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Radiative corrections to the ratio of Z- and W-boson production
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%e calculate the order-a, corrections to Z-boson production in pp collisions for vrhich there are
no corresponding corrections to F-boson production. These corrections affect the ratio of Z- and

W-boson production, a quantity which is useful for counting the number of species of neutrinos.
%'e find that these corrections are much smaller than the uncertainty in the ratio stemming from the

quark and gluon distribution functions and the value of A~0.

I. INTRODUCTION

One of the great puzzles confronting elementary-
particle physics is the apparent replication of fundamental
fermions in nature. The fermions observed thus far may
be grouped into three generations of quarks and leptons.
Each generation contains a neutral lepton, the neutrino,
which is massless or very light. It is reasonab1e to expect
that the neutrinos associated with any further generations
will also be massless, or nearly so. If we can count the
number of neutrino species in nature, it will reveal the
number of generations, a quantity of the most profound
significance.

Recently, several authors have suggested an ingenious
method to count the number of neutrino species using the
CERN pp collider. ' The method is based on the fact
that every species of neutrino contributes to the total Z
width via Z~vv. An accurate measurement of the Z
width therefore provides us with a reliable way to count
the number of neutrino species.

In order to understand the method proposed to obtain
the Z width, let us first consider another, more straight-
forward, method. The Z width may be deduced from the
measurement of the cross section for inclusive Z produc-
tion followed by leptonic decay cr(pp~Z~l+1 ). The
total width is then given by

I,= 'PP ' I.(Z-1+1 ),
cr(pp~Z~I+I )

where I (Z ~1+1 ) is the partial width for leptonic Z de-

cay and tr(pp~Z) is the inclusive Z production cross sec-
tion. Although the partial width may be calculated very
accurately, the calculation of the total cross section is sub-
ject to large uncertainties. This prevents us from using
this method to obtain an accurate measurement of the Z
width, and hence the number of neutrino species.

The uncertainties in the total Z production cross sec-
tion may be grouped into iwo categories: those associated
with the calculation of the parton-model subprocess cross
section for inclusive Z production, and those associated
with the quark and gluon distribution functions. The
order-a, corrections to the Z production cross section
have been calculated and are known to be large, about
30% (Ref. 4). One thus expects the order-ct, corrections,

which have not been calculated, to be around 10%%uo. The
uncertainty in the distribution functions may be as large
as 25%. Both of these uncertainties are compounded by
our lack of knowledge of AqcD (Refs. 2 and 4).

The new method' to obtain the Z width was designed
to overcome these uncertainties. The idea is to supple-
ment the above information with the observed cross sec-
tion for W production followed by leptonic decay,
cr(pp~W~lv). One then calculates the ratio of the Z
and 8'widths via

I z cr(pp ~W~ Iv) cr(pp ~Z) I'(Z ~1+1 )

I n cr(pp Z 1+1 ) cr(pp W) I'(W lv)

If we assume that any charged leptons belonging to fur-
ther generations are too heavy to contribute to the W
width via W~l. v, or if we know the masses of the new
leptons which are not too heavy to contribute, the equa-
tion above yields the Z width, and hence the number of
neutrino species.

The advantage of this method is that only the ratio of
the Z and W production cross sections is needed. While
the calculation of each cross section is subject to the large
uncertainties described above, it has been found that these
uncertainties largely cancel in the ratio. ~ s It has been
concluded that the ratio of cross sections may be calculat-
ed to within +6%%uo, the uncertainty stemming almost en-

tirely from the distribution functions and the value of
AQCDa

The intensitivity of the ratio of Z and W production
cross sections to radiative corrections is due to the fact
that most corrections are common to both processes. Hi-
kasa has pointed out, however, that there are contribu-
tions to Z production for which there are no correspond-
ing contributions to 8' production. These contributions
first arise at order cc, , and are represented by the interfer-
ence of the tree diagrams with the one- and two-loop dia-
grams in Fig. 1. They all involve the effective coupling of
the Z to two gluons via a quark loop. Clearly no such
coupling exists for the W boson.

Since these contributions arise at order a, , the possibil-
ity exists that they are as large as 10%. An uncertainty of
10% in the ratio of Z and W production cross sections is
c4sastrous, since each addltIonal neutAIlo species contxl-
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FIG. 1. Radiative corrections to Z production for which
there are no corresponding graphs for 8' production, The
corrections are of order a, ~ and are given by the interference of
the tree graphs with the one- or two-loop graphs. Each process
also includes a graph with the gluon lines crossed on the effec-
tive ggZ coupling.

butes only about 6% to the total Z width. Hence it is im-
portant that we calculate the above diagrams.

