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It is shown that gauge-theory strings can alter the nature of a cosmic phase transition. An oth-
erwise first-order transition is converted to a smooth one and supercooling is precluded. String
configurations with the full symmetry group is not restored in the core play an important role in

this phenomenon.

Bubbles of true vacuum nucleate on strings by a real-time evolution rather

than quantum tunneling, and then begin to grow at the speed of light. Implications for cosmology
are discussed, and conditions needed to produce the observed smooth Universe are derived.

Many interesting consequences of grand-unified-theory
(GUT) vortices' in cosmology have been studied.?”> The
nature of a phase transition in GUT’s has been shown to
have profound implications for the evolution of the
Universe.® The role of SU(5) monopoles in a first-order
cosmic phase transition has been investigated by
Steinhardt’ and by Hosotani.® In this paper I will show
that if certain general conditions are satisfied, vortices can
prevent supercooling in a cosmic phase transition. I shall
consider a general grand-unified model involving two or
more stages of symmetry breaking. Vortices, also referred
to as strings in the following, are supposed to arise at some
early stage and supercooling can potentially occur at one
of the later stages of symmetry breaking. The two scalar
fields, viz., the one involved in the vortex configuration and
the one that signals the first-order transition, called X and
¢ in the following, have mutual polynomial coupling terms
consistent with renormalizability. The coefficients of the
coupling terms are chosen to maintain the mass hierarchy.
It will be shown that in some of the vortex sectors, the
hierarchy arrangement can break down in the interior of
the vortex and {¢) can be forced to become as large as (X).
This is sufficient to cause {¢) to evolve into a configuration
of lower energy without recourse to tunneling. Such a pro-
cess may be referred to as a real-time rollover from a false
vacuum to the true vacuum. The entire scenario is possi-
ble in the SO(10) GUT model

50(10) = SU(s) 2% SUG)xSUR)xU(1)

M,

o SU(3)XU(1)EM y (1
where M=10'® GeV, M,=10" GeV, M3=10> GeV, and
126, etc., refer to representations of spin(10), the covering
group of SO(10). (This breaking scheme has been pro-
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posed® in the context of galaxy formation.) Also, aside
from details of the mechanism, the process is completely
analogous to seeding in a supersaturated or a supercooled
system. The conclusions here have no direct relevance to
the inflationary models.

Let us first consider the conditions needed to ensure that
(¢) becomes large in the vortex core. A typical Ansatz for
a vortex formed in the breaking of a group G to a subgroup
H | consists of %!

(49 (r,0) =L gLFLE) @
2e r
with L(0)=—14+0(?) and L =0(exp(—2ir)) as
r— o00;{Ay), (A4,), {4,) =0, and

0(r,8)=r(rIM ) , 3)

with F(0)=0 and f— fo+O(exp(—&r)) as r— oo,
Here A and £ are constants, K is a generator in G, and M
takes values in the representation of G to which X belongs.
If foMo=(X)o is a nontrivial minimum of V(X) then we
choose

M (8) =exp(FiK0)o M, , 4)

where o signifies the action of the group appropriate to the
representation to which X belongs.

If another scalar ¢ signals the further breaking
H,— H, by acquiring a vacuum expectation value
(¢)o=goSo, and if it couples to the vortex, energy con-
siderations dictate the Ansatz

(o (r,0) =g (r)s(o) , (5)
S(0) =exp(+iK0)oS, , ©)

with (¢) approaching O or goSo at r =oo depending on
whether H, is unbroken or broken.
We shall assume biquadratic coupling terms between ¢
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and X,
V(X,¢) =c TrXpXp+c, TrX2e?

+c3(TrX9)?+cs TrX? Tro? | @)

where Tr means contraction of all group indices. In gen-
eral, terms linear and cubic in each of the fields may also
exist, but they may not be possible for a general choice of
representations for X and ¢.

