

The procedure we adopt is as follows. We write the
vector potential as

[ Au]cl VOC (2.18)

We will see that one has to average the Lorentz vector rf,
'

in a specific manner to reproduce the results of our origi-
nal analysis which is based on specifying vacuum matrix
elements 1nvolvlng the AE ~.

( vac
i

A P vac) =0 . (3.2)

However, we can put„with A, =0, i.e., in the temporal
gauge,
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(vac~g ~'~J
~
vac)=g 5~5,J@o /24. (3.3)

Indeed, our assumptions concerning the character of the
@CD vacuum can be translated into assumptions concern-

ing matrix elements of the operator A ", . We now assume
that, in addition to Eqs. (3.2) and (3.3), we may write

( vac
i A,' A b A, i

vac) =0 (3.4)

and

4

(vac
~
A,' A Jb A, A d ~

vac) = (5J5ki5,b5,d+5;b5;I5 5bd+5g5ik5~5b, ) .
(24 26

From the last relation we have

(3.5)

&»c
I

&'b &!+i' A; l»c)= (35b,5b'+95bb5" +35b 5.b»
(24)(26)

from which we can obtain a result we will need later:

(3.6)

—,
'

(vac~ f' Ab AJ A A'f'b'
~
vac) =— [9(f' ) +3f' f ]'"

b ~ 4 (24)(26)
4 ~i

4 (24)(26)
(3.8)

(3.9)

Note that the term in the brackets in Eq. (3.9) arises from
considering the "exchange terms" of Eq. (3.6), that is,
those terms with coefficient 3.

We digress at this point to remark that if A „' were to be
treated as a classical variable we could put

[ & '].i=moil' (3.10)

(vac ~g'A,' A',
~
vac) — =-g'yo'rl'*il'. (3.11)

This then suggests that we should constrain the vector rl'
such that

where yo is a constant. Now q
' cannot be a simple classi-

cal vector since the vacuum expectation value of A ' is
zero, which implies il =0 for finite po. We may also
consider the correspondence

t

Lagrangian. Then we will carry out an analysis based
upon Eqs. (3.10)—(3.13). We begin by inserting Eq. (3.1)
into Eq. (2.11) to find

G»~=8»W~ —B~»+gf (Zf»d3f~~+W» 4 „
+ A»W'„+ A» A '„) . (3.14)

Thus the gluon part of the QCD Lagrangian is

W, = —-'[9" 9»"+2gf'"9»"(Wb A '

+g2fQbcf clb'c'(~b A c+ A b~c + P b A c)

y(~b A '„+A bM'„+ A. „A'„)],

g, j~= 1 . (3.12) (3.15)

&o(~))=
J gdil, 5(il, il, —1)O(il)

0

J g d il, 5(q, i), —1 )
(3.13)

The characterization of the vacuum state given by Eqs.
(3.2)—(3.9) may be translated into further specifications
concerning the behavior of the vector rl, . The various as-
sumptions concerning the character of matrix elements of
the operator A, translate into the following prescription.
One uses Eqs. (3.1) and (3.10) to reexpress the @CD La-
grangian in terms of M'(x), qo, and il'. One then aver-
ages the result over all directions of the vector i), with the
constraint of Eq. (3.12).

This averaging procedure for an operator 0 (il ) may be
written as

9»„(x)=B»M'„(x)—B~»'(x)+gf' zf„(x)M'„(x) .

(3.16)

WG(M», yo) = ——,[9'»'„(x)9'», "(x)]

M (x)M»b(x) bq) o—mG b (3.17)

As a next step we replace various products of the A",
by their coherent values. (That is, we insert the "contrac-
tions" of these operators, to obtain an effective Lagrang-
ian. ) This procedure leads to the effective Lagrangian

We now turn to the construction of an effective La-
grangian. First we will use Eqs. (3.1)—(3.9) to develop a

~G =[Xi] sg Po (3.18)

(3.19)
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Again the factors in brackets arise from keeping the "ex-
change terms. "

%'e may now show how the same result may be ob-
tained using Eq. (3.10) plus a specific averaging pro-
cedure such as that defined in Eq. (3.13). This will
strate to what extent we can treat yo and g& as classical
variables. To avoid repetition let us consider a more gen-
eral model where we write

with y(x) =pp+X(x). We now have

6„'„{x)=8'„'„(x)+dqy(x)Il'„B—~(x)II„'

+gf' g (x)rl„rl'„

+gf' q(x)(g„~'„+M„rl'„) (3.21)

