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The investigation of the effects of isobar coupling to two-nucleon channels has been extended to
include additional physical features. A new code discretizes the mass distribution of the isobar
widths and treats each mass as a separate channel. This allows the treatment of width in the pres-

ence of coupling by transition potentials, in addition to the previously permitted boundary coupling.
It also produces the S-matrix components required to describe the many-body final-state distribu-

tions. %hen indicated by the one-pion-exchange coupling strength new isobar channels are includ-

ed. The new results for nucleon-nucleon scattering fit the data better, starting from more realistic
models. The observed 'D2 and 'F3 structures are well understood as coupled-channel effects,
without exotic-quark contributions. The existence of a structure in the I'0 channel depends on the

amount of inelasticity, which differs among the phase shift solutions. The energy dependence seen

in recent analyses, of the 'P2 phase shift near TL ——800 MeV, is shown to be a consequence of the
isobar channel coupling. Improved models obtained for the 'So and 'Sl-'Dl channels are being

developed. They are important to accurately extrapolate those phases to higher energies where six-

quark effects are expected.

I. INTRODUCTION

Data from medium-energy accelerators have provided
important information about two-hadron systems, includ-
ing new structures in nucleon-nucleon scattering and ac-
curate deuteron form factors in an extended momentum-
transfer range. In nucleon-nucleon scattering the first iso-
bar channel, the Nb„has a threshold at a laboratory beam
energy TL ——630 MeV (lower when the b, width is includ-
ed). Consequently, the coupling of isobar channels is of
great importance for TL &400 MeV and must be con-
sidered in the present medium-energy range of several
GeV. The explicit treatment of the isobar-channel effects
is necessary to the understanding of the growing amount
of pion production data. '

For TL & 1.5 GeV it is expected that quark degrees of
freedom will have a significant role. In order to distin-
guish their effects from conventional hadronic effects, the
behavior of the coupled hadronic channels must be well
understood. For instance, the 'Dz and F3 two-nucleon
structures, 3 which have been suggested to represent six-
quark states, " have been shown to be predicted by cou-
pling to NLL channels. Furthermore, the prediction of
the size of observable effects of resonances caused by
exotic-quark states *' requires a coupled-channel model
extrapolation of the background phase parameters.

Previous coupled-channel calculations have been
successful in predicting many of the features of
intermediate-energy nucleon-nucleon reactions, as well as
of some meson-baryon reactions. " ' However, this ex-
tant work falls short of the realism demanded by the
present data or the completeness required to satisfy the
objectives mentioned above. In some cases the long-range
interaction is missing or inadequate, " ' while in others
the short-range interaction is not sufficiently realistic.

Sometimes the decay width of the isobars is neglected. In
many cases some significant coupled channels are onut-
ted. In Ref. 5 either the effect of the isobar decay width
or of the transition potential is taken into account, but not
both together. Also in Ref. 5, significant coupled chan-
nels are omitted from a few partial waves.

The present work is an extension of that of Ref. 5, for
several of the most interesting nucleon-nucleon partial
waves, which overcomes the width restriction and in-
cludes more significant channels. In Ref. 5 the short-
range interaction is described by an energy-independent
boundary condition at ro- —,m

r 'I

dna
Pp =fg'(rp),

where f is a square matrix of constant coefficients and
fa(r) is a column matrix of coupled-channel wave func-
tions with the strong-quantum-number list denoted by
a (ct denotes J, S, T, and P for the systems discussed in
this article). This boundary condition has been shown' to
represent the strong, nonlocal, short-range interaction
below the energy of states internal to rp. Furthermore, it
is easily extended to treat the effects of quark-gluon
internal states by the addition of simple, real poles of pos-
itive residue to the energy-independent f.

Outside of rp, the interaction in the nucleon sector is
taken to be the Feshbach-Lomon potential' which in-
cludes the contribution of two-pion exchange as well as of
single m, q, p, and ~ exchange. The transition potentials
from the XN sector to the Nb„hh, and NX'(1440) sec-
tors are those determined from one-pion exchange and,
sometimes, a phenomenological two-pion range potential
(which may also simulate i), p, and to exchange).

