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Chiral properties of the weak amplitudes in the %'einberg model of CP violation are carefully
treated. The CP-odd E~2m amplitude is chiral-symmetry nonlinear-realization dependent, and so
is the soft-pion relation. This reahzation dependence is canceled by the pole contribution arising
from the combination of a strong Em vertex and a E-vacuum tadpole, so that to lowest order in

chiral symmetry the physical E~2m amplitude is chiral-model independent. The vacuum-insertion

method is valid only in a particular realization scheme. Various CP-violating effects are then reex-

amined in this model. %'hen the g-q' mixing is taken into account, e'/e= —O.OO7 is obtained. The
electric dipole moment of a neutron due to neutral-Higgs-boson exchange and the current experi-

mental limit are used to set an upper bound for neutral-Higgs-boson mixing. Finally, CP violation
in E—+3w decays is discussed.

I. INTRODUCTION

Recently there has been renewed interest in the Wein-
berg model of CP violation. ' On the one hand, Donoghue
and Holstein showed how to correctly treat the chiral
properties of the weak amplitudes within the framework
of chiral perturbation theory. As a result, the CP-
violating parameter e'/e is estimated to be —0.006 (see
also Ref. 3), in contrast with the conventional result
e /e= ——„(Ref.4). Since the new estimate is within the
experimental limit, this model seeins to be viable. On the
other hand, Anselm et al showed . that the dominant
contribution to the neutron electric dipole moment (EDM)
arises from neutral-Higgs-boson exchange rather than
from the charged Higgs boson. This dominant contribu-
tion exceeds the present experimental upper bound by 2—3
orders of magnitude, which appears to be a serious argu-
ment against the Weinberg model of CP nonconservation
unless the neutral-Higgs-boson mixing is smaller than the
charged-Higgs-boson mixing.

Since a j'-vacuum tadpole can be induced by the CP-
odd Lagrangian in the %'einberg model, a pole contribu-
tion has to be included in the calculation of the E~2n.
amplitude. Because the strong Em scattering amplitude is
chiral-symmetry nonlinear-realization dependent, the in-
clusion of an additional pole term seems to give a puzzle;
the on-shell physical amplitude to lowest order in chiral
symmetry ought to be chiral-model independent. After
briefly reviewing the Weinberg model in Sec. II we study
the chiral properties of the weak amplitudes and solve the
aforementioned puzzle. Some constraints are obtained for
the charged-Higgs-boson mixing angles and the vacuum
expectation values.

Section III is devoted to the discussions of CP-odd ef-
fects which can be manifested in this model. Section IV
gives the conclusions.

II. MODEL

+y; Nl MEER )H(~+H. c. ,

where E is a real KM matrix, MU, M~, and the ME are
diagonal mass matrices for the up quarks, down quarks,
and leptons, respectively, and
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and conservation of natural flavor at the tree level. The
breakdown of CP symmetry can arise from the complex
vacuum expectation values of Higgs fields and the com-
plex Yukawa interactions. If CP nonconservation is real-
ized spontaneously, the Kobayashi-Maskawa (KM) matrix
of the quark mixing at the tree level is real6 and CP viola-
tion comes solely from the Higgs sector. Higher-order ra-
diative correction would yield a small CP-violating phase
5 in the KM matrix in the gauge interaction. Since 5 is
calculable and naturally small, this has been regarded for
some time as one of the attractive features of this type of
CP-odd model. Nowadays we know that sin5 is of order
unity, inferred from the measurement of the b-quark life-
time and its semileptonic decay.

The Yukawa interaction of the charged Higgs boson in
the unitary gauge is given by

~i =(2v 2') g (a; Ui, ICMnDR+p;URMUKDr

In the Weinberg model of CP violation there are at least
three Higgs doublets in order to implement CI' violation

with s;, c;, and 58 being the Higgs-boson mixing angles
and phase defined in complete analogy to the KM matrix
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of quark mixing. From (2) this gives

Im(a2)82 ) = —Im(n&P~ ),
Im(a2yz ) = —Im(a&y& ),
Im(P2y2) = —Im(P)y) ) .

