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The evolution of six-quark color-singlet state distribution amplitudes is formulated as an applica-
tion of perturbative quantum chromodynamics to nuclear wave functions. %'e derive and solve a set
of coupled evolution equations for the deuteron S-wave amplitude. The solution of the evolution

equations leads to a general matrix representation of anomalous dimensions which can be used to
analyze the deuteron wave function at short distances.

I. INTRODUCTION

In the past few years a number of new applications of
perturbative quantum chromodynamics to nuclear physics
have been explored' including a qualitative description of
the nuclear force in terms of quark exchange, and detailed
predictions for the electromagnetic interactions of nuclei
at large momentum transfer. Since the basic scale of
QCD, A~ (where MS is the modified minimal-

subtraction scheme), is phenomenologically of the order of
a few hundred MeV or less, QCD predicts a transition
from the traditional meson and nucleon degrees of free-
dom of nuclear physics to quark and gluon degrees of
freedom at internucleon separations of a fermi or less. In
addition, because of asymptotic freedom, perturbative
QCD calculations should become relevant at momentum-
transfer scales of the order of 1 GeV or even less. ~

Recently, we have presented detailed QCD predictions
for the asymptotic high-Q behavior of the deuteron form
factor which are, in principle, exact dynamical predictions
of nuclear physics. One of the most convenient and
physical formalisms for analyzing exclusive processes
with large transverse momenta is the QCD evolution for-
malism, based on a reformulation of the Bethe-Salpeter
equation at equal light-cone time. In this paper, we
present a detailed derivation of a set of six-quark evolu-
tion equations for the deuteron S-wave amphtude and a
convenient way to solve the derived equations. We then
construct a general matrix representation of the
anomalous dimensions from explicit solutions of the evo-
lution equations in order to analyze the deuteron wave
function at short distances.

The evolution of the amplitude for simpler hadrons
such as quark-antiquark meson ' and three-quark
baryon systems have already been formulated and solved.
%hile these conventional hadrons have only one color-
singlet representation, the six-quark systems considered
here have five independent color-singlet representations.
The formulation of the evolution equation for totally an-
tisymmetric six-quark states is not trivial even though it is
a natural extension of the three-quark case. We have

presented a general method for solving the QCD evolution
equations which govern relativistic multiquark wave func-
tions. We have also applied it to a four-quark toy system
in SU(2)c and derived some constraints on the effective
force between two baryons. However, since the antisym-
metric representation of a multiquark wave function must
be constructed explicitly, it is hard, in practice, to solve
the multiquark evolution equation. In this paper we avoid
this problem by exploiting the permutation symmetry of
the evolution kernel.

In Sec. II, a completely antisymmetric six-quark wave
function is constructed and an example of an explicit rep-
resentation is presented. In Sec. III we derive a set of evo-
lution equations for the deuteron S-wave amplitude
through a generalized kernel equation for a completely an-
tisymmetric six-quark wave function. A convenient way
to solve these coupled evolution equations is presented in
Sec. IV. In Sec. V the general matrix representation for
the anomalous dimension is obtained. Results for the
leading anomalous dimension are given in detail. Discus-
sions and conclusions are followed in Sec. VI. In Appen-
dix A we describe a general method determining color-
singlet representations and explain the methods leading to
the explicit representations given in Sec. II. In Appendix
B we present the color-factor calculations and the detailed
expressions for the orthogonal kernels which have specific
permutation symmetries.

II. SIX-QUARK STATES

Six-quark states can be classified by their symmetries
under SU(3)c (color), SU(2)T (isospin), SU(2)s (spin), and
spatial symmetry. Since the physical states are color sing-
lets, the Young symmetry of the color-singlet states of the
six-quark system is fc ——(222) or g . In the six-quark
system, there are five independent color-singlet states cor-
responding to five different Yamanouchi labels of (222)
symmetry. The explicit representations of the five in-
dependent color-singlet states and their correspondence to
Yamanouchi labels are given in Appendix A.

The completely antisymmetric six-quark representation
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I(1 )[654321]&f f, (Ref. 9), which has Young sym-

metries for isospin [SU(2)r ] labeled by fr, is given by

I(1 )[654321])j

„,grjr Ifry'r&f, lfrI'r&f„, *)1/2

where I'r is the allowed Yamanouchi label of fr (fr
symmetry has Nr different Yamanouchi labels) and the

phase rjr ——+1=(—1) depends on whether Fr is ob-
tained from the Yamanouchi label with the indices in

natural order by an even or odd number of transpositions.
The dual symmetry states in the CSO space (represented
by wavy lines} are used to construct the overall antisym-
metric representations. It is convenient to construct a
basis of completely antisymmetric six-quark representa-
tions from the combined color-spin symmetry. We thus
introduce color spin as an intermediate representa-
tion. For example, the specific projection of the com-
pletely antisymmetric six-quark representation

I
(1 }[654321])f f f which has Young symmetries

for color-spin [SU(6)cs], and orbital symmetry labeled by
fcs, and fo, respectively, is represented by'0

