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Vfe examine the possibility of the existence of composite weak-interaction bosons. Constraints
from the anomalous Inagnetic moment of the electron are used to determine upper limits on the cou-

plings of the bosons, an entire spectrum of which may exist in the composite model. It is found that
the coupling of a singlet or triplet pseudoscalar to leptons is very small. This explains the V, A na-
ture of weak interactions. It is assumed that composite bosons have a structure similar to mesons
where the constituents are preons instead of quarks. The present experimental status, although in
perfect agreement with the standard model, does not rule out composite bosons. %e consider the
possible signals for compositeness, including the anomalous e+e y events.

I. INTRODUCTION

The observation' of the W+-and the Z bosons is a
clear verification of the SUt(2)gU(1) theory of elec-
troweak interactions. There are some aspects of the
theory, however, there are not so satisfactory. The ques-
tion that still remains is the existence of elementary sca-
lars (as in the standard model ) called Higgs bosons.
They are necessary in order to generate the mass of the
gauge bosons. These scalars have a new fundamental in-
teraction, and couple to fermions and gauge bosons.
Within the standard model, there are no constraints on
the self-coupling of the Higgs bosons or on its Yukawa
coupling to fermions. There is also the so-called "natural-
ness problem" associated with the existence of elementa-

ry scalars. Though supersymmetry does solve the natural-
ness problem, the lack of constraints on the Higgs-boson
coupling still remains.

The symmetry SUt(2)XU(1) can however also be
dynamically broken. In such a scheme, called the "tech-
nicolor model" the Higgs particles are scalar composites
of a new set of fermions, bound by a new non-Abelian
gauge interaction. This assumption of composite scalars
solves both the problems of determining the coupling and
naturalness. This interaction is required to be very strong
and is assumed to be of the @CD type with a scale of a
TeV or so.

It has also been speculated that the weak-interaction
boson are composite. In such models, spontaneous break-
ing of SU(2) XU(1) symmetry is not needed to generate
the mass of the bosons. The naturalness problem is thus
automatically avoided. Several attempts have been made
to develop such a model that regards weak interactions as
essentially residual. The compositeness scale could be as
low as a few hundred GeV to a few TeV or more. If the
composite scale is small ( —100 GeV), the mass of the bo-
sons would be consistent with the standard model. How-
ever, if the scale of compositeness is higher, understand-
ing the mass of the bosons would be a problem. In view
of the verification' of the W'+-mass, we assume the mass
of the vector boson is indeed 83 GeV.

There appears to be no clear indication as yet of the
presence of any compositeness of these bosons. An im-
portant consequence of such compositeness would be the
spectrum of bosons of various spins. Note that in some
models6 that obey the "complementary principle, " there
are restrictions on the spectrum of bosons that appear.
The purpose of this paper is to examine the possibility of
the existence of this spectrum and the technique of ob-
serving it. In order to observe these bosons one should
know their coupling to fermions and coupling among
themselves. The anomalous magnetic moment of the elec-
tron provides a good constraint on these couplings. In
Sec. II of the paper, we derive upper limits on the cou-
plings from restrictions on the anomalous magnetic mo-
ment. Note that these limits would be independent of the
model of compositeness. We shall consider only a spec-
trum of bosons: scalar, pseudoscalar, vector, and axial
vector Our c.alculations, however, are not for a gauge
theory. Indeed, there is no satisfactory (gauge) theory of
composite bosons. We therefore consider it safer to use
effective local interactions.

We emphasize two essential requirements that any com-
posite model should meet: the V —A structure of weak
interactions and the far more well-established requirement
of SUL, (2))(U(1) symmetry. These requirements are in
addition to any other requirement that an underlying
composite model may be expected to satisfy. Further,
there are also constraints on composite models. Most of
these constraints are model dependent (see Refs. 7 and 8)
and are not considered here. A11 we point out is that there
are model-independent (but depend on parametrization),
highly restrictive bounds on composite leptons from
e+e ~e+e, p, +Is, w. However, there is no good re-
striction on the compositeness of weak bosons. Measure-
ments of charge asymmetry are in agreement with the
standard model. These should not be altered by the pres-
ence of pseudoscalar and scalar bosons. The signature of
the excited states of bosoms, however, would alter the
forward-backward asymmetry frotn the standard model at
energies close to the excited states. It may also be expect-
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ed that the composite bosons may show up in neutrino
counting near the Z peak. This signature, also, may
not be large enough, as we shall demonstrate by examin-
ing the restrictions from (g —2) of the electron.