%hen the transition potentials are neglected the coupled
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isobar channels can be elilmnsted, producing s complex,
energy-dependent, effective f inatrix in the XN sector. In
Ref. 5 the width of an isobar is taken into account for this
case by integrating f,rf over the Breit-Wigner mass distri-
bution of the isobar. When width effects are important
(near threshold) they are treated in this way, replacing the
transition potential in that channel with a change of the
corresponding f-matrix component. However, over the
extended energy region being fitted, the energy depen-
dence of a transition potential can differ significantly
from that of boundary condition coupling. In Ref. 5
when both transition-potential effects and width effects
are important in the description of a specific coupled sys-
tem, these aspects were examined separately, but could not
be treated together.

The important technical feature of the present work is
the use of a code which treats each physical channel, such
as the Nb system with a given J, I., S, and T, as a large
set of channels with distributed isobar masses. The cou-
pling to these channels is weighted by the Hreit-%igner
distribution, both for the transition potential and the off-
diagonal f-matrix component. Widths and transition po-
tentials are both taken into account appropriately snd
simultaneously. Of course, this is at the expense of much
longer computation times. An added advantage to this
approach is that the resulting amplitudes for production
of isobars of distributed mass enables the prediction of the
decay-product distribution.

In some instances the computation of one-pion-
exchange transition potentials to states neglected in Ref. 5
have indicated their importance and we have included
them here.

In Sec. II we describe the formalism and calculational
methods. In Sec. III we present applications to the Po,
P2- F2, 'Dz, and Fi channels, all of which may have

resonances. We also discuss implications for the 'So and

Si - D i channels which have consequences for the
lowest-lying six-quark resonances. Section IV summa-
rizes the implications of the results.

II. FORMALISM AND CALCULATIONAL METHOD

The basic formalism for coupled-channel scattering
used here hss been described in detail in the literature.
However, the previous computer program was not able to
simultaneously include the effects of the isobar widths
and the transition potentials for the coupling of isobar
channels to stable hadron channels. When width effects
were included, the coupling of these channels was restrict-
ed to that due to the off-diagonal f-matrix components at
the boundary. We have modified the old program to
overcome this deficiency. The price paid is an increase in

computer time by an order of magnitude.

A. Coupled-channel equation

We write the coupled-channel equations of Ref. 5 in a
form that explicitly represents the distribution of isobar
masses as a distribution of channels. We ignore the cou-
pling of the isobar channels to each other as such coupling
has only an indirect effect on the observable results and
introduces no new qualitative consequences.

We will use an index notation suitable for the two-
nucleon reaction which will be the only application
presented in this paper. The alteration for scattering of
other stable hadron pairs is obvious. Let a, P be the two-
nucleon channel indices (a,P= 1,2, for the tensor coupled
channels and only 1 otherwise) and let i be the index for
isobar channels (channels with either one isobar and one
nucleon or with two isobars). We will use s and A, indices
for all the channels, collectively. For the modified partial
waves u i (r ) =r t'ai ( r),

d u (r) I. (I. +1)
u (r)+ g V p(r)up(r)+ g VN;(r) gr;(M», r)dM, =k u (r),

M~ dr M~r p ~
Nf +JM, ~

where

y; (M„r):[Mgp((M» )]'—~ ug(M„r)

and, for M +p, ; & M» & ao

d'u;(M„r} I., (1., +1)
+ „u;(M„r)+V;;u;(M„r)+g V; (r)[~f;p;(M»)]'~ u (r)=[k;(M, }]u;(M„r),M'„- dr

(4)

M is the nucleon mass and p; is m or 2m when the isobar decays into a nucleon and one or two pions, respectively
(the code also deals with the ease of an isobar decaying partly to one pion and partly to two pions by using p=ap +Pp ~
where a and P represent the probability of decay into one and two pions, respectively). These equations contain the
Breit-Wigner distribution functions
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and their normalization

p;M~ M, . (6)

The k~, k;(M, ) and the Li are the channel momenta and
orbital angular momenta, respectively. The q;=q(M»)
and the I; are the relative momenta and orbital angular
momenta of the baryon-meson pair arising from the iso-
bar decay (we assume the decay takes place through some
two-body system}. q; is the q; corresponding to the cen-
tral mass M; of the isobar and I; is the total decay width.
Equation (4) is written in a form appropriate to an
isobar-nucleon channel. If the channel has two isobars
with nonzero width, Eq. (4) must be replaced by a convo-
lution over the two distributions. In our hh channel case
we have found that the convolution can be replaced by a
single p; with an effective I'; and M;.