If we now substitute the above Ansatz in the energy ex-
pression

E@ =[x 3 Te D +V @ +V Xl , ®

we find the gauge-field contribution to be [L(r)g(r)/r]?
thus improving the stability of the g =0 minimum. As for
V(X,¢), first consider the biquadratic terms in (7). The
cy’s have been arranged to make its contribution vanish
when (¢) =g¢So and (X) =foM,, as per the hierarchy re-
quirement. We now find that this term continues to vanish
in the presence of the 6-dependent Ansdtze. Because of
the identical similarity transformations (4) and (6), the 8
dependence disappears when traces are taken. If ¢ and X
were in such representations as to permit coupling terms
cubic and linear in the fields, hierarchy arrangement will
indeed break down in the core of the string.

But even in the case of purely biquadratic terms, other
possibilities exist. Vortices are formed as defect lines
through a chaotic process during a phase transition. We
do not expect them all to form the simplest Ansatz. The
key to a vortex configuration playing a nontrivial role dur-
ing subsequent supercooling is the scalar-field Ansatz re-
quiring more than one independent radial function. This
happens when the chosen M, has a piece carrying no K
charge and gives rise to a 8-independent term in (4). The
general Ansatz should then be written as

0r,0)=q, (M, +q(r)M,(6) , 9

in which ¢, g, both go to f as r — oo, but for regularity
at the origin, we need ¢,(0) =0 whereas dg,/dr(0) =0.
One then finds that q,;(0)#0 and thus G remains broken
in the core. A simple SO(3) example is lucidly described
in Ref. 11. It has also been shown'? that such string con-
figurations behave like superconducting wires and could
produce intriguing astrophysical effects. The details of
setting up an Ansatz such as (9) will be discussed in a
separate publication.
(¢ could remain as in (5) or be modified to

(q))(r,G) =p|(r)S1 +p2(r)Sz(9) s

with appropriate behaviors for p; and p,. Now a hierar-
chy arrangement made with M and S breaks down near
the origin and the interaction between the two scalars
becomes nontrivial. If the ¢;’s are such as to make
8%V (X,0)/8¢> <0 for X=q,(0)M and p,=0, {¢) will ac-
Juire values of the same order as {X) in the core of the vor-
tex.

I shall now demonstrate the mechanism involved in the
real-time rollover. We shall be concerned only with r
greater than some typical r¢, which is meant to be a radius
at which g;=¢,=f and if {(¢) is as in (10), p,(r), p,(r)
are the same function g(r), so that the hierarchy arrange-

(10)
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ment is in place, but g(ro)~fo and falls off with radius
over a characteristic length much longer than that of <X).
We shall assume the problem to be cylindrically sym-
metric and 2+ 1 dimensional. Ignoring the z direction and
including time dependence, we write the Lagrangian for g
as

2
Lg=27rf0 rdr|—

2| _ VT(g)

ot or

gg]2+_1_

a1
yT =Z'~g +—3L'g3+-§—(m2+AT2)g2--§I%T4+ Vo .
Here, m*>0, y<0, | y| ~m. T is the temperature in the
same units as m, and V7 is a typical effective potential for
a scalar field at nonzero temperature,!? to leading order
in T. A turns out to be a dimensionless constant between 1
and 10 in a typical GUT; N(T) accounts for the number
of particle species present at 7. Because y <0 and
m?2> 0, such a potential typically has two minima: one at
g =0 and the other at some g > 0. These will be referred
to as g; and g, respectively. V>0 makes V7 (g,) =0 at
T=0. Let T be the critical temperature at which
VT(g,) = VT(gz) It is convenient to define
(o/8)mP=(m?+ AT*)/2=(1/31)(¥*/5) and for small
variations AT around T, e=4AT AT /om*~AT/T,,.
Finally, rescaling t — mt, r — mer, and g— g/me, we
find

14 =—g2(g—1)2+zsg (12)