Before ending this section, we would like to point out
that most of the existing models of compositeness would
not survive if only a triplet of bosons exists. However, if
we require that the preons, constituents of the weak bo-
sons, are bound by SU(2)-color interaction and that there
is no degeneracy of the lightest preon (denoted by a), we
have only three approximately degenerate lightest states:
aa, aa, o;cx. %'e also point out that no subcomponent
model to date is able to explain consistently all problems
faced by the standard model. Clearly, more experimental
input is required to understand the real composite
structure —if any exists. The observation of the
(pseudo)scalar state close to W and Z is a necessary re-
quirement.
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II. CONTRIBUTION TO THE ANOMALOUS
MAGNETIC MOMENT OF LEPTON

In this section we evaluate the correction to the
anomalous magnetic moment of the lepton (a!) arising
from the presence of bosons that couple to leptons. We
assume that there exists a spectrum of bosons: scalars
(S), pseudoscalars (P), vector ( V), and axial vector (A).

q q q q q q

FIG. I. One-loop graphs that contribute to the anomalous
magnetic moment of a lepton.

The one-loop graphs that can contribute to the anomalous
magnetic moment arising from such bosons are shown in
Fig. 1.

The contribution from these graphs can be written as

u(q2)el p(q2, q])u(qi)=tl(q2) eypF](k )+ reap
Jc'F2(k )+(y5 terms) u(q}) .

27Ft

The anomalous magnetic moment is defined as Fz(k =0).
Since our model of composite bosons is not a gauge
theory, F2(k ) need not be finite. It is for this reason that
we exclude contributions from tensor bosons, if any exist.
In order to evaluate contributions to the anomalous mag-
netic moment we assume effective local interactions for
the gauge bosons. However, the use of effective local in-
teractions gives divergent results. Thus, we regularize by
introducing a cutoff A. We follow the standard procedure
of replacing the propagator

1 A dk

p +is 0 (p A+i@)— (2)

in order to introduce the cutoff. The resulting expressions
are finite for finite A, but generally infinite and meaning-
less for A~ ao. The presence of this cutoff A, in our re-
sults, can be understood if A is regarded as a composite
scale. For a momentum larger than A, the effective cou-
plings for bosons are no longer valid. These effective cou-
plings then have to be replaced by interactions of subcom-
ponents. An analogous situation is found in hadron in-
teractions, where effective local interactions adequately
describe low-energy phenom. ena, but at energies above the
hadron composite scale it is necessary to consider the in-
teractions of quarks.

We use m to denote the mass of the lepton, M to denote

I

the mass of the boson, the subscripts of M to denote the
spin-parity, and A to denote the composite scale. The I.a-
grangians for the local interactions are listed in Table I.
In the technicolor model, the pseudoscalar Higgs boson
couples to the lepton with a derivative coupling. %'e,
therefore, consider both cases, with and without derivative
coupling, in evaluating the anomalous magnetic moment
when a pseudoscalar contributes. By looking at the in™
teraction Hamiltonians, one can discern the dimensions of
the couphngs. In particular gsll' gPll' gyp' and gAll' are
dimensionless, whereas grill, g~~&, gz&~, and gszz have a
dimension of mass inverse. Figures 1(a)—1(d) have been

TABLE I. Effective local interaction for gauge bosons.