The M" and M"„are the reduced masses appropriate
to each channel. The Vi„(r) are the potentials
( V~ = V„~.) and

B. Discretization of the width

To solve the above equations numerically without
neglect of the V; and V;, we discretize the width to ob-
tain a finite number of coupled differential equations. In
order to discretize the width we substitute for the integra-
tion over y;(M„r), in Eqs. (2) and (8), a sum over a dis-
tribution of masses. The trapezoidal rule is used for a
reason which will become clear:

y; M~, dM~

8.

[qi;(M, j,r)+qi;(M, ~ +&~,r)], (13)
j 1

2

~h~~~ h;=M, ~, +&~
—M,z. As a cutoff for the top limit

of integration, we use the kinematical restriction
M, &(s+M }',with s the invariant mass, which ig-
nores only a negligible portion of the integral. We can
then compactly rewrite Eqs. (2), (4), (8), and (9) as

M'
K

Vi„(r) (7)

d ui{r) Li(Li+1)
+ ui(r)+ g Vi„u„(r)=ki ui(r)

dp P K=1

as required for unitarity' ' (this factor was used in the
calculations of Ref. 5 although not explicitly indicated in
the notation).

Also required are the boundary conditions applied at
core radIus 1'p:

and

dui (r)

dr,

(14)

(15)

Pp
dQ~ 00= gfapup(&o)+ gfai JM+„qi{M. &o)dM»

P l

(8)

where the A.,x indices now run over the two-nucleon and
all the discretized channels j;=1,2, . . . , n;+1 of the I
isobar channels labeled by i Theref.ore,

du;(M» )
ro = gf P;p;{M, )l'~ u (ro)+fuu (M«ro)

dip

(9)

n =np+ g (n;+1)
i=1

where np ——1 or 2 depending on whether the two-nucleon
channel is not or is tensor coupled. We have defined

with f; =f;.
We note, as in Ref. 5, that when the transition poten-

tials are neglected, one can drop the terms proportional to
V; and V; in Eqs. (2) and (4), solve Eq. (4) for the out-
going wave functions u;+(M„r), and insert the result in
Eqs. (8) and (9) to obtain

~a err
ro = gfapup ~

drp p

u (r)=u (r),
' 1/2

J
ui(i J) =ui(M»j, p)

where

and

(16a)

(16b)

(17a)

m M;p;(M„)fap =fop g fa fip-
l ii + i™»

~j ~y(j +1) Mg{j 1)y J 2»y»» ~ P Ill'

Vi „=0and fi „=0unless A, =a,P

(17b)

with

8,+. (M, )=- r p d (uM„r)

u;+(M„rp)
(12) V p=MV p, f p f~p, ——

or z=a, P or A, =a, (18)

(19)

This considerably simplifies the calculations, but the
quadrature in Eq. (11) still takes substantial computer
time as the 8,+. must be calculated for each M, used in
the integration. = V~(,j), (2O)
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(21)

fi(i j),l(i j) fi, i ~

In the limit n~oo, Eqs. (14) and (15) reproduce the re-
sults of Eqs. (2), (4), (8), and (9). To minimize the number
of coupled channels n for a given accuracy, the M, j are
concentrated where the p;(M„j) is large. In practice, this
is accomplished by using about 15 equally spaced M,J be-

tween)u; and M;+I; and two M, j for M, j pM;+I;. It
is important to note that each M,J produces a discrete
threshold at the corresponding two-nucleon energy, which
produces cusps of magnitude ~HI in the phase parame-
ters at these energies. Thus, the phase parameters at these
threshold energies have the largest errors, midway be-
tween thresholds the phase parameters have errors of the
opposite sign and at some offset from these thresholds the
phase parameters are exact. The approximate value of
this offset is determined by comparison with the results of
the old code [see Eqs. (10)—(12)] for the case of vanishing
transition potential. In this way, we have obtained accu-
rate results for most of the results in this paper (less than
0.1

' in the phase-shift difference and 0.05 in the inelastici-

ty difference from the old code) by using 17 channels to
decompose the width of one physical isobar channel. On
a VAX 780 the central-processing-unit (CPU) time is
about 20 minutes per energy when the width of one physi-
cal channel is included.