The remainder of the paper is organized as follows. In
Sec. II we make some general comments on the calcula-
tions. In Sec. III we analyze the one-loop contributions
and in Scx:. IV the two-loop contribution. Section V is de-
voted to conclusions and a discussion. The calculations
all involve the effective ggZ coupling, which we give in
Appendix A. Appendix 8 contains two integrals which
are used to evaluate the one-loop cross six:tions. Appen-
dix C contains the analytic expression for the two-loop
cross section.

II. PRELIMINARY REMARKS

The set of Feynman diagrams common to both Z and
W production must form an independent, gauge-invariant

set in order for the calculation of W production to be con-
sistent. Hence the additional contributions to Z produc-
tion must be consistent by themselves. This may be
checked explicitly by showing that each set of graphs in
Figs. 1(a)—1(c) is invariant under SU(3)-color gauge
transformations.

The additional contributions to Z production all con-
tain the effective couphng of the Z to two gluons via a
quark loop, with one or both gluons off shell. Since the
gluons have only vector couplings to fermions, and the ef-
fective coupling of the Z to two gluons is a color singlet,
Furry's theorem tells us that only the axial-vector cou-
pling of the Z contributes. The axial-vector couplings of
the Z to the quarks in an SU(2)L doublet differ by a sign,
so the contributions to the effective ggZ coupling from
the quarks in a given generation would cancel if the
quarks were degenerate in mass. One thus expects the ef-
fective coupling to be suppressed by factors like
(mU mn )/Mz, wh—ere mU and mD are the masses of
the quarks with SUQ)L quantum number T3L ——+ —,

' and

T3L ————,, respectively.
The argument above indicates that the contribution to

the effective ggZ coupling from the first two generations

of quarks in greatly suppressed. The contribution from
the third generation could be large, depending on the mass
of the top quark. Since we are trying to bound the num-
ber of generations, we should also consider the contribu-
tions from additional doublets of heavy quarks as well.

As is well known, the effective coupling of three gauge
bosons via a fermion loop is ambiguous, due to a "surface
term, " which is related to the triangle anomaly. ' This
surface term is independent of the fermion mass and is
therefore canceled by including the contributions from
both of the quarks in an SU(2)L doublet. This is a conse-
quence of the fact that the standard model is free of
anomalies. This also guarantees the gauge independence
of the effective ggZ coupling.

The amplitude for each process is the sum of contribu-
tions from each fiavor of quark in the loop. Upon squar-
ing the matrix element for each process, one finds that
only the real part of the loop integral survives in the in-
terference term. Since, in the interference term, each fia-
vor of quark in the loop contributes incoherently, we may
consider the contribution from each quark doublet
separately.

The effective ggZ coupling involves the four index
antisymmetric pseudotensor et'"t . Since there are only
three independent four-momenta in the processes shown
in Figs. 1(a) and 1(b), and only two in the process shown
in Fig. 1(c), at least one of the indices must be contracted
with another such tensor. This is generated by the axial-
vector coupling of the Z to the quark in the tree diagram.
Since this coupling depends only on the SU(2)L quantum
number of the quark, we see that quark partons with

T3I —+ 2 and those with T3L ————,
'

give opposite sign
contribution to the interference term. This has the in-

teresting consequence that the up and down sea-quark
contributions exactly cancel each other. This is not terri-
bly important at CERN energies, however, since the dom-
inant contribution comes from valence quarks and anti-
quarks.

III. ONE-LOOP CONTRIBUTIONS

The one-loop contributions to the ratio of Z and 8'
production are shown in Figs. 1(a) and 1(b). We calculate
the interference between the tree and one-loop diagrams,
which is of order a, 2.

The effective ggZ coupling vanishes if all three parti-
cles are on the mass shell. This is a consequence of
Yang's theorem, which forbids the construction of a state
of total angular momentum one from two massless spin-
one states. The effective ggZ coupling is therefore pro-
portional to the square of the four-momentum of the
internal gluon line in the diagram. This cancels the pole
in the gluon propagator. The result is that the cross sec-
tions scale like 1/Mz rather than 1/s or 1/t as one
would naively expect. Note, in particular, that this elim-
inates the potential mass (or collinear) divergence in the
process shown in Fig. 1(b) associated with emitting a
massless gluon in the t channel from a massless quark.