H!!'S gS1I'gl!i!l~

Hsrr =grirP! 3'sgr»r
=grir Ar! )'s4r(e!" ie~")I'—

HIr v =gvi!'0l) qadi!l'V

&!!~ =g'~i! iT!!r„rA~a~"

Hvr~ &4sragrvrp 'F !'(B —ieA )Vi!—
Hp~~

——gpy~ F""I'„I'

Hs„„=~gs„„+""F„A
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evaluated earlier for the limit A~ oo (where such a limit
is meaningful) with a nonderivative coupling, in Ref. 11
and references cited therein. We have repeated these cal-
culations for arbitrary A and our results agree with them
for A~au. We have evaluated the graphs of Figs. 1(c)
and 1(d) with a derivative coupling for pseudoscalar.
Graphs of Figs. 1(e) and 1(f) have already been used to
determine the restriction' on compositeness for large
values of A (A= 1 TeV). We would like to point out that
there will be no contribution from the diagram analogous
to Figs. 1(e) and 1{f)with axial-vox:tor and scalar coupling,
instead of vector and pseudoscalar, due to charge conjuga-

I

tion. Within the standard model, therefore, there is no
contribution by the graph with Z -Higgs-photon vertex.

We assume that the difference between the experimen-
tal and theoretical values of the anomalous magnetic mo-
ment' of the electron (-2X10 '

) is saturated by the
contribution from Figs. 1(a)—1(f). The constraints on
coupling, thus evaluated, are very approximate upper lim-
its and expected values would be much lower. It must be
noted that there are several contributions to the
anomalous magnetic moment. In particular, there should
be contributions' from composite leptons of 0 (m /A).

The contribution to a! from Fig. 1(a) is

Pl5!2!= f dy '
gnly y 2 3

( 32)1
2 2(1 )

M i(i )
+go!!

M p y —Ty
m y +(M„+A~)(1—y)

m y +Mzi(1 —y)

A y(1 —y)[2m y +(1—y)(4 —y)M„2]

Mq [m y +(Mq +A )(1 y)][—rn y +M& (1—y)]
(3)

It is interesting to note that the term with the logarithm is finite and becomes zero if m «Mz, A (as can be seen by
integrating over y). In such a limit we have

m' ! gvi!'y'{1 y)— A gAl! y ( I y){4 y)
b. , = dy

4~ 0 rn y +Mv (1—y) (Mg +Ai)[may +M„(1—y)]

In the limit m &&Mv z we can evaluate the integrals exactly to get

m gva 5gwa A
2 2

ha( ——
~v' 2~~' ~z'+

(4)

The constraints on the couplings gv„and gq„are shown in Fig. 2.
The contributions from both V and A in Fig. 1(b) to the anomalous magnetic moment are equal and are given by

r

rn gviv A y {1—y)[2(1+y) —(m/Mv) (1—y)]
Sir 0 [rn y +(Mv —m )y+Ai(1 —y)][rn y +(Mv —m~)y]

The limits on the coupling gv, „(g„,„) is shown in Fig. 3. In the limit m «Mv, A one has, with A, =(Mv/A),
r

—5(A+1)+4k, A(2+A) gvlv 5m gviy+ , ink, , +V A =, , +V
6{A—1) (A —1) Mv x 0 24ir Mv

m
haI ——

4m

The contribution from Fig. 1(c) which corresponds to the familiar scalar Higgs boson and a pseudoscalar is (for non-
derivative coupling)
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FIG. 2. The constraints on the couplings g& and g~„~ vs

the mass of bosons A and V. The allo@red values are below the
curve. The solid curve is for A 4;axial vector), whereas the
dashed curve is for V(vector).
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FIG. 3. The constraints on the couplings gz,„and gq, „vs
the mass of bosons A and V. The allopved values are below the
curve.
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m' ' gsay (2—y) gprr 3

8n o my +Ms(1 —y) my +Mp(1 —y)

If m &&Ms,Mp, we have a rather simple relation:

2
'

2
m gsrr

bai = ln
Ms'

gprr ~p2

+- ln
m

If however we assume a derivative coupling for a pseudoscalar we get
T

m' i gsa'y'(2 —y) g'pII (m /Mp) A y (1—y)
Ear = dp — +

[ ' '+( '+ ')( —)][ ' ' '( —„)]
(1Q)