(3.20) and

~G(y, ll)= ——'
t g „(x)g "(x)—2[() q)(x)I)I y(x)+(j y(x)Q~(x)rI&rl" ]+g f f q) (x)I1"I) rli;rl,

+2g f' f'" '
y (x)[Il„rg W'„(x)M,'(x)+rl„rj~~q(x)W,"(x)]+ . (3.22)

In Eq. (3.22) the ellipsis indicates various terms which
will vanish upon averaging. We find, upon averaging,

WG(g) = ——,
' 9'","(x)8'„'„(x)

+ W„'(x)W",(x)y (x)lq p'

j,(x)=—

the Higgs field 4'(x), in Eq. (4.2). (Here
D~™=[iB„eA~™—(x)], and &„has been given in Eq.
(1.1).)

In the Ginzburg-Landau theory the current consists of
a normal part, j„(x),and a supercurrent, j,(x),

(e")'
~

%(x)
~

A,„,(x)

+ I (d~d~ ', Vq. Vq-) -bq4{x) .- (3.23)

This result agrees with our previous result if p(x) =pp.
The point of this development is to show that if we

wish to use classical fields to represent the condensate, we
have to perform a particular type of averaging of these
fields to reproduce the results of the first method used.

In the next section we describe a model which exhibits a
local gauge symmetry. We will show that if the Lagrang-
ian of that model is averaged in a particular fashion, we
can reproduce the effective Lagrangians obtained in this
section.

IV. YANG-MILLS FIELDS COUPLED
TO HIGGS FIELDS

F(x)=F„(x)+ 1

2EPl

8—iV — A(x) +(x)

+a [ +(x)~ +b [ 4'(x)~ + 8 (x)
8m.

(4.1)

%e remark that the covariant version of the Ginzburg-
Landau theory is an Abelian Higgs model:

MLG(x) = —,' F","(x)F„'„(x)+g(—x)(ig' m, )P(x)—
+ —,

' [&"4'(x)]&„%"(x)

We recall that in the Ginzburg-Landau theory of super-
conductivity one adds to the free energy density of the
normal system, F„(x), the free energy density of the con-
densate

+ [4'(x)VV(x) —%(x)V%"(x)] .
2,m i

(4.3)

where n, is the density of superconducting electrons.
This follows from Eq. (4.3) if we note that e'=2e &0
and rn'=2m„and if we normalized

~

4
~

to be propor-
tional to the density of superconducting electron pairs,
n,
' (Note . that n, = —,

'
n, and that the factor of 4Ir arises

from use of curlB =41rj, .) As we will see, in our analysis
we will obtain a current analogous to the first term of Eq.
(4.3) (Ref. 2),

Pp+X(x)J~, (x)=mG A,"(x) . (4.5)

Thus, there is an analogy between the dynamical gluon
mass and A,L

' which may be drawn. (We should remark
that the coherence length gp and the penetration length A,i
can be quite different in the theory of superconductivity. ')

%e note that the local relations between the super-
current and the vector potential in Eq. (4.3), and the cor-
responding relation in Eq. (4.5), are only valid if A(x)
varies slowly over the coherence length. This may be seen
in the Pippard generalization of the Landau theory,
where'

The first term of Eq. (4.3) makes the photon field "mas-
sive" in the superconductor leading to the Meissner effect.
The penetration length is seen to be

1/2

(4.4)

+a'
~

ql'(x)
[

+b'
)
4'{x)

~
(4.2) *2 pg~

—«&o3 (e ) ns I d
r[I"A(y)]e (4 6))~ x

where P(x) is the electron field operator. Note that the
lllass III =2lII llas bccli absolbcd lllto tllc dcflllltloll of Here r=x —y. For example, if we put A(y) =A(x) and
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take A(x) outside the integral, we have grangian of our model by choosing the 4',"(x}of Eq. (4.8)
to be

(4.7) 4"(x)= U(co, )[4"(x)]0, (4.11)

which is the Landau ansatz for the relation between the
supercurrent and the vector potential. [The supercurrent
of Eq. (4.7) corresponds to the first term of Eq. (4.3).]

We do not expect that the coherence length in QCD,
goO, can be much less than —,', fm since Bjorken scaling
seems to begin in deep-inelastic scattering at momenta of
the order of 2—4 GeV. On the other hand, if an order-
parameter approach to hadron structure is to be viable,
gP should be significantly smaller than the diameter of
a hadron, a number which is about 1 fm.