I(I')[654321]&frfcsf, =
i~2 g g grjr&fcsl'cs foi'0 Ifr~r& Ifr y'r& Ifcs~cs& Ifo~o&(&r}' ' r, r„r, (22)

where Ycs and Fo are the allowed Yamanouchi labels of fcs and fo, and &fcs Ycs,fo Fo
I fr Yr ) are Clebsch-Gordan

coefficients of the permutation group Sb. Now we further decompose fcs into fc and fs using Clebsch-Gordan coeffi-
cients &fcYc fs&s Ifcs&cs& so that, Eq (21) becomes

I
(I )[654321]&frfc,fs,f~= »i g g g g g( —I) &fcsy'cs foI'o Ifr~r&&fcl'c fsI's Ifcsy'cs&(&r)' r, r„r, r, r,

&
I
fry'r& Ifc~c& Ifs~s& Ifol'o & (2.3)

Since our purpose is to formulate and solve a generalized evolution equation, it is useful to project Eq. (2.1) onto the
light-cone momentum space of six quarks, each carrying light-cone longitudinal-momentum fraction
x;=(qo+qi)l(Pa+Pi) of the deuteron's momentum P& (g, ix;=1) and transverse momentum qi (g, =iqi ——0).
The corresponding light-cone wave function of the six-quark system %d(x;,qi ) is defined by

qd(x, ,q',")= &x, ,q',"
I
(I')[654321]&f, f„f.

&T ~CS ~0

1 jt'2„2 g g g ( —I) '&fcsI'cs foy'o Ifrl'r&4a(xi qi') Ifrl'r& IfcsI'cs& (2.4)
r} rr ——l res ——i ro ——i

where the orbital wave function is given by

4a(xi qi'}=&xi qi" Ifo~o & . (2.5)

2 (i)

4d(x;, Q) =—I ff, 16m'5 g qi"
16m

The remaining SU(2)r and SU(6)cs symmetries (
I fr Yr )

and
I fcsFcs)} are given by specific tensor representa-

tions.
The probability amplitude for the constituents with

light-cone momentum fraction x; to combine into the
hadron arith relative transverse momentum up to the scale
Q is given by the distribution amplitude 4d(x;, Q) de-
fined by

X qiP'(x;, q',"),
where the Q dependence of %P' comes from the renor-
malization of the quark fields. "

As an explicit example of a six-quark representation,
we give a specific representation for fr ——(33}, fcs
=(222) X(6), and fo=(6) (T=o, ~=S'z=» and S
wave):

ao'4(xi Q)= [ ejkklmn(e—u ~s ef+~~ebdecf+e'u~bfece+e j'kbde. )48~5

+~ijl +kmn (~acebe ~df +eac ebf +de +~ae Ebc Edf +oaf kbc tde ) —( ei&m &kin + t'iin hakim )(Eacebd Eef +bad Ebc ref )

+(+ikm+jln++iknejbn++jkm+iln++jkn+ilm)~ab~cd+ef (eiklejmn+~jkleimn)('4b'4e~df+eabecfEde)l
Vo

xa (1)b.'(2)ck(3)dl'(4)em(5)f„'(6)xixzxix4xsxb ln
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where the indices i,j, . . . , n and a,b, . . . ,f are the color
r,y, b) and isospin (u, d) indices, respectively. The e" 's

and e,i, s are the completely antisymmetric Cartesian ten-
sors of SU(3)c and SU(2)r. The coefficient ao is the nor-
malization of the orbital distribution amplitude (see Sec.
V). The leading anomalous dimension is yo. A detailed
calculation of yo for the various six-quark states and the
teiisoi' representations iii Eq. (2.7) will be giveil iii Sec. V
and the Appendix A, respectively.

In the following section, we will derive a set of evolu-
tion equations for the deuteron S-wave distributio 1'-u ion aHlp 1-

u e. S1nce the deuteron is an isospin singlet and the S
wave is a symmetric orbital, the Young symmetry in each
quantum space is given by fr ——(33)T, fcs ——(222)cs, and
fo= )o. Thus, an example of the ground-state S
of the

a e wave
e deuteron d1stribution amplitude is represented by

l(1') = &L)= —~~~~~ erl ER &r & l g i't:s &
l
« ~[illiiil

Fg F~g
0

(2.8)

6
Z

i&j

O

yi i~g X
1 ~ qg

yi X" ~l qi
X. ,-q

~sac

Xi, Q~

-X ~ i 4~-P~

X, -q,
%%4

where (6)o has only one Yamanouchi label, [1ill 1 1]o
[the Clebsch-Gordan coefficient in Eq. (2.2) is trivially
given by lj. We will concentrate on the leading term

'

ig -Q imit. It is an eigensolution of the evolution
equation which will be derived in the next section. The
leading term is the lowest power term of x;-dependent po-
ynomials i.e. x' l, ', ~x2x3xqx5x6. For example, we can see

that the basis element given by Eq. (2.7) is an eigensolu-
tion because only the symmetric tableau is allowed for the
spin in Sz ——3 case. However, in general, and specifically
for the deuteron, the eigensolutions wiB be given by mix-
ing of basis elements in spin space.