The restrictions on the couplings gs„and gp„are shown in Fig. 4. Clearly these restrictions are not very good. getter
restrictions' on gs«are given by e+e ~)Li+p . Fof Ms —5Q Gep one gets (gs )2gQ. QQ3

Figure 1(d) give the contributions from p- and S- to al With a nonderivative coupling, the contributions are ~ual,
Snd given bp

mar=
Sm'

With a derivative coupling, however, we get, for the pseudoscalar,

m y +(Mp —mi)y+Ai(1 —y)

m y +(Mp —mi)y
&y g'pi„3(2y —y' —9y'/2)ln

0

m Ay (1—y)4

[m y +(Mp' —m')y+A'(1 —y)][m'y'+(Mp' —m')y]

=m' 2A2 2( 1 )2

har ——

8ir o [m y +(Ms —m )y+A (1—y)][m yz+(Ms2 —mz)y]

We n«e th« the integral can be evaluated easily in the limit m &~Ms, A giving us, with A, =(Ms/A)2,
r

1 —5i(, —2A, A, gsl~ m gsh

6(A, —1)' (A, —1)' Ms' i o 48m' M ' (12)

(13)

»g«e 5 gives the «stri«tons on gp, (gs,„). Again better restrictions are available' on gs, „from ev&~ev&
Figure l(e) gives a contribution to ai that is slightly different for charged and neutral modes. With a nonderivative

coupling we get
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FIG. 4. The constraints on the couplings gq„' and gp„vs
the mass of bosons S and P. The allowed values are below the
curve. The solid curve is for a pseudoscalar with a nonderiva-
tive coupling and dashed curve for a scalar. The dashed curves
with a scale factor ()&10 ) are for a pseudoscalar with a
derivative coupling. The couplings are multiplied by the scale
factor and then plotted.

Fj:G. 5. The constraints on the couplings g~, and gq, „vs
the mass of bosons S and P. The allo~ed values are below the
curve. The dashed curves give the values with a nonderivative
coupling. The solid curves give the values with a derivative cou-
pling. The couplings are multiplied by scale factor and then
plotted.
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gpgpvrgv i 'd
1

A+A (1—y)
m dyy dx ln

gn"
2m (1—y) A

[A +A (1—y)]A
(14)

A =m y —2m y+(Mp —Mv }xy+Mv y+m for the neutral mode,

A=m y —m y+(Mp —Mv )xy+Mv y for the charged mode.

A derivative coupling gives us a slightly different result:

gl gpvrgv 2
' ' A+A'(I —y)

b, ai —— m dyy 1 —y dx ln
4 A

m (1—y)A
[A+A (1—y)]A

Restrictions on the couplings gz„tv„gv„and gz, ~pvrgv, „are given in Fig. 6.
The contributions to the anomalous magnetic moment al from graphs of Fig. 1(f) are equal for nonderivative cou-

plings and are

where

Ãsgs»i' 'd 2 id
1

A+A (1—y) 2m A x y (1—y)
gg o o A [A+A (1—y)]A

(16)

A =m x y +Ms (1—x)y

with a derivative coupling, the contribution from pseudoscalar becomes

rn 1

(1 xy) ln
A +A (1

0 0 A

m Axy(1 —y)
[A+A (1—y)]A

(17)

Restrictions of the couphngs g~„gp» (gs„gs») are shown in Fig. 7.
Finally, we note that the limit A~00 is meaningful (in our formulation} only for graphs that appear in the standard

model and its extensions with charged Higgs bosons. These cases have been considered in detail in Ref. 11 and references
therein.

III. HO% TO BEST DETECT COMPOSITENESS?

In this section we examine various possibilities of observing compositeness of bosons. Earlier there had bo:n much in-
terest in the anomalous 1+1 y events and the monojet events. As no more anomalous events have been reported' by the
UA1 and UA2 Collaborations, the statistical significance of such events goes down. There have been several papers sug-
gesting' ' the composite nature of bosons in view of these events. Here we evaluate the decay rate of a vector and a
pseudoscalar boson to /+I y. Unlike Refs. 12 and 17 our results are not only model independent, but also include a
range of values for A and Mz. We consider the decay through an intermediate boson state and denote the decay rate as
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FIG. 6. The constraints on ihe coupling g& gpss&Pv„vs the
mass of the pseudoscalar boson. The allowed values are below
the curve. The solid curve is with a nonderivative coupling
whereas the dot-dashed curve is with a derivative couphng. The
couplings are multiplies by the scale factor and then plotted.