One might also worry about the mass divergences asso-
ciated with the t- and u-channel tree diagrams in Fig. 1(a)
and the u-channel tree diagram in Fig. 1(b). The former
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diagrams also have a potential infrared divergence from
the emission of a soft gluon. However, the consistency of
perturbation theory and the parton model demands that
these divergences do not appear in the calculation. Mass
and infrared divergences are common in parton-model
calculations, and we know how to handle them: The mass
divergences are absorbed into the distribution functions,
and the infrared divergences are canceled by similar diver-
gences arising in loop diagrams. ' The set of diagrams of
order a, z which are common to both Z and W production
must be rendered finite by tins prescription in order for
the calculation of 8' production to be consistent. The Z
production calculation will therefore be consistent only if
the additional contributions are divergence free. It is
indeed satisfying that these divergences do not appear in
the actual calculations.

The spin- and color-averaged contributions to the Z
production subproc4ms cross section from the interference
of the tree and one-loop diagrams is

(a) qq~Zg,
2o,'s CE

0"= —'ge
siil His cos Hgr

(b) gq~Zq (or gq~Zq),
2

o's 0,'
'9e

sill Hivcos 8~

2

flavors

(3)

XJ dz 1 —3 —z 1—
S S

(4)X g rl;I;
flavors

where s is the square of the subprocess center-of-mass en-

ergy and z is the center-of-mass scattering angle. The
symbol rl, equals +1, corresponding to the sign of the
SU(2)i quantum number of the incoming quark or anti-
quark parton. The summation is over all quark fiavors,
with rl; =+1 corresponding to the SU(2)L quantum num-
ber of the quark in the loop. A quark of mass m gi~es a
contribution to this sum of

Eichten, Hinchliffe, Lane, and Quigg (EHLQ), set 2
(4=290 MeV). We also calculate the lowest-order contri-
bution pp —+Z. In Fig. 2 we have graphed the ratio of the
interference term to the lowest-order contribution as a
function of the mass of the Tsl ——+ —,

'
quark in the loop

at energies of 540 GeV and 2 TeV. We have fixed the
SU(2)i partner of this quark to have a mass of 5 GeV (we
have in mind the bottom and top quarks); however, the
contribution of any doublet of quarks may be read off this
graph in the following manner. The contribution of the
Til ————, quark is found by treating it as the heavier
member of a doublet with a 5-GeV partner. This contri-
bution is then subtracted from that of the T&i ——+ —,

'

quark with a 5-GeV partner.
Note that the cross section approaches a constant as the

mass of the TsL,
——+ —,

'
quark approaches infinity. This is

because the effective ggZ coupling scales like 1/m for
large m, and hence the contribution of the Til ——+ —,

'

quark decouples in this limit.
The graph in Fig. 2 shows that the contribution from

any quark doublet is at most 0.025% for qq~Zg and at
most 0.005% for gq~Zq at the CERN energy Vs =540
GeV. The results at vs =630 GeV are only slightly dif-
ferent. At the Fermilab Tevatron energy vs =2 TeV the
qq~Zq curve has changed only qualitatively, while the

540 GeV

P a rye~~~ P Tpg

Mz—2m I2 —I2m2 P7t

(5)

I

40 60
m(Gev j

I

80 IOO

where q is the momentum of the virtual gluon:
r

s in (a),
T

I ms 1—
2

Mz
(1—z) in (b) .

The integrals I& and I2 are given in Appendix B.
To calculate the size of the contribution of these in-

terference terms to Z production, we integrate the subpro-
cess cross sections over the distribution functions of

FIG. 2. Ratio of the one-loop Z production radiative correc-
tions shown in Figs. 1(a) and 1(b} to the lowest-order Z produc-
tion cross section as a function of the mass of the T3L ——+ 2

quark in the loop. The SUQ)L partner of the quark has a mass
of 5 GeV. The contribution from any doublet of quarks may be
found by subtracting the contribution of the T3L ———

2 quark

from that of the T3L——+ 2 quark, as explained in the text. The

curves are labeled by the corresponding process in Figs. 1(a) and
l(b). The solid (dashedj curve corresponds to pp colhsions at a
center-of-mass energy of 540 GeV (2 TeV); the results at 630
GeV are very close to those at 540 GeV.
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gq~Zq curve has more than doubled. This is due to the
large density of gluons which reside at small values of the
parton fractional momentum. In any case, these contribu-
tions are very smaB, much less than the +6% uncertainty
associated with the distribution functions. We therefore
conclude that these one-loop, order-a, corrections to the
ratio of Z and W production are negligible.