When the scattering energy is far from the physical
threshold region, the influence of the width is small and
accurate results are provided by the version of the old
code which neglects the width but includes transition po-
tentials. This code only requires about 20 sec of VAX
780 CPU time per energy. It is used where appropriate to
save computing time.

III. NUCLEON-NUCLEON SCATTERING RESULTS

A. The 'D2 channel

As shown in Ref. 5, when the b, width is ignored the
strong coupling of the 'D2 NN channel to the L'=0,
'S2 Nb, channel produces a large cusp in the phase shift
at inelastic threshold, TL ——630 MCV [in general, there is a
discontinuity in the (L'+1)th derivative at inelastic
threshold]. It was also shown that the cusp becomes a
broad smooth maximum when the width is included. Al-
though the transition potential then had to be omitted in
that work, an adequate fit was obtained within the uncer-
tainty of the experimental phase shifts at that time. Since
then there have txxn new data and the experimental phase
shift have changed significantly for Tz ~ 500 MeV. Also,
the results of different phase shift analyses are now much
closer than before. ' ' Consequently, the fitting require-

ments are now different and more stringent than they
were in Ref. 5.

Apart from using the new code, which allows transition
potentials when the isobar widths are taken into account,
the present model is more realistic because of the in-

clusion of the DI Nh state. This was omitted in Ref. 5

because of the higher effective threshold due to the angu-
lar momentum barrier. However, the one-pion-exchange
coupling strength to the two nucleon system is stronger
than that of the S2 partial wave. Its contribution turns
out to be crucial to obtaiIlillg the coIYect fit at TI, =800
MeV, as this is the region of the effective threshold for
the Nh system in a D wave.

The fit to experimental data requires the introduction
of two-pion-exchange range transition potentials, to
reduce the effect of the one-pion-exchange transition po-
tentials. The potentials resulting from one-pion exchange
and the fitted two-pion range terms are

V[NN('DI ) Nb( S—I )]

= —0.098m~VI(m~r)+0. 335r 'e

V[NN('DI) Nj(( DI)—]
=0.1176m„VI(m~r ) 1 25r —'e.

V [N 5( SI ) Nh( S2 )]= —0 079m—~ V. o (m ~r ),
where

Vo(x) =x 'e

VI(x) =(x '+3x +3x )e

We note that the effect of the diagonal Nb (5SI ) poten-
tial on the D2 amplitude is negligible and has been in-
cluded only for completeness. Other possible coupled
channels are unimportant because of high thresholds and
weak coupling.

The fit obtained for the phase shift and inelasticity is
shown in Figs. 1(a) and 1(b). The curve of rl('D2) shows
the effect of the coupling to the Nb, ( DI) channel. The
value continues to decrease sharply after 600 MeV instead
of leveling shortly after the 630-MeV threshold. The DI
coupling also causes the steep descent of 5('D2) to contin-
ue. These features conform to the data. As shown in
Figs. 1(a) and 1(b), the phase shift does not peak as much,
nor the 'inelasticity decrease as rapidly, near TI ——500
MeV as the experimental values. If the phase-shift analy-
ses are accurate this may indicate that there is some con-
tinuum, nonisobaric, pion production contributing signifi-
cantly below the X-5 threshold.

In the Argand plot, Fig. 2, it is seen that the model and
data both indicate the rapid counterclockwise motion typ-
ical of an inelastic resonance.

8. The F3 channel

The Fi channel can couple to Nb, in P(L'=1) and
F(L'=3) waves, to hb, in P, F, and H(L'=5) waves,
and to NX' in an I' wave. However, all the other one-
pion-exchange interactions are relatively small compared
to the coupling to Nb, (~PI). Furthermore, the other ef-
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e~4a
O

I } I fective thresholds are also higher so that one expects the
dominant effects to come from the Nb( P3) coupling.
However, for the higher energies in the range considered,
i.e., say, T~ & 700 MeV, and as confirmed below by our
ftt, the influence of extra channels can start to be impor-
tant. %e only use the one-pion-exchange interactions:

V[NN('F3) —Nb( P3)]=—0. 1288m Vz(m r),
V[NB( P3) Nh—('P3)]

= —0.079m~Vo(m„r)+0. 0063m V2(m r) .