FIG. 7. The constraints on the coupling gz„g&zz vs the mass
of the pseudoscalar boson. The allowed values are below the
curve. The solid curve is with a nonderivative coupling whereas
the dot-dashed curve is with a derivative coupling. The cou-
plings are multiplied by the scale factor and then plotted.
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I 1. We have, for a vector,

+ gvpy gee d kd P+d P (q k) (p+ p —mi)
I 1(V I+I y)= " "

&4(q k p +p )
+

12(2iy) MvMp4 rok&+E (p++p )'
1—

Mp

(18)

where we have taken contribution only from an intermediate pseudoscalar. Assuming chiral invariance the contribution
from the scalar would be identical. The corresponding relation for a pseudoscalar is

gi' vy gvee d kdip+d p 5~(q —k —p+p )
I'I(P I+I y)= *, , X, » [(q k)'(m' p+ ——p )

12(2m)'M M ~kE'+E [1—(p +p ) /Mv ]

+2p+ kp k(m. p' 2q—k)] . (19)

Using these rates, and also

2 2

I ( V~I+I }= Mv, I (P~l+I )= Mp
6m

'
8m

we get the relations

I I(V~I+I }I(V~I+I y)

gv~y g~., gvee Mv~(M~)2 2 2

6~(4iyMv)'Mi '

(20)

io '- ~ A= f00 GOY

A=900 GeY

I 1(P~I+I )I (P~I+I y)

g vpy'g v'e. 'gee'Mp~ (Mv }
(22)

8m (4m Mp ) M v

where A (Mz} and A (Mv) represent integrals over phase
space in the expressions for I'(P~ I+I y ) and
I ( V~I+I y).

In Sec. II we obtained constraints on gvpygv„gp„ from
(g —2) of the electron. Using these constraints we obtain
a limit on the anomalous I+I y events for both a vector
and a pseudoscalar particle. In Fig. 8 we plot
8 )&I [V/(P)~I+I ] versus the mass of the pseudosca-
lar, with R defined as

I [V/(P)~I+I y]
I [V/(P) I+I ]

(23)

As can be seen the constraints are rather severe for vec-
tors, but not so severe for pseudoscalars if Mz & 90 GeV,
and vice versa for Mi &90 GeV. These constraints are
model independent. However, contributions from radial
excitations are excluded. In that sense, these constraints
are approximate. It may be noted' that if the subcom-
ponents have charge (q = ) —,', the radiative decay of the

triplet members are forbidden. We denote the triplet of
V 'and P-+0 for vect-ors and a pseudoscalar, respective-
ly, and the singlet states are denoted by V, and I', . How-
ever, similar constraints are applicable to anomalous
events in V /(P) ~l v in models where subcom-
ponents with qQ —,, or in models with only three states
(see Sec. I}where V ~P y and P ~V y are forbidden.

Many more interesting constraints can be drawn if we
restrict ourselves to a specific composite model. If we as-
sume the dominant contribution to the PVy vertex is a
magnetic moment transition, i.e., the constituents have
spin —,', then the coupling gravy can be evaluated in the
specific model. For the neutral states gvpy should be
&4@a/ms, where mi, is the mass of constituents and
have charges —,

' . If the charges are q and (1—q), radiative

couplings of charged state are allowed, and g V P y
should be &4nu(2q —1)/mi, . In a model with only three
states and q= —,', gvp„——0 but gv ~ -v'4ma/mi, . Inv
Sec. II the constraint for a nonderivative coupling was ob-
tained as

lO

V ev v p y p ev &10
v'4na

(24)

l0

]O"-

iO"
0 40 80 t20 l60

MASS OF PSEUDOSCALAR BOSON (GeV)

I

200

The standard model gives g~, -5.19&10 which seems
to be in agreement with the experiment. Using this value
and the above values for g „,we get

g, &1.8&10

(model with only three states, q& —, )

1.8~10-2
(

FIG. 8. Constraints on the decay rate I {e+e }I(e+e y} vs
the mass of the pseudoscalar boson. The expected values are
below the curve.