41
and the equation satisfied by g is

62g azg
at a2 - 3% 6g B o-g2+—(1+s)g 0.
(13)

For T'> T, we assume an essentially time-independent
solution approaching go=g(r=o0)=0 as r— oo, It
changes only adiabatically as V7 itself changes. As T
drops below T, a solution with g. =g, becomes energeti-
cally favorable; but in the absence of a vortex, a transition
to such a configuration can come about only via quantum
tunneling. However, in some region near the vortex, g(r)
passes through the value g,. The question then is whether
this region can begin to grow in such a way that the con-
figuration evolves into one with g.=g,. We answer this
in two parts, first asking whether a solution with ge. =g,
exists for T < T, i.e., for € <0, and if not, what kind of
time dependence sets in at the point when no time-
independent solution can be found.

To answer the first question, we look at the equivalent
problem of a point particle moving in a potential — V' with
time T=r. This potential has two maxima x; and x, (cor-
responding to g; and g,). The particle is described by the
equation

&x dx __ d(=V (&)
FER dx ’

The initial condition at 7 =100 is a large value x(zy) and
a large negative dx/d (7). The particle receives a big
kick at 7o and the question is whether the particle will
shoot over the hump at x; but then take infinite time to
reach x;. If the particle does clear the hump at x, at suffi-

(14)
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ciently small 7, the dissipative term (1/7)(dx/d ) will
still be effective and can, in principle, just exactly dissipate
the excess potential energy and all the kinetic energy. The
simultaneous nonlinear equations resulting from descretiz-
ing r in the time-independent part of (15) were solved us-
ing the IMSL routine zsPow.'* Initial trial configurations
with all g; =0 for grid points with large » were provided to
ZSPOW to implement Newton’s method. For o between
0.1 and 1.0, solutions with ge =0 were found for
eZ —0.08. For & more negative, ZSPOW does generate
configurations similar in values to the solutions found ear-
lier, but declares that no solution could be found close to
the given trial. (See Fig. 1.) The configuration generated
for ¢ less than the critical value is labeled unstable. In
such a case, of course, a solution is always found when a
trial with all g; =g, for large r is provided. The large
value of g near the origin was arbitrarily chosen to be 10 at
ro=0.1 in m, =1 units. Recalling that e~AT /T, and in
fact AT /T < &/2 for ¥*> 30°/8, we conclude that soon
after T reaches T, the g. =0 solution ceases to exist.
The critical value of & was also determined for ro=0.01,
0.05, and 0.1, g(r¢) =5, 10, 15, 25, and 40, and ¢=0.12,
0.6, and 0.90. For all the possible combinations of these
input values, the critical value of ¢ stays between —0.07
and —0.09. The persistence of this value can be explained
by analytic arguments.'>

The second part of the question is whether such a con-
figuration is unstable toward evolving into one with
g« =g>. This was checked numerically by finding a time-
dependent solution to (13) using the IMSL routine DPDES.
The initial data used were an unstable configuration
(e < =0.08) found by ZSPOW and initial time derivative
zero. Figure 2 shows an example. The abscissa being
descretized into steps of 0.5 makes the curves jagged in
places. An initial period of real-time rollover is seen to be
followed by “vacuum burning,” in which a wall interpolat-
ing between the two minima moves out, asymptotically ap-
proaching the speed of light. The latter is the same pro-
cess that follows quantum tunneling.'®

I shall now turn to the implications of such a
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FIG. 1. Looking for time-independent solutions.

phenomenon for cosmology. Assuming a Robertson-
Walker metric for a spatially flat universe, we have, for
the Hubble “constant,”