IV. TYCHO-I.OOP CONTRIBUTION

The two-loop contribution to the ratio of Z and IY pro-
duction is shown in Fig. 1(c). We calculate the interfer-
ence between the tree and two-loop diagrams, which is of
order n, As .we shall see, this contribution is larger than
the one-loop terms discussed in the preceding section.

It is easy to see that this two-loop graph [Fig. 1(c)]
must be finite, although it is naively logarithmicaBy
divergent. The set of graphs common to both Z and W
production must be rendered finite by renormalization in
order for the calculation of IV production to be consistent.
Hence there are no counterterms available to absorb a
divergence in this additional contribution to Z produc-
tion. A similar conclusion may be reached if one consid-
ers the incoming quark-antiquark pair to be an SU(2)L,
singlet with no direct coupling to the Z. This two-loop
graph [Fig. 1(c)] then induces an effective qqZ coupling
which must be finite, since there are no counterterms
available.

We have performed this two-loop calculation by first
integrating over the quark loop momentum to form an ef-
fective ggZ vertex, then combining the denominators via
the usual Feynman technique in order to integrate the
remaining loop. As we discussed earlier, Yang's theorem
guarantees that all the terms in the effective ggZ vertex
are proportional to the square of the momentum of one of
the gluons. We use this to cancel the corresponding gluon
propagator, thereby decreasing the number of denomina-
tors and hence the number of Feynman parameters. We
then integrate these two parameters, leaving just the two
parameter integrals associated with the effective ggZ ver-
tex.

In performing the second loop integral, it is imperative
that one include the contribution to the effective ggZ ver-
tex from both of the quarks in an SU(2)L doublet. The
contribution from just one quark causes some of the terms
in the loop integral to diverge logarithmically, which is
the naive degree of divergence of the graph. This diver-
gence is canceled by the contribution from the quark's
SU(2)L, partner. The two-loop contribution is therefore fi-
nite as a consequence of the fact that the standard model
is anomaly free.

The spin- and color-averaged contribution to the Z pro-
duction subprocess cross section from the interference of
the tree and two-loop diagrams is

flavors

where s is the square of the subprocess center-of-mass en-
ergy. As in the one-loop case, g, =+1 corresponding to
the SU(2)L quantum number of the incoming partons, and

q; =+1 corresponding to that of the quark in the loop.

540 Ge

20
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20 40 60
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I

80 tQQ

FIG. 3. Ratio of the two-loop Z production radiative correc-
tion shown in Fig. 1{c)to the lowest-order Z production cross
section as a function of the mass of the T3J ——+ 2 quark in the

loop. The SU(2}L partner of the quark has a mass of 5 GeV.
The contribution from any doublet of quarks may be found by
subtracting the contribution of the T3L ———

2 quark from that

of the T3L,
——+ ~ quark, as explained in the text. The solid

(dashed) curve corresponds to pp collisions at a center-of-mass
energy of 540 GeV (2 TeV); the results at 630 GeV are very
close to those at 540 GeV.

Each flavor contributes an amount J to the sum, with J
given in Appendix C. In the expression for J we have
dropped aB mass-independent terms since they cancel in
the sum.

The ratio of the two-loop contribution and the lowest-
order contribution to pP~Z is shown in Fig. 3 as a func-
tion of the mass of the Tii ——+ —,

'
quark at energies of

540 GeV and 2 TeV. Again, ~e have used the distribu-
tion functions of EHLQ (Ref. 8) set 2 (A=290 Mev), to
obtain this result. As before, we have fixed the mass of
the TiL ————,

'
quark at 5 GeV. The contribution of any

doublet of quarks may be read off this graph (Fig. 3) by
subtracting the contribution of the Til. ————,

'
quark from

that of the TiL, ——+ —,
'

quark.
As the graph in Fig. 3 shows, the two-loop contribution

to Z production is larger than the one-loop contributions.
It also has a qualitatively different behavior as the mass
of the T&i ——+ —,

'
quark increases. Instead of decoupling,

the heavy-quark contribution grows logarithmically. One
may show that in the limit m /Mz —+ ao the complicated
expression given for J in Appendix C reduces to

J=—' ln +const .
M

(8)
z

The curve in Fig. 3 at ~s =540 GeV is then described in
this limit by
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R = 25.5+9.921n X 10
Mz'

where the coefficient of the logarithin is calculated from
the asymptotic expression for J. This logarithmic
behavior sets in at about m =100 GeV, i.e., near the Z
mass.