(models with four states, q& —, ) . (25)

The corresponding branching ratios are thus
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r(P'-l'=v) &1.35X 10-'M, Gev

(models with only three states)

1.35~ 10-'
Mp GeV

(2q —1)

(model with four states, q& —, ) . (26)

These are only of the order of an MeV or less and should
be compared with 1(W+-~1+-v)-230 MeV. This ex-
plains the apparent V —A nature of weak interactions.
For a derivative coupling these constraints are no good (a
factor of 10 larger in couplings).

The coupling gsqp„„should be related' to gsgpzr by
the vector-dominance model, i.e.,

v'4+a
gsgp&& gsypzrsln8 ~ sin 8gr

ffgI

conservation of axial-vector current) relation anologus to
the Goldberg-Treiman relation. Similar reasoning for the
isoscalar does not hold.

The isovector states couple to quarks and leptons only.
For the (pseudo)scalar triplet quark couplings must be
dominant. In view of the above argument of chiral-
symmetry breaking, the coupling to fermions may be re-

garded as proportional to the mass of the fermion
(-mf/Mp) Th. e decay of S(P)+~t-b, bT, etc. , would be
the best signals for its detection. For the (S/P)o~tt, bb

decay rates would be larger. These states would be rela-

tively narrower. The (pseudo)scalar-singlet state would

decay dominantly in two gluons.
The decay rate of a singlet pseudoscalar

I 1(P,~1+I y) was evaluated earlier. For anomalous
events,

I I(P,~l+l y)=
A(M )

12(2n) MpMy

gs/pyy-
2 sin 8~@'4ma

(for singlet states, q = —,)
P

2sin 8a dna
(2q —1)

P

(for isovector states, q+ —,
'

) . (2g)

%e ave eva uated g an g „earlier; thus,

4 3&10I,(P,~!+1 y)- ' -SX10"
Mp

3.4g10-'
Mp

(33)

Once again for a nonderivative coupling we obtained, in
Sec. II,

Also for a nonderivative coupling,

I (P,~l+l )&1.7Mp X10 GeV, (34)
4

gs/peegs/pyy + 10

& 6.6g 10 Mp,

Using the above constraints we get

10 Mp
gS, /P, ee

(29)

(30)

l'l y) 2xlO'R=
I'(Pg ~I+I ) Mp

&0.03 for Mp ——90 GeV . (35)

gso~po, & 6.6&(10 (2q —1)Mp .

Therefore,

I (P/S~l+l ) &1.74Mp X10 GeV

(for isovector states, q& —,
'

) . (3l)

If Mp -100 GeV, we have I [P/(S) ~!+1 ] & 10 MeV as
compared to 1(Z~l+I ) which according to the stan-
dard model is -90 MeV.

We thus find that the constraints of (g —2) of a lepton,
together with standard subcomponent models, require that
pseudoscalar or scalar states may not couple to leptons.
This explains the V, A nature of weak interactions. Note
that these constraints also apply to the neutral isoscalar.
The coupling of fermions to the (pseudo)scalar-triplet
states being small„can be explained as a consequence of
chiral symmetry and the corresponding PCAC (partial

Thus the composite model with a nonderivative cou-
pling cannot be ruled out from CERN data. A composite
model with a derivative coupling for a pseudoscalar is
even harder to rule out. However, in such a model the
rate I'(P, ~l+l ) need not necessarily be small and the
V, A structure may not be easily explainable. Combining
the results from the CERN UA1 and UA2 Collabora-
tions, one has a total of three anomalous events. As-
suming these events are from Z decays, one still has about
4% anomalous events.
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