IIL EVOLUTION EQUATIONS
FOR THE DEUTERON

"] -4)'-~—o

FIG. 1. Th e leading-order contributions to the kernel of the
six-quark wave function in light-cone perturbation theory. The
longitudinal momentum of particle i (i =1,2, . . . 6) bef

er e interactions is y; and x;, respectively; the i and
' arti-

cles intera
e i an j parti-

Fifteen
act with transverse-momentum transf f d

i teen diagrams are included by summation ov
'

d j with

i&j. The Feynman rules of light-cone perturbation theory in
the light-cone gauge are summarized in Ref. 4.

Each eigensolution of a six-quark state satisfies a kernel
equation of the form

(3.1)EC I(1 )[654321]&,=e I(1 )[654321]&, ,

where
I (1 )[654321]&~ is aii eigeiisolutioii with the

tis mm
given y a linear combination of completely

'
y metric representations (basis elements). The kernel

y an-

E is calculated to leading order in a (g ) fr
exc ange y using light-cone perturbation theory. It is

given ex licitl inp y
'

Sec. V. The pairwise one-gluon-
~ ~

exchange diagrams are shown in Fi 1 S'1nce t e isospin

the
representation does not change through 1 hg uon exc ange,

e SU(2)r symmetry has no mixing and is fixed. For ex-
ample, fT ——(33) in the deuteron case. Also thso, t e s1x-quark

Thus in
s a es are always color-singlet states i. . f =(222).

us, in general, the evolution equation has the followin
form in the basis of Eq. (2.3):

fof, fc c fs s lfcs~cs&&fcs~cs fol'o lfr~r&& Ifc~c& Ifs~s& Ifo~o &XXXXX
= X X X X X XXcf.'f, &f.l.,f.I.If. »&c's' cs& &fcs~cs fo~o lfT~T& IfcI'c& IfsI's& IfoI'o& .

(3.2)

ff' '
t Cfcs n e eigenva ue e are

e poss1bleobtained by solving Eq. (3.2). In E . (3.2) the

the Cl
oung ta eaux fcs and fo in the sums are determined b

ebsch-Gordan series of 56 to produce the CS'0
10

Young-tableau fT. Likewise, the possible Young tableaus

fs are etermined to produce fcs after combining with

fc. Each possible combination of fs, fcs, and fo gives
an equation (3.2). The combinations of fs, fcs, and fo
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are given by coefficients of Cf f and has a corresponding

eigenvalue e.
In general, there are many possible combinations of fs,

fcs, and fo contributing to Eq. (3.2), since only fT and

fc are fixed and mixed Young symmetries are allowed.
However, if we constrain ourselves to some special cases,
then only a few equations actually need to be solved. For
example, the leading term in the high-Q limit of the
Sz ——3 and T =0 amplitude has only one possible com-
bination of fs, fcs, and fo [i.e., fT ——(33), fc ——(222),
fs ——(6), fcs ——(222), fo ——(6)], and only one equation
needs be constructed for this special case. Therefore, we
can easily see that the explicit representation given by Eq.
(2.7) in an eigensolution itself, as we already mentioned in
Sec. II.

In any case, the unknown coefficients Cf f and eigen-

value e in Eq. (3.2) can be determined after a given set of
equations (corresponding to the number of possible com-
binations of fs, fcs, and fo ) are solved.

In this paper we will concentrate on analyzing the
asymptotic amplitude which dominates exclusive process-
es at large transverse momenta such as the asymptotic
high-Q behavior of the deuteron form factor. However,
the general equation is given by Eq. (3.2), and the method
which we present in the rest of this section can be applied
to arbitrary cases. Since a deuteron is isospin singlet and
the dominant degree of freedom in the high-Q2 limit is S
wave, the eigensolutions which we are considering have

fT ——(33) and fo ——(6). In the Sz ——1 case, one has mixing
between fs ——(6)s and fs ——(42)s.

For the fT ——(33)T,fo ——(6)o case, Eq. (3.2) becomes

g g g C(6)y, &(222)cYc fsYs l(222)cs Ycs &K
I
(222)c Yc& ifsYs & I

(6)o[IIII II]o &

fs Yc "s

e g g g C(6)f &(222)cYc fs Ys
I
(222)cs Ycs &

I
(222)c Yc &

I fsYs &
I
(6)o[111111]o&

fs "c "s

(C(6)(6) ) +(C(6)(42) )
(222) 2 (222) (3.4)

Because of the normalization condition (3.4), one can
define two eigensolutions in terms of one mixing angle 8.
The corresponding eigenvalues are

(222) (222) ~

e =ei when C(6)(6) ——cos8, C(6)(4z)
——sm8,

(222) ~ (222)e =e2 when C(6)(6) = —sln8, C(6)(42)
——cos8 .