”2

s 4
30N(T’)T +Vo

2
=8
3

(=T
HY ()= T G , (15)

where N(T) accounts for the number of particle species.
In our case Vo~m*~T.* We first note that AT ~0.1T,
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required for the onset of rollover translates to AtH (T;)
~0.1, 7 being the coordinate time. The additional time
~100m ¢, needed for completing rollover (Fig. 2) is a frac-
tion (~100m~/G ) of H ™!, insignificant in GUT models.
This justifies the conclusion that rollover occurs soon after
T is reached. The important question to ask then is
whether regions with string-induced transition can fill the
whole Universe. Since strings are extended objects and the
vacuum bubbles expand at the speed of light, we expect
that this should be possible as long as we have sufficient
string length per horizon volume. For the volume occupied
by true vacuum bubbles originating on strings, we write
the formula

dt’
R(t")

where R is the scale factor of the Robertson-Walker
metric, and ¢, is a time at which the initial phase of roll-
over has been completed and the bubbles have begun to ex-
pand at the speed of light. /(z) is a relevant length yet to
be specified. We want to find what fraction of the horizon
volume 43(¢) comes to be occupied by Vz(¢). Strings are
expected to mutually interact and continuously reduce
their length®!7 so two cases of interest are when this in-
teraction process has really not started and when this pro-
cess has reduced strings essentially to a horizon length of
string per horizon volume. Thus

1) =d ()[R @)/R (t0)1?h3 ()

or [ (1) =h(t), where d(t¢) is the length per unit volume of
string formed originally in a phase transition at time #¢. It
is a good estimate? to take d(t9) =T ~%(t9). Then with Q
denoting the relative abundance of the vortices capable of
serving as seeds, we get two alternative formulas for large
t:

Ve(@)=nl(t)|R(t)

[TG)—T@)]1?

Ve(t)/h3(t) =nQ e , amn
TG )’
Ve (t)/h3(t) =20 Ter (18)
= .
B H_ZT(I) ﬂ__l/_o_ 17272
Te | N Tt

In deriving these, pure radiation-dominated evolution [ig-
noring Vg in (15)] has been assumed above T, and pure
de Sitter [ignoring the T* term in (15)] evolution below

, (16)
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T Also, we have Ho*=(87/3)GV,. No estimate is
available for Q but we do not expect it to be smaller than 1
by many orders of magnitude. In such a case, from (17)
we see that if strings are as abundant as when they were
formed, the string-induced bubbles will easily fill the
Universe. In (18), T(¢;)/T=0.9 and the second term in
the denominator grows exponentially small at large ¢.
Also we have ignored string loops, which unlike the long
strings are expected to persist.'® Spherical bubbles of a
true vacuum can originate on them, and this contribution
will complement the above estimate. Even so, Q as well as
other overall factors of order unity may prevent the right-
hand side (RHS) from becoming 1. If too many regions of
size Ho ! escape string bubbles, the resulting Universe
will be inhomogeneous and unacceptable. On the other
hand, if the phase transition precipitated by vortices is suc-
cessfully completed, it will leave no characteristic signa-
ture in the cosmic evolution.

For strings occurring at T'(z9) =10'® GeV such as in the
model (1), the time they take to deplete to one per horizon
volume is estimated” to be 10 ™27 sec, the temperature then
being 10'" GeV. Hence (17) would be relevant if such
strings prevented supercooling at 10'* GeV and (18)
would be relevant if they prevented supercooling during
the electroweak transition at 103 GeV. Of course, for su-
percooling to occur at the Weinberg-Salam scale, the
relevant Higgs boson cannot be in 10 but will have to be in
some tensor representation.

In summary, vortices can serve as seeds particularly if
the full symmetry group is not restored in their cores and if
the couplings between the scalars make 82V (X,9)/8¢%> < 0
in the core. Vortex-induced bubbles of a true vacuum fill
the Universe if the RHS’s of (17) and (18), complemented
by the contribution of string loops, become 1. Two impor-
tant requirements for this to happen are that there be a
sufficient abundance of strings that can serve as seeds and
Y*Z30om?*/8 so that the rollover is completed in a time
short compared to Hy .
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