The logarithmic growth may be traced back to the loga-
rithmic divergence associated with the second loop in-
tegral. Recall that this divergence is canceled when we
include the contributions from both of the quarks in an
SU(2)1 doublet. A.t low loop momenta the contribution
from the heavier of the two SU(2)1, quarks is suppressed,
and the integral begins to diverge. When the loop
momentum reaches the mass of the heavy quark its con-
tribution is no longer suppressed and it effectively cuts off
the logarithmic divergence, leading to a factor lnIII /Mz
This logarithmic behavior is therefore related to the can-
cellation of the triangle anomaly in the standard model.
We should also mention that this logarithmic growth does
not violate our notion of the decoupling of heavy particles
from low-energy phenomena since the decoupling theorem
does not hold if anomaly cancellation occurs between
heavy and light particles. '

The two-loop contribution at v s =630 GeV is only
sli htly smaller than at vs =540 GeV. The values at

s =2 TeV are almost exactly —,
'

as big. This reflects the
cancellation of the up and down sea-quark contributions,
which are more important at higher energies.

Although larger than the one-loop contributions, this
two-loop correction is still much smaller than the +6%
uncertainty in the ratio of Z and 8' production cross sec-
tions associated with the distribution functions, even for
very-heavy-quark masses. For example, the contribution
of a quark doublet with masses of 5 and 1000 GeV is only
0.73%%uo at ~s =540 GeV. Furthermore, we really cannot
trust our calculation beyond a quark mass of about 700
GeV, the unitarity bound on the mass of a quark with a
light SU(2)L, partner. " Quarks whose masses exceed this
bound are strongly coupled and do not permit a perturba-
tive analysis.

We therefore conclude that the two-loop, order-u,
correction to the ratio of Z- and W-boson production is
negligibly small at CERN energies and even smaller at the
Fermilab Tevatron energy v s =2 TeV.

V. CONCLUSION AND DISCUSSION

We have seen that the order-a, correction to the ratio
of Z- and 8'-boson production is quite small, less than
1% at current pp energies. This gives us more faith in the
calculated value of this ratio and hence in the reliabihty of
the method for counting neutrino species' which uses
this ratio.

Recently a method for counting neutrino species related
to the one described in the text has been proposed which
makes use of the observed cross section for the Inonojet
events. ' This method relies on a calculation of the ratio
of Z +jet and &+jet cross sections. Since the processes
sliown 111 Figs. 1(a) alid 1(b) contribute to tile Z +jet CI'oss
section, our calculation also bears on this ratio. Again, we

conclude that these order-a, corrections to the ratio are
negligible.

Other order-o. , corrections which apply to weak-
gauge-boson production ex~st I the hterature. The
corrections to virtual-photon production at nonzero trans-
verse momentum have been calculated for the case of in-
cident quarks and antiquarks. ' These corrections do not
include processes corresponding to those in Fig. j. because
the photon has only vector coupling. Also, corrections to
the double-logarithmic approximation have been evaluat-
ed for nonzero transverse momentum. ' We do not expect
any of these corrections to significantly effect the ratio of
Z- and W-boson production.

We might also ask how large the corrections to the ra-
tio of Z- and 8'-boson production are at much higher en-
ergies. At current pP energies the dominant parton in-
teractions involve valence quarks. At multi-TeV energies
the emphasis shifts to the sea quarks. Since the correc-
tions we are calculating depend on the sign of the SU(2)I,
quantum number of the incident quark, the up and down
sea-quark contributions largely cancel. We therefore ex-
pect these corrections to be even less important at higher
eneriges. We have confirmed this using the distribution
functions of EHLQ (Ref. 8) set 2 (A=290 MeV), and
Duke and Owens, ' set 1 (A=200 MeV) and set 2
(A=400 MeV). We would like to note, however, that al-
though these two sets of distribution functions give simi-
lar results at CERN and Fermilab Tevatron energies, the
results at multi-TeV energies are very different. This is
because the cancellations which occur between TII +
and ——,

'
quark partons are sensitive to the slight differ-

ences in the quark distributions. Nevertheless, the dif-
ferent distribution functions agree qualitatively that the
corrections are even less important at higher energies.