(3)

with"

=' =ifdal'"(1+ ys)A, 'sG„'„

f= m, m, cos8csin8C
&2 32

(9)

The Yukawa interaction of the neutral Higgs boson in the
diagonalized basis reads

2Nlx

PPg~

(10)

5

W~r ——(v 26@)' g (g)(DMDD+ig2gDMI3ysD

+(3; UMUU+i(4; UMUysU

+(„EMsE +i („EMEy,E)H;,

(4)

where the coupling constants g&~ are real. Since ~ and
i py 3$ have opposite P, T, and CP transformation proper-
ties, P and CP can be violated through the exchange of
the neutral Higgs boson. In this model CP violation is
usually characterized by the parameter

ImA =Im(({}},'P )lv;u )

Gp & Ima;P,'
2

——2 26F
~O ~ =i ~H.

For later purposes we rewrite the equation for rnot

1 ~2vv3 . —. 1 1
sln283sln5H

mo U102 ~H ~H
1 2

where ut, ut, u3 are the vacuum expectation values of the
Higgs fields p &, 3, and p3, respectively, u = ( u

&

3

+u2 +v3 )' =(2 26F) '~. In deriving (6), Eqs. (2)
and (3.12) of Ref. 9 have been used.

A. Chiral properties Of the weak amphtude and e'/e

where qL,
——(1—y&)q/2.

It was noted by Donoghue and Holstein that the am-
plitude K~2' induced by the CP odd -Lagrangian
8=& =' or 2' =' involves an additional pole contri-
bution which arises from the combination of a four-point
strong K-K-n-n vertex and a weak E-vacuum vertex (i.e.,
a tadpole). More precisely,

P =A (Err~En )(0
~

8
~
K ) /mx. (12)

where A(Kn. +Km) is th—e strong-interaction Kn. scatter-
ing amplitude. The total CP-violating K~2m amplitude
is then given by

A(K'~n+n )=(m+n -~ 8
~

K')+P . (13)

The kaon-pion scattering amplitude can be easily comput-
ed using chiral perturbation theory. The strong-
interaction Lagrangian to lowest order in momenta in-
cluding chiral-SU(3)XSU(3)-symmetry breaking by the
meson masses 1s

The Higgs-boson penguin diagram does not correspond to
a local four-quark operator since the loop integral does
not give a factor of k canceling the pole in the gluon
propagator. However, using the vacuum-saturation ap-
proximation to evaluate the matrix element
(2~

~

W ='
~
K) one encounters an effective four-quark

operator of the form

u, s,d

g gRdLSRQL (11)

In X~2m decays the CP-violating paranMters e and e'

are given by Ref. 10:
[Tr(B„UcFU )+TrM( U+ U )],

8
(14)

e= (e +2(u)e' ~
2v'2

RCQ 2e'= ~ (g, —go)e
RCQ O

e —= ImM ~2/ReM &3,

where g;=Ima;/Rea;, au(az) is the isospin-zero (-two)
amplitude of K~2m As in the KM. model, Ima2 also
vanishes in the %'einberg-model phase convention; hence

e 20 e +2/

where the subscript 0 of g has been dropped for conveni-
ence. The dominant contribution to the imaginary part of
the K +2m amplitude come—s from the Higgs penguin dia-
gram. The effective b,5=1 CP-odd bilinear operator"'
from s~d +gluon is

where f is the common decay constant —130 MeV,
MJ ——0 (i&J), m~ ~M&& ——M22, m& —(M&&+M33)/2,
and the general form of the meson matrix U is'4

U= I+2iplf 2p If ia3$ If- —

+2(a3 —1)p If +
(15)

with A,
' the Gell-Mann matrices. Up to order four in P

there is only one arbitrary constant a3 in the expansion of
U. For a3 ———', the meson matrix becomes the familiar
form U=exp(2iglf). From Eqs. (12)—(15), it follows
that the pole term on shell is

P =(0
i
8

i
K)a3/(2f2) .

The matrix element (2m
~
8

~
K) can be evaluated either

by current algebra or by the vacuum-insertion method. If
we use the soft-pion relations
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3 (E «2m. ) = —(1—a 3/2) &0 I
8

I
K )If (18)

However, this is in contradiction with the theorem of
Chisholm S-matrix elements (i.e., on-shell amplitudes)
are independent of the value of a3. Furthermore, as we
will see later the Feinberg-Kabir-Weinberg (FKW)
theorem' requires that no physical transition amphtudes
be induced to lowest order in chiral perturbation theory.
For a3 ———,', as originally chosen by Ref. 2, or a3 ———', , as
often used in the literature, the CP-odd K«2n amplitude
does not vanish on shelL These puzzles are solved based
on the observation that in the chiral hmit the operator 8
transforms as (3,3} under SUL, (3)XSUa(3), and hence
the corresponding effective Lagrangian is of the form

8-Tr(A, 6U)+ H.c. (19)

From Eq. (15) it becomes clear that the weak amplitude
& 2n.