(3.5)

Furthermore, the kernel K has the factorized color factor
corresponding to one-gluon exchange,

Al j
~J 2 2

(3.6)

where each term represents the kernel given by the in-
teraction between the ith and jth quark and each com-
ponent of the ight-dimensional vector A, is the Gell-Mann
matrix of the SU(3)c group. If we sandwich Eq. (3.5) be-
tween two color states which have Yc ——a and Yc ——P,

where fcs =fr=(33)=(22» and Ycs = YT because

&fcsYcs (6)o[11111lloIfTYr & =&f y &r pCS T CS T

Since we know from the Clebsch-Gordan series of S6
that the possible values of Q are (6) and (42), we have two
unknown coefficients C(6)(6) and C(6)(42) which must
satisfy the normalization condition

respectively, we can define a 5&(5 matrix representation
of K whose elements are given by

6

Kap—:&(222)ca IK I
(222)cP& = g cap(l j )vip (3.7)

where

C C(i j)=((222)cc ' (222)cP) (3.g)

K~P —— 222 gn KfYefY 222 c
fY

= g g &(222)ca,fY
I
(222)cP&Kfr

f Y

(3.9)

where the possible f which gives the nonzero Clebsch-
Gordan coefficient & (222)ca,fY

I (222)cP& is only (6) or
(42). One can rewrite Kfr in terms of color factors
C~il(i j) and Vlj..

The most important observation in this formulation is
that the kernel K is a linear combination of the operators
efr in color space, each of which has a definite Young
symmetry f with Yamanouchi labels Y:

K = g Kf)ref+
fY

Therefore the kernel element K i) can be rewritten in
terms of the kernel Kfr,

K(6)(»)))))= s g g C~('i)Vlj= —
g CF g Vg

a i~j l+J
(3.10)

K(4i)y —, g g &(222)ca, (—4—2)Y I(222)cP&c~p(i j)v~ ( Y= 1, . . . , 9) .
a P

(3.11)
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In &ppendix 8, we present details of the derivation of Eqs. (3.10) and (3.11) and the color factors of Eq. (3.8). Note there
are five possible labels Ycs in correspondence with the labels P= 1, . . . , 5 of Y'c .If we project Eq. (3.3) with Y'cs —P by
a color-singlet state Fc ——a, then we obtain a set of two equations using Eqs. (3.S) through (3.11). One of them is given
by

cos8 5~pK{6)[))))))]+y &(222)ca, (42)Y
) (222}csP)E(gz)y ( (6)s[l ill ll)s) ~

(6)o[111111]o)
y

+sii18 y &(222)ca, (42)sos
~
{222)csP)E(6)[))))))]

F~

+ g g g &(222)c}' (42)s Y's
I
(222)cs&&&(222)c{z (42) Y

I (222)cX&E(4z)r 1(42)s Ys &
~

(6}o[111111]o)
Y~ F y

=ei cos8[iap I (6)sf[I]]]]ls & I
(6)o[1]1[]1]o&

+»n8+ &(222)c~ (42)s Ys I (222)csP& 1(42)sI's & 1(6)o[111111]o&, (3.12)

(3.14)

and another is given by substitutions 8~8+re/2 and e i ~ez in Eq. (3.12).
Combining the two equations and using properties of Clebsch-Gordan coefficients, we obtain the following set of evo-

lution equations (we drop the trivial orbital factor
~
(6)o[111111]o) ):

E(6)[»))()] ( (6)s[111111]s)=(ei cos 8+ez sin 8)
~
(6)s[111111]s), (3.13)

—,
' g E(4z) r ~ E(4z)s Y ) = (e) —ez ) cos8sin8

~
(6)s[111111]s),

E(4z)r ~
(6)s[111111]s) =(e i

—ez) cos8sin8
~
(42)s Y'),

E(6)[))))))]I
(42)sI'&+ s g g g g g &(222)cP (42)sI'

I (222)cstr & &(222)cy (42)sI's
I
(222)cs&)

e P y F~ F@

)& & (222)ca, (42)r/
~
(222)cy )E(4z)y„~ (42)s Ys )

(3.15)

=(e) sill 8+ez cos 8)
~
(42)s Y') . (3.16)

Since the operator order of the Efr is irrelevant, [E(6)[))»»],E(4z, r] =0, we can see, from Eqs. (3.13) and (3.15), that

E(6)[i))i)i] ~

(42)s Y') =(ei cos 8+ez sin 8)
~
(42)s F)

Furthermore, we can prove the following property of Clebsch-Gordan coefficients:

(3.17)

y y y &(222)cP, (42)sI'
~
(222)cs{z)&(222)cy, (42)s1's

~
(222)csP)

X &(222)ca, (42)I')r
I (222)c}'&= &(42)s Ys, (42)YIr

~
(42)s Y) . (3.18)

svSS
108

Thus, if we combine Eqs. (3.16) through (3.18), then we obtain

&(42)sI"s (42) Y)r I
(42)sI'&E(4z)r 1(42)s Ys & =(e) —ez)(»n 8—«s 8)

I
(42}s» .2 2

12 E
F~ F~

(3.19)

Equations (3.13)—(3.15) and (3.19) appear to be in-
dependent. However, we can see that only three combina-
tions of e&, e2, and 8 can be determined in the above
equations. So we need to solve three equations [for exam-
ple, Eqs. (3.13), (3.15), and (3.19}]and the other equation,
(3.14), can be used to check the results. We will describe a
convenient way to solve these equations in ihe next sec-
tion.