The authors would like to thank J. Polchinski and K
Hikasa for interesting discussions. The work of D.A.D.
was supported in part by the U.S. Department of Energy;
the work of S.S.D.W. was supported by the National Sci-
ence Foundation under Grant No. PHY83-04629 and in
part by the Robert A. Welch Foundation.

APPENDIX A

We resent here the result for the effective ggZ cou-
pling. ' The graph in Fig. 4 corresponds to the momen-
tum integral

FIG. 4. Feynman diagram which, along with a graph with
the gluon hnes crossed, constitutes the effective ggZ coupling.
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1~"(p»p )=J,Tn }
d r 1 „1 1

(2~) r+pi —m r —m r —pi —m

Evaluating the trace and carrying out the momentum integral yields

1~"(p„p,)= J dx I dy[p, 'x(1 —x)+p, 'y(1 —y)+2p, p, xy —m']-'
2rr

X[k ~""p»p2 xy+(pi"&" x —p2"e y)pi,p2. (1—x —y)

«"'—(pi,p2'y p~—i'x)(1 x —y—)] .

Note that we have not included the coupling constants nor
the factor of ( —1}from the closed fermion loop. Howev-
er, we have taken into account a factor of i from Wick ro-
tating the dro integral and a factor of i from the trace.
Our conventions are such that

Tr ~r"r"}'r =4i& (A3)

In deriving this result we have dropped a term which is
independent of the mass of the quark in the loop. This
term cancels when we include the contributions from both
of the quarks in an SU(2)i, doublet to the effective cou-
pling. By dropping this term our expression satisfies the
Ward identities p»1 ~"=0 and pi„I ~"=0. Our expres-
sion is manifestly Bose symmetric, so the diagram with
the gluon lines crossed yields the same result. Our expres-
sion agrees with Adler's and reduces to the result of Bell
and Jackiw in the limit of on-shell gluons.

The first term does not contribute to real Z production
since it is proportional to the Z momentum, and e k =0
where e is the Z polarization vector. The next two terms,
proportional to pi" and pi", do not contribute if the
gluons are real, for the same reason. Furthermore, they
also do not contribute if the gluon momentum is contract-
ed with a conserved current, since pi„J"=0. This is the
case in the graphs of Fig. 1. Therefore, the first three
terms do not contribute to the calculation of these graphs.
The last set of terms are proportional to pi or pz in ac-
cordance with Yang's theorem, as discussed in the text.

APPENDIX 8

Below we list the integrals' associated with the effec-
tive ggZ vertex in the one-loop interference terms in Figs.
1(a) and 1(b):

1

Ii(a)=ReI dx —in[1 —ax(1 —x)]x

a=2 arcsinh

' 1/2 2
a= —2 arcsin
4

' 1/2 2
a=2 arceosh

Oga g4

8-2
a ~4. (82)

APPENDIX C

m
a = —xg+

Mz

m
b = —xy+ (x+y),

Mz
(Cl)

Pl
c = —x(1—x)+

Mz

The expression for J is then

J= dx y +g
where

(C2)

We present here the expression for the function Jwhich
appears in the two-loop interference term. 's It is a two-
dimensional integral, the integrand of which we have split
into two terms. The first term f results from the logarith-
mically divergent part of the second loop integral, as dis-
cussed in the text. We write the integrand in terms of the
three functions

a
al csmh

1

Ii(a)=ReI dx in[1 —ax(1 —x)]
1/2

=2 a —4

x y(1 —x —y) (x+y)
X [x (x +y)a lna (x +y) —b lnb

+y (x +y}c inc (x +y)], (C3a}

' 1/2
4—a

1/2

—2, O~a ~4

1/2
a —4 —2, a~4;

a
arcsin

1/2
a

arccosh
4

2
, (a +c)

3x y(1 —x —y)

&( [xa lna (x +y) b lnb +yc inc (x +y—)] . (C3b)

The logarithms which appear in f and g are to be evaluat-
ed at the absolute value of their argument.
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