In analogy with the Ginzburg-Landau theory of super-
conductivity we add a Lagrangian describing the conden-
sate to the QCD Lagrangian. (As in the case of the
Ginzburg-Landau theory one must avoid double counting
when using such a Lagrangian. ) We write

W(x) = ——,
'
G,""(x}G„'„(x)——,[0 q4'„(x)] [0"4,"(x)]

+ a@'„(x)4,"(x)—b [4'„(x)4,"(x)], (4.8)

where a and b are greater than zero, and

f &[~']UIj(~'}Ukl(~ } 8jk~il/8 (4.13)

for the adjoint representations of SU(3). Here the co' are a
set of parameters which specify an element of the group
and 8 is the dimension of the adjoint representation. We
then have

2 f ri [co']4'„(x)U,g(co') T T~g U~(co'}CI,"(x)A „'(x)

where [@,"(x)]0"points" in an arbitrary direction in ordi-
nary and color space. [The norm of this vector is speci-
fied below —see Eqs. (4.18) and (4.19).]

We average W(x) (which now depends on the angles
ai, ) over the gauge group to obtain WM(x):

f1[a),]W(x,ai, )
WM(x) = (4.12)

d[co, ]

In order to perform this average one needs to use the re-
sult

D „=I3„igA„'(x)T—' . (4.9)
2

2 "
8

g e'(x} ""f"fj'C (x}A'(x}A&(x}e pc j
Symmetry under gauge transformation may be obtained

by assuming that the order parameter fields 4'„(x)
transform as

Ip„(x)~4„'(x)=e ' ip„(x) . (4.10)

In this model, co, (x) can have arbitrary spatial variation;
however, considering that this model is only meaningful
at a certain length scale, we should restrict the gsatial
variation of co, (x) so that only momenta k ~1/g~ ap-
pear in the Fourier transform. That is to say, co, (x) can
only vary here over distances larger than the coherence
length. We may call such restricted gauge transforma-
tions quasi local

The notion of a quasilocal gauge transformation seems
generally useful. For example, it is natural to consider
QCD to be an effective theory at some scale. Indeed,
QCD is not a complete theory as the current quark masses
are expe:ted to arise from symmetry breaking at some
large mass scale. Therefore the quarks and gluons of
QCD may be composite fields of a more fundamental
theory, and there is a characteristic length scale for which
the QCD Lagrangian is a useful effective Lagrangian. It
follows that the local gauge invariance of QCD is quasilo-
cai in the sense defined above. Since we have introduced
still another length scale, the QCD coherence length go~,
we lose the "local" gauge invariance of QCD, but still
have a quasilocal gauge invariance at a new length scale.
Therefore our model is defined by the Lagrangian of Eq.
(4.8}. The order parameters are assumed to have the
quasilocal gauge-transformation property of Eq. (4.10).

At the new length scale associated with the QCD coher-
ence length, we can see that the gluons and quarks acquire
dynamical masses. (This feature was discussed at some
length in a previous work. ) Now we can obtain the La-

(4.14)

( —', )4'„(x)4,"(x)A/'(x)A„'(x)8

= —,
'

( —,
'

)g qP(x}A,"(x)A„'(x)

' "",'A:(x)A„(x).
f'o

(4.15)

(4.16)

(4.17)

In passing from Eq. (4.16) to Eq. (4.17) we have put

CI'„(x) 4,"(x)=—g'q (x)

= —g'[ Ipo+X( x)]' .

(4.18)

(4.19)

W~(x) = ——,
'
Gq„(x)G,""(x)

+-,'a„X(xenx}-V(q, +X(x})

ma Ipo+X(x)2 '2

+
2

A,"(x)A„'(x),
%o

(4.20)

where

V(lpo+X(x)) = —a [po+X(x)] +b [Ipo+XIx)], (4.21)

with b =a/2' (a &0).
From our previous work we see that we can avoid dou-

ble counting by replacing W~(x) of Eq. (4.20) by

W~(x) = ——,
' S„'„(x)8'","(x)

+ —,
' B„X(x)B"X(x)—V(yo+X(x) )

ma po+X(x)
W",(x)W„'(x} . (4.22)+

2 f'o



DESCRIPTION OF THE GLUON CONDENSATE

%e note that this is essentially the same Lagrangian as
that derived in Sec. III except for the term in the potential
proportional to a. However, we see that this method does
not produce the corrections due to "exchange terms""
which were isolated by brackets in Sec. III. It is clear
that at the 1ength scale at iohich W~(x ) is meaningful, the
gluons have a mass mG. We found that

mG'= —
8 g'[K]o[K]o (4.23)