IV. SYMMETRY OF KERNEL EQUATIONS

The symmetry of the left- and right-hand sides of any
of the equations derived in the preceding section should be
conserved. This can be easily checked since each kernel
and eigenstate has definite symmetry. If' the kernel is
symmetric, then the states of left- and right-hand side
have the same symmetry. For the simple case where the
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x; dependence of the orbital distribution amplitude is

given by the lowest power, such as the example presented
in the preceding section, aB the equations become an
eigenvalue equation where the eigenvalue is determined by
Sz. This explains why Eqs. (3.13) and (3.17) have the
same eigenvalue e& cos |9+e2 sin L9. For the symmetric
kernel case, we can fix the color factor as —CF/5 [see Eq.
(3.10)]. We can generalize this procedure for any spin-
orbit state and find the general matrix representation of
the kernel in the basis of polynomials. This will be done
in the next section.

However, the eigensolution of the symmetric kernel
equation (3.13) is not a true solution of the whole system
in general, because there could be mixing, i.e., 8&0 in our
example. We need to use other mixed symmetric kernel

equations and find more constraints to determine el, e2,
and 8. In our example, we can find relations between
three combinations of e„e2, and 8 by counting spin an-

ruhilation or surviving terms. (In the general case one
must consider the x;-dependent orbital distribution func-
tions and their integration. One can fmd relations be-

tween combinations of eigenvalues and mixing angles ease
by case by counting the number of terms which survive or
are annihilated after the kernel operation. The equation
which we need to solve actually is the symmetric kernel
equation presented in the next section. )

By counting spin terms„we find the following results
for the leading anomalous dimension. If the symmetric
kernel equation is given by

l
9 l( (42)r I

{42)sY& = y I
(6)s[111111]s&

16
(4.4)

((42)s Ys, {42)Y, l(42), Y&

Ys YK

x I(.'(42)„ I
(42)s Ys &

=—„y I
(42)s Y& .

Upon comparison with Eqs. (3.13)—(3.15), (3.17), and
(3.19), we can solve el, e2, and 8 in terms of y. We find
two solutions:

2S S(i) e, =—„y, e, =-, y, tan8=
2

(4.6)

{ii) el ———,y, e2 ———„y, tan8=—

However, if y &0 then only solution (i) is valid. The value
of y will be determined in the next section.

V. SYMMETRIC KERNEL EQUATION
AND SOLUTION

The evolution equation with the symmetric kernel has
the same spin-orbital symmetry fso and Yso in the Ieft-
and right-hand sides of the equation:

+(6)[llllll] I
(6)s[111111]s& =y

I
(6)s[111111]s& (4 1) &(6)[1)(»(] I fso Yso & =I

I fso Yso & (5.1)

then

+(6)[111111]I {42)sY& =y
I
{42)sY» (4.2)

K(42)r I
(6)s [111111]s& = y I

(42)s[111111]s&,
16

(4.3)

where I is the eigenvalue of the symmetric kernel equa-
tion. In order to give a more explicit expression of Eq.
(5.1), we project both sides of Eq. (5.1) to the light-cone
momentum space of six quarks as illustrated in Sec. II.
We then obtain a kernel equation for the spin-orbital wave
function /so(x;, q) ):

fsoI» «( ~=c«J (4''1 J (d k'i)(~ «i'X &a& «;k()4s«(«; ki,~.'

r k~l

where Cd = —CF/5, and

6 6 d k'
[dy]=5 1 —gy; gdy;, [d ki]= g 162r 5 /k'

i=1 i =1 16m l

(5.3)

Thus /so(x;, qi ) is a linear combination of some orbital wave functions Po(x;,qi ) [see Eq. (2.5)] with some coefficients
of spin tensor representations. By calculating the leading-order diagrams shown in Fig. 1, one obtains an explicit expres-
sion of

1 l
xi«qi ~ g I k) y(~ki

k~l

for the spin-orbital wave function @(x;,qi ) (the spin-orbit index SO is dropped here since each possible fso and Yso sat-
isfies the same equation):
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4~~, ((qj )') 4(v ki)
&(x &i)= —2C~X;, gxk f [4'1@& —«) g@yf x—i) ' '' + f [d'k',']

i&) '+ 1

(5.4)

o', {(qi) ) (=(4n/P)[ln(qz) /A ] ')

is the QCD running coupling constant (P= 1 1 ——,'n~, nI
being the effective number of flavors) and 51, ~ =1 (0)

l j
when the constituents' [ij ) helicities are antiparallel
(parallel). Equation (5.4) has an infrared singularity at
x;=y;. Thus, in order to obtain a well-defined evolution
equation of the six-quark system, we consider the quark
distribution amplitude P(x;,Q), which is the amplitude for
finding constituents with longitudinal momenta x; in the
deuteron which are collinear up to the scale Q:

f)fy(x;, Q)= f [d q'i" ]P'{2'(x;,q~") . (5.5)

This definition is the same as E . (2.6), except that the
only spin-orbital wave function P &'(x,qi") is integrated
instssd of ths totsi tssvs function O'P(n;, q't'). By dif-
ferentiating both sides of Eq. (5.5) with respect to Q, and
combining with Eq. {5.4), we obtain the evolution equa-
tion of the six-quark system:

3CF
ff x + P(x;,Q)
k=1

f [dy] V(x;,y; ){{(y;, Q), (5.6)

P(x;,Q) =P(x;)e

={{'f(x;) ln
A

(5.11)

and substitute into Eq. (5.6) so that Eq. (5.6) becomes
(note that Cd = CF/5)—

3CF CFg xk —y+ P(x;)= f [dy] V(x;,y;)P(y;)
k=]

5' VIP (5.12)

so we can see that the infrared singularity in Eq. (5.4) at
x; =y; is completely canceled by that in Eq. (5.5). We no-
tice that this cancellation happens only when the correct
value of deuteron color factor Cd ———CF/5, so that this is
a good check of the correctness of C~. We calculated Cq
explicitly from the definition in Appendix B.