5.00—

q ('DI)

4~~g (b)-

0.80—

0.80—
o

} t I t l t l t 1

R00 400 600 800 $000 $200

T, tMeV)

FIG. 1. (a) The 'D2 phase shift. The open triangles denote
the phase-shift analysis of Ref. 19. The open circles denote the
analysis of Ref. 21. The solid curve is the model prediction for
NN('D2) coupled to Xh('$2) and Xh('D2) with f-matrix ele-

f~~prN=19 3, fN~~()(g)=0 2, f~gv gg(D)= l &,

fNa(S), Na(S) 1 0 fN()(S), Nh(D)=fNa(D), Nk(D)=0 o I

inelasticity. The points and curve denote phase-shift solutions
and model prediction as in (a).

As in the 'Dz case, the diagonal potential has no influence
whatsoever. No two-pion-exchange interaction is needed.
The fit to new phase shifts, Fig. 3(a), is very good, a much
better fit than that of Ref. 5 or Ref. 22 at the peak and
beyond. For the inelasticity, Fig. 3(b), our result is too
elastic above 700 MeV, in the region at which there can be
some effect from higher-mass coupled channels. It is dif-
ficult at this point to predict which of these extra chan-
nels are going to be most important until we have more
inelastic experimental data available for these energies and
beyond. However, one is tempted to some speculation.
Looking at the different couplings, it turns out that the
most favored channels are Nb( F3) and Nb, ( F3). Their
couplings to NN( F3) are only one-half to one-third of
that to Nh( P3), but their influence increases with energy
since their thresholds are higher.

%e make a technical remark concerning this case. In
the region around TI ——500 MeV, the instability of the
numerical results with respect to the mass offset chosen

8('F, )
(deg)

0—

I } t } I } I } (

0

b~) b»

I

2
&,OO — 4—4 4-4-g ~

0.60—

}

200
}

400
I

600 800 OOOO }200

T (Me V)

FIG. 2. Argand plot for the 'D2 amplitude. The points and
solid curve are denoted as in Fig. 1(a). The filled circles on the
model denote the same energies as the open triangles. The
laborabory energies TL, are indicated in MeV.

FIG. 3. (a) The 'I'3 phase shift. The phase-shift analysis
points and solid curve are denoted as in Fig. 1(a). The model
curve corresponds to XX( F3) coupled to NA('I'3 } and

f~~~~ ——5.4, fz~~(), 2.72, f&q ~q=0. 3. (1)——The 'F3 inelastici-
ty. Points and curve are denoted as in (a).
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has made it necessary to increase the number of channels
and consequently the computing time to obtain enough
accuracY,

The Argand plot, Fig. 4, showers the counterclockwise
rotation of an inelastic resonance beginning at TL ——425
MeV although it is not as strong as that of the 'Dz case.

C. The 'Po channel

The Po nucleon-nucleon channel is of interest because
both the experimental data ' and some models ' indi-
cate that it, like the D2 and F3 channels, may be
resonant at low energies. The uncertainty is due to the
inelasticity which varies greatly in the phase-shift analyses
and depends on short-range coupling in the model. The
subject is discussed in Ref. 22 in which a model that has a
slight counterclockwise rotation in the Argand plot is
compared ~ith data. But that model, using the old code,
did not include the effect of transition potentials. The
width had to be taken into account as the inelastic struc-
ture, if it exists, is at TL g 630 MeV.

We first remark that in the fits of Refs. 5 and 22„
5('Po) is somewhat too large for TL ~210 MeV. This is
not sensitive to the channel coupling but represents a defi-
ciency in the Feshbach-Lomon nucleon-nucleon potential.
This is rectified here by using g~z /4@=13.0 but may
represent a deficiency of the semirelativistic two-pion po-
tential of Ref. 17.