I
8

I
K ) is a 3 dependent. Consequently, the soft-pion

reduction of the K«2' amplitude is nonlinear-
realization dependent and should read

&~+~ I8 I

Ko-) = i-v2 a,
f . 2. &

n'
I
8

I
K') . (20)

So, if we use the usual soft-pion relations (17), the values
of a3 for the strong Kn scattering amplitude has to be 2
rather than —,

' or —', . Thus,

A(K «rr+n )

—i & I8IK )+—&OI8IK )f 2

(21)

in accordance with both Chisholm and FKW theorems.
The fundamental reason for the physical CP-odd K«2m
amplitude vanishing to los&est order in chiral symmetry is
that the effective chiral representation for the M=1
operator W =' [Eq. (19)) is similar to the mass terms in
the strong-interaction Lagrangian (14). As a result, its ef-
fect can be rotated away by an appropriate chiral transfor-
mation of the on-shell amplitudes. We also evaluate
A(Ko«n+m ) using the vacuum-insertion approxima-
tion:

&m+n
I

W~='IEO)

= &~+m
I d„dL, I

0& &0
I sadr. I

K'&

+ &~+
I u~dL, 10&&~

I sauL, IK &

+ &0 I dxdL +sasL I 0) &1T O'
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K ) (22)
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we will encounter two related puzzles. From Eqs. (13),
(16), and (17) we obtain

where the third term in (22) and the tadpole contribution
(23) are missing in the original computation in Ref. 4.
Keeping the vertices independent of the momentum

&Oi qq I0) = f'U—I2,
&0

I sLda
I
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=ifu/2,
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I
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(25)

the reader can then check that the vacuum-insertion ap-
proximation yields the same results as the current algebra
only for a3 ——2. Indeed, Eq. (20) is respected by the
vacuum-insertion method only if a 3 =2.

We have thus demonstrated that in the Weinberg model
of CP violation the physical CP-violating K«2m. ampli-
tude vanishes to lowest order in chiral symmetry in both
current-algebra and vacuum-insertion calculations. It is
striking that the KM model also shares this important
chiral property though for a different reason: the matrix
element of the penguin operator, and hence e'/e, vanishes
to lowest order in the low-energy expansion of chiral per-
turbation theory. '

Beyond the lowest-order chiral limit, Imao and e'/e
may receive contributions from the following two sources.

(i) Next-order tree-graph and one-loop corrections to
the weak amplitudes &2n I8IK), &OI8IK), and the
strong amplitude of Km scattering. For example, the next
order strong-interaction Lagrangian is of the form

2

z (3 four-derivative terms+mass terms),
A

where A= I GeV is the scale of chiral symmetry. Since
the counterterms necessary to renormalize one-loop
graphs are of the same structures as W,' ' (Ref. 24), both
four-derivative and one-loop corrections are suppressed by
a factor q /A at low energies.

(ii} Current-quark masses can induce an (8, 1) term to
the CP odd Lagr-angian, which cannot be transformed
away by any chiral rotation. This SU(3)-braking contri-
bution to e'/e was first discussed by Dupont and Pham.
Lacking reliable techniques for handling the higher-order
chiral terms and loop corrections to the weak amplitudes,
we follow Donoghue and Holstein in giving a crude esti-
mate:

and noting that the matrix element
&m+~

I
s(1—y5)d

I
K) can be evaluated either by

current algebra or by the effective Lagrangian
Trf(A6 —iA7)U] for the bilinear operator s(1—y5)d (Ref.
18), so that



HAI- YANG CHENG

(26)

The dispersive effect on the kaon mass matrix has been
discussed in Refs. 3 and 25. The long-distance contribu-
tion to the matrix element ImM&2 due to the m, g, q' poles
are approximately given by