Since the six-quark evolution equation (5.6) has a form
similar to that of the three-quark evolution equation, we
can solve this equation following the similar methods of
the three-quark case. First, we separate the variables of
{{(x;,Q) such as

where we use the definition P(x;,Q) as

6

{{t(x;,Q)= ff x P(x;,Q),

and the variable

(5.7)

where the equation is simply redefined by the quantum-
mechanical notation V

~ j), and V(x;,y;) is given by Eq.
(5.9). Next we expand {{t(x;)in terms of eigenfunctions

QB(x;), so that the general solution of tTI(x;, Q) is of the

g' dk ln /A
g(Q )= f az(k )-ln, (5.8)

4~ Q' k~ ln(Q /A )

tss 2

f)5 (x;,Q) = g a„{{f„(x;) ln.=0
'

A
(5.13)

and V( yx;) is given by

6 6

V(x;,y; ) =2 g x„g8(y; —x; )
k =I i&j

6 3'j
X g 5(xi —Jfi)

I+l,j J

'' +X.+Xj

where o„are the coefficients and eigenvalues y„corre-
spond to the anomalous diinensions of the six-quark
system. Since V(x;,y; ) is both real and symmetric

[ V(x;,y;) = V(y;,x;)], the y„are real. The I{{t„(x;)]„
are orthogonal with weight co(x; ) =x &x2xix4xsx6.

f [dx]co(x;){{f„'{x;){{t~(x;)=K„5„ (5.14)

where E„are the normalizations. Since the I{{t„(xf)]„"0
form a completely orthonorroal basis

= V(y;,x;) .

By definition, the factor 6 in Eq. (5.9) means

&{{t(y;,Q) ={{'y(y;,Q) —f{y(x;,Q), (5.10)

ym2y s y Pl5 0

where g, , m;=n, we expand V on this polynomial
basis. After some calculation, ~e obtain'
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5

HX '

i=1

1
5

+ &~a. +2 . 6 i Pl-+1

5 3

+ &~aPPl'+2 - I ~ Pl'+Pl '+2

m;+1

m; —1+1 h6)i m; —l+ +l(mj+1) (m;+1}(m;+2}
i

II X Jk

fI ( 1)k+i x k+Jk
5

1 —g Jk 'fI(jk') ' '

k~ 1 k~i

r

Nl —I + I h6K; m, —l

1(mi+ 1) (rni+ 1)(rn; +2)
X Jk

II ( 1)k+i mk+Jk
5

k~i k~i

m (m —1) (m —I+1)
1(m;+2)(m;+3) . (m;+1+1)

m]
m; —l m+lx ' xJl=l

m;(mi —1) (m; —1+1) 5

l(m) +2)(mj+3) (rnj+1+1)

5 3 m (m —1) (m 1+1}—
4

"'
i m, +mj+2 I I

' J (m;+2}(m;+3}. . (m;+1+1}

m;(m; —1) (m; —1+1)
(mj+2)(mJ+3) (mj+1+1)

,+~,-i m5(m5 —1} . (ms —1+1}
+4k' ' m4+rng+2 i, (my+2)(m4+3) . . (rn4+1+ I)

m4 —I m, +i m4(m4 —1) . (m4 —1+1)+ Xg X5 k

(mg+2)(m5+3) . . (m5+1+1)
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6CF 7'
yo= — for Sz ——0, — for Sz ——+1 .

5 p
'

5 p
(5.16)

Therefore, ytt ~ 0 and the true leading anomalous dimen-
sion is given by

3 CF 7e,
hatt" ——— for Sz —0, — for Sz ——+1,

4 p
'

g p
(5.17}

where particles 1, 2, and 3 have helicity parallel to the
hadron's helicity h, and the particles 4, 5, and 6 have heli-
cities h4, h5, and h6. The notation g(J„) means the

summation over all possible integer jk(kQi} as long as

gk5~,- jk (I is satisfied. U(„) ( )
is a matrix representa-

Pf ~

tion of the linear operator co 'V on the basis {x;
Since U(„) ( }

——0 when g;, n; & g; im;, the eigen-

functions are polynomials of degree
n = g, , m; =0, 1,2, . . . . The corresponding eigen-

value are obt ined by diagonalizing the matrix U(. . l, ( .
)

with g, , n; = g;, m; =n. Several leading eigenvalues

and the eigenfunctions are given in Table I.
From Table I, we see that the leading anomalous di-

mension obtained from the symmetric kernel equation is
given by

VI. DISCUSSIONS AND CONCLUSIONS

Harvey' has classified the color-singlet six-quark states
in terms of a physical cluster decomposition. Using his
classification, the physical deuteron state (i.e., a bound
state of two color-singlet clusters) is represented as a
linear combination of several different kinds of totally an-
tisymmetric color-singlet six-quark states. For example,
the two well-separated nucleons

~

NN ) are given by'

I
&&&=( 9

)'"
I [6]{331&+( 9

)'"
I
[42]{33l&

~
[42]{51I), (6.1)

where [ ] and { I represent the orbital and spin-isospin
symmetry (i.e., fo and fTs in our notations) and color
symmetry (222) is abbreviated. However, this classifica-
tion by itself does not include the dynamics of strong in-
teractions between the constituents. In other words, the
dynamics between the quarks inside the deuteron is not
included.