The Nh( Po) channel is the only channel to which the
NN('Po) can couple which has both the lowest threshold
energy and the lowest I.' available. The one-pion transi-
tion potential has moderate strength:

V[NN( Po) —N4( Po)]

=0.1467m Vo(m r) —0.0733m V2(rn r) .

We do not use a two-pion range potential for this case.
No other Nb, channel can couple. Therefore, all the
remaining coupled channels have a higher threshold ener-

gy. We present, in Figs. 5(a) and 5(b), two fits which
differ only in the strength of coupling at the boundary.
The less strongly coupled, fN~ &a 0.——3, fits the phase pa-
rarneters of Ref. 19 well, and the other, f~~ ~a ——2.0, fits
the phase parameters of Ref. 21 [except for t) at TL )800
MeV which would require an assist from the b,h( Pc) and
NN'( Po) coupling].

Examining the Argand plots [Figs. 6(a) and 6(b)] we see
that the slope of the amplitude is significantly different
when the two different couplings are used. For the less
strongly coupled case it clearly rotates clockwise. Howev-
er, for the more strongly coupled case between rI ——580
and 800 MeV, the Argand plot is nearly straight and may
have a slightly counterclockwise rotation. The confirma-
tion of a possible structure in this partial wave awaits data
for TL ~600 MeV which is sensitive to il( Po). This
could be do/dQ (absolute) together with 3~x, Azz, and
D in the elastic data, or detailed single-pion production
data.

D. The P~- I"2 channel

While the older phase-shift analysis of this channel
gave no indication of structure (see Ref. 5), recent analy-
ses's 2' have indicated a rapid drop in i)( Pq ) for

l I & I i l ' I ' I

0—
8('p, )

(deg)
-go—

1.00—

q('P, )

g- h- - -h- h-4~p o

0.80-

0

0

I t I 1 I ) I i o

200 400 600 SOO )000 )200

TL (MeV)

FIG. 4. Argand plot for the I'3 amplitude. Notation as in
Fig. 2. f-matrix parameters as in Fig. 3(a).

FIG. 5. (a) The Po phase shift. The points denote phase-
shift solutions as in Fig. 1(a). The solid and dash-dot curves are
the model predictions for NN( Po) coupled to Nh( P&). The
solid curve corresponds to f&~ zN =25.0, fN& ~q= —0.3,
fN~ ~q 0.2. The dash-dot c——ur—ve corresponds to
f~N~N =26.0. fNw, vs= 2.o f~~,~~= o2 (b) The —'Po-
inelasticity. Points and curves are denoted as in (a).
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nels using Eq. (31) of Ref. 5. It turns out that the result-

ing potentials provide too much coupling. As the
boundary coupling has little effect on P waves at low en-

ergy, the way to get a fit to experimental data is to cancel
some of the one-pion-exchange effect with two-pion-
exchange contributions of opposite sign. %'e have found
as the adequate final potentials, including the one-pion-
exchange terms obtained as indicated above:

V[NN( P2) Nb—(P)]

0 0—68m. „V2(m r)+1.65r 'e

V [NN( Fi) Nh—(P)]

0 0—762. m Vz(m„r)+1.3r 'e

V[NN( Pi) Nb, (F—)]

=0.154m V2(m r) 3 5r—'.e

V[NN( F2)—Nb, (F)]

=0.116m V2(m r) 2 Or —'e . ™~.

20—
8('p, )

(deg}
IO—

l t I f I ] I j l ] I

(a)
~—4

0

QQ — 4 h 4—Q—0—0—D
0

FIG. 6. (a) Argand plot for the 'Po amplitude. Notation as
in Fig. 2. The model corresponds to f(((N ~~ ——25.0,
f~gv((, =0.3, f~g ~a ——0.2. (b} Argand plo——t for the 'Pp alil-

plitude. Notation as in Fig. 2. The model corresponds to
fxxzN=26. 0~fNxna= —2 0~fwawa= —0 2.

Tl & 600MeV and a decreasing 5( Pz) for TL & 800 MeV
(Refs. 19 and 21) or even for TL &600 MeV (Ref. 20).
We note that the model of Ref. 5 was forced to produce
these features for T~ ~650 MeV in order to fit the lower-
energy data. %e now show that these features persist
with our more realistic model and that a resonance is
predicted in the vicinity of 1000 MeV.