8. Constraints on Im A and the vacuura expectation values

From the experimental limit for the mass of the
charged Higgs boson and the value of e, we can obtain
some constraints on Im A [Eq. (5)] and the vacuum expec-
tation values. The matrix element

(n ~W '~E &=fA»

has been computed in the MIT bag inodel and was found
to be A»~ ——0.4 GeV (for a, = 1) (Ref. 11). From Eqs.
(3), (7), {26), (27), and the experimental value for e, we ob-
tain

Following Refs. 2 and 3, and taking into account the

g —g' mixing, we obtain

Im(n, Pi}
1

ln
mH

2

m~

2ln»(lmMi2)i D- —3(/O
/

~
/
ir&(ir

/ ~+ /

g'0&,
1

ln
mH

2

mc

1

2~2 mo'
(30)

2(/e =0.16, e'/e= —0.007 . (29)

Because of the crude estimate made in (26), the result (29)
should be regarded as order-of-magnitude estimates. At
any rate, e'/e obtained here is consistent with the recent
measurements

e'/e = —0.0046+0.0053+0.0024 (Chicago-Saclay)

=0.0017+0.0082 (Yale-BNL) .

Finally, we would like to remark that the relation
(ImMi, /ReMi2)LD ———2g does not hold in the Weinberg
model of CP violation even for the n, ri intermediate states
because of the pole contribution in Eq. (13). Accordingly,
for e the long-distance contribution to ImM&2 is not can-
celed by the one occurring in 2$ReMi2. In fact, if the
aforementioned relation were true, then from Eq. {8) to-
gether with (ImM iz )z D & (Indlf i2 )i „,one would have

1 hm
e 20 {2ReMiq )b,„

However, e'/e is now Higgs-boson-mixing-angle depen-
dent through the (ReMi2)b, „term, as it should not be.

where use of the relation

(i}i ~H+ ~K&= 2v 2/3p—(7r
~
H+

~
K&

[gi being the SU(3)-singlet state] has been made. The pa-
rameter p can be determined from Ei ~2y decays and is
found to be 0.96 (with 30% error) (Ref. 26)], which is
close to unity as expected from the quark model. Without
the g —g' mixing, it has been noted that the g and m poles
cancel each other due to the FKW' theorem. 2 However,
the inclusion of the rI —ri' mixing alters the situation. An
almost complete cancellation occurs between m and r}'

poles, so the il' dispersive pole is not the dominant contri-
bution of long-distance effects. Since the long-distance
contribution to ImMiq is quite large compared to the
short-distance one, it is clear that 2g/e, and e'/e are
Higgs-boson-mixing and CP-violating angle independent.
Using the experimental value (2n

~
H+

~
E& =2.63

X 10 GeV, we find

with mo ——3.3 GeV. The present experimental lower
bound for the mass of the charged Higgs boson is

mH &16 GeV . (31)

%ith our convention that m& ~ m~, the term in large
2 1

square brackets in (30) is (1.3X10 2; thus we have a
lower limit on Im(a, p; ):

Im(aiPi ) &2.6 . (32)

From Eq. (6) we also have a lower bound on
(1/mH —1/mH, ):

1 1 UiU2

m~ mH ~ 2UU3mo
2 2 — J 2

(33}

This together with Eq. (5}yields

UU3
&21m(aiPi )=5.2

U] U2

and
mop5. 9 QeV .

(34)

(35}

idio ——6.2 GeV, Im(aiPi ) =3.8 . (36)

For a given mo (typically 10 GeV), the existence of a
light-charged Higgs boson is in general required in the
Weinberg model unless U3 is unexpectedly high. We re-
mark that without the Higgs-boson penguin contribution
(hence g=O) a small value mo ——2 GeV was obtained in
Ref. 33. It is of interest to note that the constraint (34) on
the vacuum expectation values (VEV's) is satisfied only if
U, & U„ui. In other words not all three VEV's are of the
same order of magnitude. Indeed, the hierarchy of the
+EV s U3 Q U2 )Q U

&
is assumed in Ref. 3 1 in order to ob-

tain an e'/e consistent with the experimental value.
While in our case, e'/e is small because of the small CP
violation in the K~2m decay amplitude due to the chiral
properties of the CP-odd Lagrangian, and because of the
large long-distance contribution to the imaginary part of
M, 2. For later purposes of calculations, we choose

0, ——20GeV, 0 ——100GeV, h' h c espo d t
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III. APPLICATIONS

Iil t111s scctloil wc rccxa111111calld llpdatc thc dlscusslolls
of other CP-violating effects in the Weinberg model of
CP violation. The reason for doing this is attributed to
the fact that some parameters in this model are changed
because of the chiral properties of the CP-odd Lagrang-
ian. Hence it is worthwhile to update this model s predic-
tions by using the new determined constraints on the fun-
damental parameters in this theory, Eqs. (32)—(36).