Thus far in this paper we have formulated the dynami-
cal evolution equation of six-quark systems and solved it
to give the general form of the quark distribution ampli-
tude Pd(x;, Q):

from the value of ei in the case (i) of Eq. (4.6). tttg(x;, Q) =(CTS)P(x;,Q), (6.2)

TABLE I. Solutions of the evolution equation (5.12} for total helicity
~
3h+h~+h5+h6

~

=0
{Pttt ttt) 1 {Pttttt t i{ttt tttt {{)tttttt} 2 {$tttttt t)Ittt tttt Ptttttt } and 3 {tt'tt tttt'I

) cases The procedure for
the systematic derivation of the P„ is given in Sec. V.

T
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where ( CTS} is a tensor representation obtained from the
Young symmetry of SU(3)c, SU(2)T, and SU(2)s [one ex-
ample is given by Eq. (2.7)], and the orbital distribution
amplitude iti(x;, Q) is given by

P(x;,Q) =x ixzx3x4x&x6

tems. This leads to the explicit representation of Eq. (2.7).
Group theoretically, color states of every quark and/or

antiquark systems are represented by the multiple outer
products

(3}i'x(3*)'

X g a„Pn(x;) ln
n=0

We project Eq. (6.1) to momentum space:

itijiiv(xi*Q}=(v'}' 'lt'[61[33}(xi Q}

+( 9
}' '0[42)(33}(xi Q}

—( 9
}' '0[42)[33}(xi Q} (6.4)

for the system of p quarks and q antiquarks. The reduci-
ble tensor representations of (Al) are decomposed into ir-
reducible tensor representations and the resulting singlet
representations provide the physical quark system.

Since the color singlet is invariant under SU(3) transfor-
mation, the only tensor representations' which are invari-
ant under SU(3) transformation are the Kronecker delta
and the completely antisymmetric Cartesian tensors:

Jk
~J t ejJk I

In the limit Q~ 00 the dependence of Q is determined by
the leading anomalous dimension; all other terms which
have nonleading anomalous dimensions are suppressed by
logarithmic damping factors. However, as we can see
from Table I, the orbital symmetry of the eigensolution
which has the leading anomalous dimension cannot be
[42] but is [6]. This means only the first term of Eq. (6.4)
survives at the large-Q limit. The XN amplitude itself is
not sufficient. One can show that an 80%%uo hidden-color
state is necessary to saturate the normalization of the six-
quark amplitude when six quarks approach the same posi-
tion in impact space bj ~0. %e have called this new de-
gree of freedom an anomalous state since it does not cor-
respond to the usual nucleonic degrees of freedom of the
nucleus, The physical implication of the anomalous state
is discussed in our toy model analysis.

The asymptotic behavior of the deuteron distribution
amplitude is given by

ln(Q /A )

I)[D(xiii

Q) —Qox ix2x3x4xgx6
ln(QO /A )

(6.5)

where yo ———,'(CF/P) for the Sz ——0 deuteron. The QCD
predictions for high-Q behavior of the deuteron form
factor and the form of the deuteron distribution ampli-
tude at short distances are given in Ref. 3. The fact that
the six-quark state is 80% hidden color at small trans-
verse separation implies that the deuteron form factors
cannot be described at large Q by meson-nucleon degrees
of freedom alone, and that the nucleon-nucleon potential
is repulsive at short distances. ' '
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1
Sijklmn (eijmekln +~ijneklm }4~6

1
Sijklmn ~ (&iklejmn +kjkl~imm } r4~6

1
Sijklmn = ~ (eijlekmn 3 eijkelmn } ~4+2

1

~ijklmn 6 ~ij k ~lmn

(A3)

where Szklm„(a=1, 2, . . . , 5) are the five independent
color-singlet representations.

The correspondence between Eq. (A3) and the five dif-
ferent Young tableaus (or Yamanouchi labels) is as fol-
lows: If we denote i =1,j =2, . . . , n =6, then the corre-
sponding Young tableaus with Eq. (A3) are

where the lower (upper) indices correspond to 3 (3') rep-
resentations. This comes from the fact that only opera-
tions of contraction and antisymmetrization commute
with the SU(3) transformations on the mixed tensors.
Thus, every color-singlet representation can be represented
by the products of the three tensors (A2).

From this observation, we describe the rules to con-
struct the color-singlet tensor representations for arbitrary
quark and/or antiquark systems such as (Al).

(1} Give each index to every 3 and 3' representations.
For example, p lower indices and q upper indices will be
given to (Al).

(2) Assemble one possible product of Kronecker deltas
and completely antisymmetric Cartesian tensors to use up
all indices considered in rule (1). For example, the p =6
and q =0 case needs the product of two antisymmetric
Cartesian tensors.