' 1/2

(ig —m)q (x)=0, (5.2)

space. We also saw in our previous analysis that, if one
studies the quark field equation which is second order in
the time variable, one generates a dynamical quark mass,
m& ——', m—G. Indeed, if one includes in Eq. (5.1) a mass
ms'~, which arises from the breaking of chiral symmetry,
the quark field equation becomes (with m =m~~~+ m '"'),
m =m +m'"')

vac G ~"(0) I(' &„(0) vac
2 m'

= ——', (vac Ig A'„(0)A,"(0)
I
vac)

=(649 MeV)

(4.24)

(4.26)

[i y"8„+gy"A„'(x)A;l2 m—]q (x)=0 .

This equation may be written as

a.p, +ga A(x) +y m q(x)= ———q(x)p 1 3
Op i t

(5.3)

(5.4)

The exchange correction is given in Eq. (3.21). Includ-
ing that correction, one has mG ——529 MeV. A more gen-
eral version of Eq. (4.23) is

in the temporal gauge. We can take the time derivative of
this equation and retain only those terms which have a
coherent vacuum value. That procedure leads to

mG (x)= ——,g [4,"(x)] [4'„(x)]

= -'g'[4. +X(x)]'

(4.27)

(4 2&)
Thus we can define

(p,& + —,'g A,'A,'+m )q(x)= — q(x) .
Bt

(5.5)

As we will see [Po+X(x)] can be quite small "inside" a
hadron, and therefore mG-0 there.

It is interesting to note that the dynamical mass mG
can be considered to be a function of momentum (as well
as temperature and the quark chemical potential). The
dependence on p has been discussed recently by Larsson
for t = —p large, that is, in the deep-Euclidean region.
That discussion of the gluon propagator refers to a high-
momentum gluon moving in the field generated by the
quark and gluon condensates.

+ '"')'+ ( )q q (5.6)

62 ~ 2 i i
(mq ) = —,g A, A, = —,g~qrpi . (5.7)

For simplicity let us consider the case of m'"'=0.
Now in the presence of a hadron we can replace A' &' by
[yp+X(x)) . We have also argued that mP may be tak-
en to be proportional to [pp+X(x)]. Therefore we define
mq(x) =mq [qp+X(x)] leap and write

V. QUARK DEGREES OF FREEDOM

po+X(x)
Pop +mq

go

a'
q(x)= — q(x) .

Bt

The addition of quarks to the model leads to the intro-
duction of the effective Lagrangian

WM(x) = ——,
' 9„'„(x)8","(x)

+ —,
' &X(x)B„X(x)—&(Pp+X(x) )

mG Pp+X(x)
W",(x)M„'(x)

J

+q(x)(ig —m "'"")q(x),

where m'"' is a current quark mass matrix in flavor

~e may rewrite this equation as

2m mq
q(x)X(x)+ z q(x)X (x) . (5.9)

f'o go

Using techniques developed extensively in earlier
works, ' we may study the structure of mesons by tak-
ing matrix elements of this field equation between states
of the meson, IP) and (on-shell) quark states Ik,s). We
find

2m 2

[(~—k)' —m ']«» Iq(o) I»= ' I, «s lq(» IP')(P'Ix(o) I»2'(P')

mq dp'+, ~ P, (k,s
I
q(0)

I
P')(P'Ix'(o)

I
P) .

go
(5.10)
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V8"8 X(x)+ = —grq(x)q (x)
SX(x)

(5.12)

The analysis of equations such as Eq. (5.10) has been
described in great detail elsewhere. ' %e had also sug-
gested that rather than study the second-order quark field
equation, it is convenient to add a mass term
[m~+grX(x)]q(x)q(x) directly to W'M(x) of Eq. (4.23).
Therefore, having exhibited the effect of the most
coherent part of the gluon field, we can take as a starting
point for the study of hadron structure the Lagrangian

~,rr(x) = —,&X(x)&&X(x)—&(Po+X(x) )

+q(x)[i y"B„mq——gxX(x)]q (x), (5.11)

with qr ——m~/Po. The field equations are

(iy"8„—mq)q(x) =gxq(x)X(x) . (5.13)