D„-1X10 e cm, (37)

which is to be compared with the current experimental
limit D„&5X10 e cm (Ref. 35).

The contributions from the neutral Higgs boson are
proportional to the cube of the small light-quark masses
and thus are negligible. is Nevertheless, as pointed out by
Anselm et al. ,

s the correct estimate of the nucleon cou-
pling with the neutral Higgs boson at low momenta leads
to a value which is proportional to the nucleon mass and
does not vanish in the chiral limit m„, me~0. The num-
ber D„=10 e cm is obtained by Anselm et al. , with
mo ——2 GeV under the assumption that the neutral- and
charged-Higgs-boson mixing are of the same order of
magnitude (see also Ref. 37):

&H &

U

[i.e., g"'g' ' is of the same order as Im(aP'} in our nota-
tion]. With Eq. (36) their result is modified to

D„&1.1X10 e cm . (39)

However, no definite conclusion can be drawn about
whether the Weinberg model is ruled or not, since nothing
is known about the neutral-Higgs-boson mixing, this can
be interpreted as an equation for the upper bound on
g' "g' '. The current experimental hmit sets

g( )g(2) &~.5X 10 (40)

B. Strong CI'

The theoretical constraint for the effective strong CP-
violating parameter 8=8ocn+HqFD (QI"U denotes quan-
tum flavor dynamics) inferred from the upper bound on
D„ is 8~ 10 (Ref. 39). In models in which CP symme-
try is spontaneously broken, Hqcz ——0 appears naturally
since the initial Lagrangian is CP invariant. Also

HoFn( =arg detM» ——arg det(MU )» +arg det(MD )» )

is finite and calculable to all orders in the perturbation

A. Electric dipole moment of the neutron

The complete expression of the EDM of a quark due to
the charged-Higgs-boson exchange is given in Ref. 34.
Using me ——7.6 MeV, m, = 1.5 GeV, m, =45 GeV,
E,d ——0.227, E,q 0 01——74,.and Eq. (36), we find

8) )~p-3X10 (42)

which is also too large at the one-loop order. In fact, this
is a general feature for spontaneous CP-violating models,
though Hq&D

——0 and 8&Fn is finite and calculable, 8 usu-
ally turns out too large unless one imposes an additional
ad hoc discrete symmetry (for instance, the Peccei-Quinn
symmetry, as done in Ref. 43}or enlarges the gauge group
to protect a small 8. Before proceeding, we comment that
the contribution of the neutral Higgs bosons to 8& ~ „ is
roughly of the same order as that of the charged one.

C. T-odd correlation in EC„3 decays

A test of the T-odd correction is the transverse polari-
zation of the inuon in E„i decays. The degree of the
muon transverse polarization is usually expressed in terms
of the parameter g=f If+„where f+ and f are the
form factors of the vector and scalar parts, respectively,
of the E„i amplitude. The imaginary part of g governs
the size of the T-odd polarization. In the Weinberg
model it is given by '

U

Img=— (43)
2 2rrl u

where ui and ui are the vacuum expectation values of the
Higgs fields p2 and $1, whose neutral components couple
only to down quarks and leptons, respectively. From Eqs.
(31), (33), and with u» ui -ui we obtain an upper bound

Img&5X10

while experimentally

K~). Imp= —0.017+0.025,

EC&1
.. Imp= —0.020+0.022 .

(44)

This T-violating polarization is a unique prediction of the
Weinberg model; all other known viable models of CP
nonconservation predict a null result at the tree level.