First, we realize that, apart from the Nb( P2) channel
considered in Ref. 5, other channels have important one-
pion-exchange transition potentials to the P2- F2 XX
channel. In particular, Nb. ( P2), Nb, ( Fz), and Nh( F2)
are of some significance. It is possible to combine the ef-
fects of the two P-wave or the two F wave isobar chan--

I I I I I l t I 1 I

200 400 600 800 1000 &200

TL (MeV)

FIG. 7. (a) The P2 phase shift. The points and curve denote
phase-shift solutions as in Fig. l(a). The open squares denote
the single-energy phase-shift analysis SP85 of Ref. 20. The
solid curve is the model prediction for XX( P2) coupled to
XX( F2) (via the NÃ tensor potential) and to Xh( ' F2) and
N~("P2) frr =1 73 fpr.= —0.9 .f~w~(r(= —2. 1»
frNa(r(=0 8 frr =40 0 fFnra(r(=fFwa(r( =f~~(r(,N~(r(
=f„a(r( Qa(p( 0.0, f~a(p( ~(((r( 0. l. (b) The —P2 ine——lasticity.
The points and curve are denoted as in (a).
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With this choice we get a good fit to 5( P2), rl( Pq), by
tuning f .. . , ,, with f .. . ,, ,

correlated, to
2 2 2

give the low-energy 5( Pi) values. The results are shown
in Figs. 7 and 8. As in Ref. 5, the 5( Fz) fit is poor and is
significant for L =3. In Figs. 9(a) and 9(b) we represent
the coupling parameter e2 and the mixing angle $2 given
by the model. The fit for e2 is reasonable.

The Argand plot for the Pz complex phase, Fig. 10,
shows the counterclockwise behavior of an inelastic reso-
nance from TL, & 800 MeV.
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E. Comments on the 'So and 3S~- D~ channels

The complex models required for the 'So and Si- Di
channels will be the subject of a forthcoming paper, 2

which will also consider the effect of interior quark
states. '9' However, a few remarks of interest may be
made now.

Because the NN('So) couples only to the Nh system in

the Do channel, it is important to consider the coupling
to the b,h and NN'(1440) systems in spite of their
greater threshold energy. In both of the latter systems
there is coupling to the 'So state whose effective threshold
is not far above that of the Nb, ( Do) channel. The resul-
tant fit to the elastic nucleon-nucleon scattering data
presented in Ref. 5 is quite good.

In that fit the b, width is included in the Nb, ( Do)
channel (whose threshold is in the experimental region)
and consequently the transition potential to that channel

0—

$(deg)
(b)

l ( I a I s-20
0 200 400 600 800 )000 )200

TL (MeV)

FIG. 9. (a) The J =2 coupling parameter e2. Notation as in

Fig. 7(a). (b) The mixing angle Pq predicted by the model as a
function of the energy.

) QQ — 4—dh.—ci4-Aa4 —cg—gix I
q('F, ) 0

(b)
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FIG. 8. (a) The I'2 phase shift. The points and curve are
denoted as in Fig. 7{a). (b) The E2 inelasticity. The points and
curve are denoted as in Fig. 7(a).

FIG. 10. Argand plot for the P2 amplitude. Notation as in
Figs. 2 and 7{a). The corresponding energies are made explicit.
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is ignored. The transition potentials to the b,b( So) and
XN'('So) channels are included. Estimates of the inelas-

ticity to the latter two channels near TL ——800 MeV were
made later by ignoring the transition potentials and suit-
ably modifying the boundary coupling. This showed that
the two-pion production generated by these channels ex-
ceeded the data by two orders of magnitude. Subsequent
work with the old code showed that one could modify
the short-range coupling to the two-pion channels so as to
agree with the experimental production limit.

We now find similar effects with the new code, in
which the comparison with both the low-energy pion pro-
duction and the elastic-scattering phase shifts can be
made consistently. The distortion of the phase shifts by
the width of the higher-mass channels is substantial, in
addition to the effect on the inelasticity parameter. In the
forthcoming paper we will consider the sensitivity of the
projections to higher energy (and the six-quark reso-
nances) to the choice of boundary couplings and of QCD
models.