We have also shown that a Lagrangian such as that of
Eq. (5.11) may be used to give a good account of the
structure of the nucleon and a large number of meson
states p, co, and several states of the charmonium and
Y systems. The effects of "single-gluon exchange" have
also been considered; however, a gluon mass term was not
taken into consideration in our earlier studies. '

%e note that we have broken ehiral symmetry in
ff(x) of Eq. (5.1 1 ). We can avoid using such an effec-

tive Lagrangian if we introduce order parameters associat-
ed with chiral-symmetry breaking (pion and cr fields). We
can write

mG F0+X(x)
Wq, i,(x)= ——,

' 9'„'„(x)3'",'(x) + ~:(x)~„'(x)+-,' a X(x)a„X(x)—V(&,+X(x))
2 go

+q(x)[ig m'"' —g(a(x—)+in(x) hays)]q(x)+ —,
' B„o(x)B"cr(x)

+ —,'B„n(x) cPm(x) —A[a (x)+m (x)—f (x)] (5.14)

cr (x)+n (x)=f (5.15)

The left-hand side of Eq. (5.15) is a chiral invariant. Our
modification of this equation is based upon the assump-
tion that the chiral condensate and the gluon condensate
are closely coupled. %e write

2 2 F0+X(x)
cr (x)+ir (x)=f (5.16)

go

This effective Lagrangian exhibits chiral symmetry. We
remark that the minimum of the potential term for the
chiral fields is not unique, but is usually given by

(P'
~

a(0)
~
P) =f 5(P' —P)[2'(P')]

f+ (P'~X(0) ~P) .
f'o

(5.18)

The second-order quark field equation is now, with
~CQf 0

[p,~ + —,g 4,'(x) 4,'(x)+g„ f„(x)]q(x)

We note that in the presence of a hadron, which we can
take to be a meson, we can write

and define

qo+X(x)(x)= (5.17)

2 q (x) (5.19)t'

go

where in vacuum f (x)=f =93 MeV. This equation de-
fines the quantity f (x) which appears in Eq. (5.14).

Now, as usual, we can assume that while our Lagrang-
ian exhibits chiral symmetry, this symmetry is broken in
the ground state. Therefore one chooses a particular vac-
uum state in which o(x) has a finite value and for which
the expectation value of m(x) is zero. The pion is then
seen to be the Goldstone boson of this model. (We recall
that in discussing the gluon condensate we did not choose
a specific vacuum state since the gauge symmetry is un-
broken. )

'2

p +[(m,')'+g. 'f.'] q (x)

q(x) .
Bt

(5.20)

Contact with the previous analysis is made by identifying

mq =g~f~ (5.21)

We note that in the case m'"'&0, Eq. (5.20) is to be re-
placed by

G z F0+X(x)
p,p +(mq )

f'o

F0+X(x)+ PPlq +m'"' q(x)=—B2
q(x) .

Bt
(5.22)
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We see that Eq. (5.20) is equivalent to Eq. (5.8). For
m'"'+0 we can develop an equation similar in structure
to Eq. (5.10}by starting from Eq. (5.22).

In Ref. 8 we also presented some conjectures concermng
the dependence of the order parameter (po on the tempera-
ture and quark chemical potential. That discussion led to
the assignment of a temperature and mass dependence to
the parameter m~. Correspondingly we could discuss the
density and temperature dependence of hadron size since
the scale of hadron size is set by ms

' in our theory of
hadron structure, covariant soliton dynamics. 9 Our pre-
dictions of increased nucleon size in nuclei and the conse-
quences for the interpretation of a broad range of experi-
mental data have been reviewed elsewhere. '"

VI. DISCUSSION

At this point it is useful to survey the various Lagrang-
ians introduced in this work. The first effective Lagrang-
ian is given by WG of Eq. (3.17) and does not contain
quark degrees of freedom. There we see a gluon mass
term and another term which arises from the quartic cou-
pling of the gluon fields. We remark that the mass is ex-
pressed in terms of a gauge-invariant quantity in Eq.
(3.18) [see also Eqs. (4.23}—(4.26)].

The second Lagrangian is similar to the first and is
given by Eq. (3.23). The method of derivation was dif-
ferent in this case and we also generalized our model to
include a spatial variation of the order parameter (p(x).
This spatial variation is associated with the presence of
quarks as may be seen from the developments of Sec. V.