D. E~3m

Effects of CP nonconservation in K~3~ decays can be
studied using the standard current-algebra technique to
relate to the better known CP-violating K~2~ decays. It
has been shown that ' as long as the commutation rela-
tion

theory. At the tree level

H„~=X (81—81),
where 8i and 82 are the phases of the VEV of P, and P2,
respectively, and X is the number of generations. To have
weak CP violation, (8i —81) cannot be set to mn/2, with
m integer. Thus even at the zeroth order, 0 in the Wein-
berg model is of order unity. Even if one imposes a
discrete symmetry on the Higgs potential so that
N(81 —81)=nm(n&0) and thus strong CP is conserved,
one still has trouble with the radiative corrections to 8.
At the one-loop level, the exact expression of the radiative
correction from the charged Higgs bosons is given in Ref.
42. From Eq. (36), it follows that numerically



HAI- YANG CHENG

IV. CONCLUSIONS

K

FIG. 1. K ~tr+st tt decay due to the Lagrangian (9). The
S( 8') denotes a strong (weak) vertex.

fQ' H =']=lQ' & ='l (45)

holds for both CP-conserving and -violating interactions,
then at the center of the Dalitz plot (i.e., s, =sz ——s3 }

i(52 —50)
o(0)—e= —2e'e (46)

The momentum-independent terms are thus canceled out.
Again, higher-order chiral terms and SU(3) breaking can
generate CP violation in the decay amplitude at the center
of the Dalitz plot Since th. e CP-violating Lagrangian (9)
does respect the commutation relation (45) to lowest order
in chiral perturbation theory, the result (46) is valid in the
Weinberg model of CP nonconservation. Of course, e'
and hence g+ o in Eq. (46} is model dependent.

The above result holds in the KM model since only the
left-handed quarks are involved in weak interactions. In
the Weinberg model CP violation in the decay amplitude
K~3m also vanishes to lowest order in chiral symmetry
(i.e., for vertices independent of the momentum) as in the
case of E~2n decays due to the FKW theorem. A direct
calculation of Fig. 1 using Eqs. (14), (15), and (19) shows

g(K'(k) n+(k, )w-(k, )~'(k, ) }

k (k3 k2)/(rnid —m) . (4—7)

Motivated by the recent work on the reanalyses of e'/e
in the Weinberg model of CP violation, we have reexam-
ined the chiral properties of the CP-violating weak ampli-
tudes. In K~2+ decays there is a new pole contribution
which arises from the combination of a strong Km. vertex
and a E-vacuum tadpole. The strong Em scattering am-
plitude depends on the chiral-symmetry nonlinear realiza-
tion. However, the weak K~2m transition is also realiza-
tion dependent (so is the soft-pion relation), which renders
the physical K~2tt amplitude nonlinear-realization in-
dependent, consistent with the Chisholm theorem. Conse-
quently, the CP-odd amplitude vanishes to lowest order in
the low-energy expansion of chiral perturbation theory.
A.lthough this is well known to experts in the field, the
realistic calculation of the lowest-order amplitude has not
been treated correctly in the literature. This is the pri-
mary purpose of this paper to clarify this problem and to
show how to obtain the correct results. It is also pointed
out that the vacuum-insertion method works only in the
realization scheme in which a3 —2.

From the experimental value of e, some constraints can
be set on the Higgs-boson mixing and CP-violating angles
and on the relative magnitudes of the vacuum expectation
values. It turns out not all three vacuum expectation
values are of the same order of magnitude. In fact, this is
the starting assumption of Ref. 31 to obtain a small e'/e.

We also have reexamined various CP-violating effects
which can be manifested in this model, these are the elec-
tric dipole moment of a neutron, the strong CP-violating
parameter 8, the transverse polarization of the muon in

K» decays, CP violation in the decay amplitude of
K~3tr decays, and the charge asymmetry in Kt ~3m. de-
cays. The result e'/e= —0.007 is barely compatible with
the present experimental measurements. The electric di-
pole moment of the neutron due to the neutral-Higgs-
boson exchange and the current experimental limit are
used to set an upper bound for the neutral-Higgs-boson
mixing. The strong CP-violating parameter 8 is too large
(of order unity) at the tree level and does not get improved
at the one-loop correction. As in the KM model, this dif-
ficulty may be avoided by imposing the Peccei-Quinn
symmetry (so there would be four Higgs doublets), as al-
ready done in Ref. 43. A direct calculation also shows
that no on-shell K-+3m transition amplitude can be in-
duced by the CP-odd Lagrangian to lowest order in chiral
symmetry, in accordance with the Feinberg-Kabir-
%einberg theorem.
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