The S~- Di nucleon-nucleon system is particularly
complex. Although isospin conservation forbids any Xh
channel, the hh( S, ), hb, ( Di ), b,h( Di ), and NE'( Si )

channels can all be expected to have significant roles. The
b,b, ( Di ) has a particularly strong one-pion-exchange cou-

pling and cannot, therefore, be ignored compared to the
lower effective threshold bb, ( Si) and NN'( Si). The
bb( Di) must also be included because of its important
role in the deuteron elastic magnetic form factor. ~7

The large 6 magnetic moment and the opposing, spin and
orbital angular momentum alignments of the Di and D,
b, b, states have important consequences for that form fac-
tor. The consequences of various balances between the
coupling to the four isobar channels mentioned, for both
the deuteron ' and the six-quark resonances, ' will be
discussed. * In particular, total coupling strength to the
b,b ( Di ) state is strongly restricted by deuteron data.

IV. CONCLUSIONS

We have constructed realistic models for nucleon-
nucleon scattering partial waves at intermediate energies
by using meson-exchange potentials and short-range,
energy-independent boundary conditions with explicit
coupling to the low orbital angular momentum Xh, hh,
and NX (1440) channels. They provide good descrip-
tions of the physics of all the nucleon-nucleon channels
that are nontrivial for TL (1 GeV. The spreading of the
threshold effects by the Breit-Wigner mass distributions
of the isobars is very important in fitting the data, as is
the large scale energy dependence due to the one-pion
range transition potentials. As before, the characteristic
increase of attraction (or decrease of repulsion) below
threshold, followed by a sharp decrease in the phase shift
and a minimum in inelasticity above threshold, is im-
portant in fitting the physical data. This critical behavior
is not obtained by including the coupling to intermediate
states in the derivation of an adiabatic nucleon-nucleon
potential. ' The best way to get an accurate representa-
tion of this energy dependence is to explicitly couple
channels using potential (and boundary condition) ma-
trices.

~e»ve reinvestigated the '~o, 'P2-'+2, 'D2, and 'F3
two-nucleon systems with transition potentials and width
simultaneously taken into account, and with extra isobar
channels where indicated. These more realistic models
provide improved fits to the analyzed phase parame-
ters' ' (some of which have changed significantly from
those available during the preparation of Ref. 5). The re-
sults confirm the coupled-channel nature of the 'D2 and

F3 structures. There is no need to attribute these struc-
tures to exotic six-quark states, nor does such a model
describe the data well. '

Confirmation of the existence of the previously inferred
structure in the I'0 channel ' ' is shown to require
more experimental information on the inelasticity param-
eter. That parameter determines the short-range coupling
strength which, in turn, determines the structure. A pre-
vious prediction of coupled-channel structure in the P2
channel, near TL, ——800 MeV, is confirmed, and is close
to that indicated by the recent phase-shift analyses. '

The present method allows us to develop improved
models for the 'So systein and examine the consistency
with the measured two-pion production cross section at
TL ——800 MeV (Ref. 26). The S~- D~ model is being ex-
tended to be consistent with deuteron properties, including
the sensitive magnetic from factor. Both of these,
together with the improved 'D2 system model, will pro-
vide a more reliable extrapolation of these phase parame-
ters to the region where six-quark f-matrix poles affect
these states. The size of these effects will be more closely
predicted.

The improved models for all of the nucleon-nucleon
partial waves enable more reliable predictions of the mag-
nitude of observable effects produced by the six-quark f
poles, as these depend on interference between the
resonant and nonresonant states. ' The better extrapola-
tion to higher energies will, in general, help identify the
most sensitive experiments for accurate phase-shift analy-
ses.

An important advantage of the present calculation over
that of Ref. 5 is that it predicts the S-matrix elements for
the production of isobars as a function of the isobar mass.
One can then predict, through the subsequent decay of the
isobars, the observable distributions in the XXm and
XN~nfinal states. ' .We plan to do this in collaboration
with the authors of Ref. 1. The comparison with produc-
tion data will further restrict our coupled-channel models.
The relative strength of coupling to different isobar chan-
nels is often poorly determined by comparison with the
elastic data, but is very sensitive to production data.
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