(3) Permute the upper and lower indices separately. For
example, the p =6 and q =0 case will give 10 possible
different representations. However, note that they are not
all independent.

(4) To construct all the independent (orthogonal) repre-
sentations, follow the method of Schmidt's orthogonaliza-
tion, where the inner product is defined as contraction.
For example, in the p =6 and q =0 case, five independent
representations are obtained:

1
Sijklmn ~ ( &ikm ejln +&ikn 'Ejim +&jkm eiln +ejkn &ilm } ~12& 2
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1 2,
3 4

56

1 3
2 4

5

4

1 4
2 5
3 6

b =2, . . . ,f=6. If we multiply the color- and isospin-
singlet tensors given by Eqs. (A3) and (A4), respectively,
taking care of the phase factor riT for the Yamanouchi
labels, we get the special case of the asymptotic deuteron
representation, Eq. (2.7).

135
246

1
2V~2

~ &Nb&cd&ef i

125 1
3 4 6 ~ ( Nc bd&ej+ &/sd&bc~ej) i2V6

A similar method can be applied to construct the
isospin-singlet representations in SU(2). The five indepen-
dent isospin-singlet tensors corresponding to the dual of
the color-singlet Young tableau shown in (A3) are
represented by

APPENDIX B

The color factor defined in Eq. (3.8) can be explicitly
expressed in terms of tensor notation, since we know the
tensor representation for the multiplication of Gell-Mann
matrices in Eq. (3.8) as'

c ' J

(81)J / 3 / J'/.J

134
(~ob~ce&dl + &ab&cf ~de) &2VS

124
,

3 5 6
1

6V2
(~4c~be&g + ~oc&bf ~de + ~gg@cCdl + CzjCbcCde),

(A4)

where the indices i and i' designate the color i'th quark
before and after a gluon exchange. Using the notation of
Eq. (A3), the generalized color matrices (5X5) given by
Eq. (3.8) can be obtained by

123 1

S (aadabeae/ + cacao/acl + aa/a&ace) i

CNi/(i,j ) =S . ;.....J. . . ~P
e ~ e

g
e ~ ~ J ~ ~ ~

.J

where the e,s's are the antisymmetric Cartesian tensors of
SU(2)r and the Young tableaux are denoted by a =1,

(82)
and Eq. (81). There are 15 such matrices and they are
given by

0 0 0

0 —
3 0 0

C(1 2)= 0 0 3 0

5
12

0, C(1,3)= 0

1

12

5
12

0 0

v3

0 0 0 —
3 0

0 0 0 4

0

1

12

v3
12

v3
12

C(1,4)= 0

0

0 0

5
12

7
12

C(1,5)=1

6
1

3vZ

5
12

1

zvz

5
12

1

4

1

Zv3
1

zv6

1

4

5
12

1

Zv3
1

zv6

I
4

1

Zv3
1

1

12

2 2

1

zv6
1

zv6
1

6vz

C(1,6}= 0

5
12

1

4

5
12

Zv3

zv3
1

12
1 1

Zv3 Zv3
1 1 1 1

zvz zv6 zv 6 6vz

12

v3
4

1

12

0 0 0

0 0 0

v3
12

v3

0 0 0

1

zvz
1

zv6
1

C(2,3}= 0
2&6

1
0

6vz
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1

2v 3

1

ZV3

v3
4

5
12

1

v6
1

3v2

1

4
5
12 C(2, 5)= 0

1 7

4v"3

1 1

v6 3vZ

1 1

2v 3 2v3
1 1

Zv6 2v6

1

4

1

2v2

01

3 0 0 0
1

Zv3
1

Zv3

1

2v6

C(3,4)= 0
2 6

1

6v2

5
12

1

4 0 —
3 02 0 0

1

4
5
12C(2, 6)= 0 —

3 0

vz
3 3

1

2v"3

1

2v6

1

2v3
1 1

2v"2

0 01

12

0 0 0
3

v3

1

4v3
1

4v3
5
12

1

12
1

12C(3,6)=
4

C(3,5)=

1

3v2
0 1

4v3
10

7
12

7
12

1

3vZ

v3 v3
4

5
12 0 0

v3 v35
12

1

12
1

120, C(4,6)=C(4, 5)=
4

0

v3
4

1

12
1

12

0 0

0 T 01

0 0

0 0

cc5,6)= 0 o ——,
' o

0 —
3 00 0

0 0 0

1

2v2
1

zv6
1

2v6
1

6v Z

1

v6
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Using the results (83) and the formulas (3.10) and (3.11),
we can find expressions for the kernels in terms of Vj.
Since C«(ij ) is independent of i and j and given by

where Cd = —CF/5.
The other kernels can also be obtained by using the

Clebsch-Gordan coefficients of S6 and (83). The results
are given by

(ij)= ——', X3+—,
' @2=—C, ,

the symmetric kernel is given by

+(6)[1111i1] Cd g Vij
I+J

(84)

(85)

Efr Nj r——Q 3;jVij,

where Xfz and A,J are summarized in Table II.

J=O

j It+J+l

k=2

m(m —1) (m —r +1)
i(n +2)(n +3) (n +i +1)
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