The third Lagrangian is given in Eq. (4.8) and is written
in analogy to the Ginzburg-Landau theory of supercon-
ductivity. %e then demonstrate how the previous results
may be obtained by averaging this Lagrangian over the
gauge group. This analysis ultimately yields the Lagrang-
ian of Eq. (4.22)

A new feature introduced in Sec. IV is the addition of a
term quadratic in p(x). This term cannot be obtained by
our elementary techniques since the original Lagrangian
has no dimensional parameter, while the coefficient of the
(p (x) term has the dimension of (mass) . Such a term can
be obtained in a dynamical calculation after a mass scale
is introduced to regulate the theory. (This appearance of
a mass scale when one goes beyond the "tree" approxiina-
tion is usually called "dimensional transmutation. "'

)

In Sec. V we extend our effective Lagrangian to include
quark degrees of freedoin [see Eq. (5.1)]. In Eq. (5.14) we
further generalize the model to include order parameters
associated with chiral-symmetry breaking. The Lagrang-
ian W~,h(x) of Eq. (5.14) is chirally symmetric if we put
ms"'=0. That Lagrangian represents a central result of
this analysis. However, we have also discussed an ex-
tremely simple model which is defined by the Lagrangian
W,ri(x} of Eq. (5.11}. This Lagrangian is not chirally
symmetric, but represents a useful approximation to the
more complete theory. If one is particularly concerned
with understanding the role of chiral-symmetry breaking
in a model of the type developed here, one should use
Ws,h(x) of Eq. (5.14) as a starting point for further
analysis.

APPENDIX

We have stressed that the coherence (or correlation)
length is an important quantity for the study of QCD.
One may argue that this length may be used to character-
ize the domains where perturbative and nonperturbative
techniques are useful.

We note that the correlation length of the vacuum con-
densate has been measured in a Monte Carlo simulation of
SU(2) gauge the)ry by Campostrini, DiGiacomo, and
Mussardo. ' They consider

EXg 1

G,(x)=(0:Ge„(x)exP il" J e((Ae'(x))xe

XG""(0):0), (Al)

where T' is a matrix in the adjoint representation of
SU(2). Further, a lattice operator O(r) is constructed
which is proportional to 62(ra) in the limit that a ~0. A
perturbative contribution is also subtracted from the vacu-
um expectation value. The function

defined in terms of suitable lattice averages, is calculated
with the result that

( )
—x/i,

It is found that

In summary, we may note that we have used techniques
of many-body theory to provide a description of the gluon
condensate and have also indicated how quarks can be in-
cluded in the model. The order parameter yo+P(x) plays
a central role in this model, and all masses, other than the
current quark masses, are proportional to this quantity.
The presence of quarks excites the field X(x) and reduces
the quantity yo+X(x) inside a hadron. This mechanism
provides a model for the formation of a hadron described
as a nontopological soliton.

We have stressed that our model represents QCD at
low-momentum transfer. When quarks and gluons have
large momentum, —p & 1—2 GeV, the gluon and chiral
condensates modify the propagators only to a minor de-
gree. Therefore, the high-momentum properties of the
theory are largely unmodified by the presence of the con-
densates.

%e have seen that the condensates provide dynamical
masses for the quarks and gluons. While the mass gen-
erated by the quark condensate breaks chiral symmetry,
the mass generated by the gluon condensate does not.
Therefore the dynamical quark mass has two components.
The simultaneous consideration of both components leads
to a value for the dynamical quark mass for up and down
quarks which is quite close to the phenomenological value
we have determined in previous studies ( rn~ —500—
600 MeV) (Refs. 8—10). It can also be shown that the pa-
rameters which specify V((pa+a(x)) may also be obtained
using the techniques introduced in this work.
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0 A, =0.064+0.003 (A4)

in terms of the string tension o. The scale is fixed by as-
suming a=(2m) ' GeV, which gives A, =0.12 fm. A
value for the correlation length of this characteristic size
has been suggested in our work on the basis of physical
arguments.

The correlation length in a field theory is an inverse
mass. Therefore we may consider either the glueball mass
or the gluon mass as defining a correlation length. The
glueball mass is calculated to be about 1 GeV in Monte

Carlo studies. The gluon mass for the SU(2) theory is dis-
cussed above (I/A, =1644 MeV). The gluon mass for the
SU(3) gauge theory is calculated to be about 750 MeV
with a significant theoretical uncertainty. ' That value is
close to the value of 649 MeV we had calculated in an ear-
lier work. %e have also calculated the Higgs-boson mass
for our effective Lagrangian and obtained a value of 918
MeV (Ref. 2). If we identify that quantity with the glue-
ball mass, we find we are in general agreement with re-
sults of lattice gauge studies.
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