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%e examine the phase structure and stability of self-interacting scalar field theories at finite
temperature. In the large-N limit, the renormalized theory exhibits an intrinsic instability which

becomes manifest at high temperature contrary to recent claims in the literature.

In a previous paper, ' we studied the phase structure and
stability of the large-N version of a self-interacting scalar
field theory, A,o@ . We found two different situations de-

pending on the sign of the bare coupling constant A,o. For a
positive bare coupling constant the theory is "trivial, "
which means that the theory can only be defined by intro-
ducing an ultraviolet cutoff, and the low-energy field
theory describes a free field as the cutoff is removed. For
finite cutoff, the theory describes a weakly interacting sca-
lar field with the usual phase structure at zero and finite
temperature.

To maintain a finite low-energy effective coupling in the
"continuum" limit, the theory must be renormalized.
However, renormalization can only be achieved by choos-
ing a negative bare coupling constant which introduces the
intrinsic instability of the theory. There is no ground state
for the renormalized theory. For a certain range of pa-
rameters, we observed the existence of a metastable
ground state which was stabilized, in the large-N limit, by
a large tunneling barrier. It was subsequently argued that
the renormalized theory could be consistently defined us-

ing this metastable ground state as the vacuum state for a
certain range of couplings.

In a recent paper, the authors claim to be able to ex-
tend the range of renormalized couplings allowed for the
system at finite temperature. This result contradicts our
previous work' where we found that even the metastable
phase, which can exist at low temperature, will disappear
at sufficiently high temperature. In this piper, we will

clarify our previous results for the theory at finite tem-
perature and show that the conclusions reached in Ref. 3
result from an incorrect application of thermodynamics.

The theory we will study is the large-N version of the
O(W)-symmetric 104 theory which is described by the
Lagrangian

z- —,' (a„c)(a c ) ——,' I,'(e') ——,
' ~.(e')',

where @(x) is an W-component real scalar field with po
and lt,o being the bare mass and couphng constant, respec-
tively. %'e consider the standard large-N limit where

po O(1) and ko O(1/N) as W ~. In this large-%
limit, the theory is exactly solvable both at zero and finite
temperature. It describes a system of weakly interacting
bosons whose mass is determined dynamically as a func-
tion of the temperature. In Ref. l, we used variational
methods to study the ground-state structure of the theory

for both positive and negative bare coupling. At zero tem-
perature, the vacuum energy is minimized as a function of
the dynamical mass and field vacuum expectation 4, . A
system in thermodynamic equilibrium at given tempera-
ture is described by minimizing the Helmholtz free energy
F, instead of the internal energy E as used by the authors
of Ref. 3. The two energies differ at a finite temperature
T by the entropy of the system through the relation
F F. —TS. We will recall our results for the finite-
temperature properties of A,4 theory and compare them to
the results claimed in Ref. 3.

The Helmholtz free energy F is defined for a system at a
finite temperature by

exp( —PF ) -Zo-tr(exp( —PH )), (2)

where P 1/kT. For a system of noninteracting massive
bosons, the Helmholtz free energy is given by

F,-—(I/P) ln(Z, )
re

V(2tr) '„d3k [—,
'

co + (1/P) In(1 —e ")), (3)

where tok (k2+m2)'t2 for particles of mass m. Using
the notation of Ref. 1 [e.g. , Eq. (5.4)], we define the "ki-
netic free energy" density as

Z»(m ) -W. ——,' m'&e')„,
where Wo is the free energy density, 8'0 Fo/V, and

&4 &o -t (e (0) p( —PHo))/Z

-(2tt) ' d'k +(I/cok)[exp(Peak) —I j
2NIt

We have found the kinetic free energy Sop(m ) to be a con-
venient quantity as it depends only on the mass parameter
m even when the scalar field develops an expectation value
&@)&-@,. The Hartree-Fock free energy density is then
given by

IV,(m,e, ) -IC,(m)+&V(e)&, . (6)

A system in thermodynamic equilibrium is described by
minimizing this free energy as a function of m and @,.
This Hartree-Fock description is exact in the large-N
limit.

In contrast, the work reported in Ref. 3 is based on
minimizing the total internal energy of the thermodynamic
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system. To compare with our results, we can define the "kinetic energy" density,

Kop(m) Uop 2m (e )p

where the internal energy density is given by Uo =Eo/V and

F.o a —ln(Zo) =tr(Hoex p( pH—,) )/Z, =F,+ Tg, .

The con«»on b«ween Kp(m) and Kp(m) is the source of the error in Ref. 3. A direct calculation using Fq. (3) and Eq.
(5) [Eqs. (5.1), (5.2), and (5.5) of Ref. I] gives

Kop(m) =(2x) '„d'k[[2 rok+(I/p)ln(1 —e "')]——,'m2[(I/2 ror)+(I/d'or, )(ep "—I) ']} (8a)

Kop(m) (2x) d k j[—,
' cok+rok(e "—I) '] ——,'m [(I/2rok)+(I/rok)(e ""—I) ']] .

Clearly,

Klpp(rn ) Kop(rn ) Ulp WQ T$'p ) ()

Note that Kp(m) satisfies the derivative relation [Eq.
(5.5) of Ref. I], namely,

8 2Kpp(m') ——,
' m'tl z(e')op,

as can be seen from the direct calculation. As noted by
Ref. 3, Kp(m ) does not satisfy this relation.

As a simple example of the variational calculation and a
demonstration of the difference between Ref. I and Ref. 3,
we consider a free bosonic field theory where the potential
energy is simply given by the mass term V(e) —,

'
p e .

The free energy density is then given by

W„(m) -K„(m)+,'~'(e').p(m) . (i0)

Using the relation of Eq. (9), we can find the condition for
the minimum value for the free energy,

el 2Wp(m) -8 2Kop(m)+ —,
' p'tl 2(e')op

= ——'(tl (e'& )(m' —p') -0, (11)

which gives m p =mb, „, as expected for a free theory.
Inserting m2 p2 into Eq. (10) also gives the correct value
of the free energy for a particle of mass p, as in Eq. (3).
Applying this same procedure to the expression for the
internal energy as in Ref. 3 does not yield the correct
answer for n except at zero temperature where the two
approaches coincide. Minimizing the internal energy does

I

not describe a system in thermal equilibrium, even a free
system.

The systematic treatment of the interacting case was
presented in Sec. V of Ref. 1. We review this study and
compare our results to those of Ref. 3. We consider the
Roe theory as defined by Eq. (I). The free energy density
can be computed using Eqs. (5.4)-(5.6) of Ref. I or by us-

ing Eqs. (6), (8a), (9), and (5) above. The expectation
value of e 2 can be expressed in the form

(e'&p-(N/16rr')A (N/16m —)m ln(eA /m )

+ (NT'/24)F (m'/T'), (i 2)

where A is an ultraviolet cutoff, and F(x ) is the montoni-
cally decreasing function of x given in Ref. I which has the
behavior F (x ) I as x 0 and

F (x )-exp( —Wx)/v x as x

Kp(m ) is consistently obtained by integrating Eq. (9) [or
Eq. (5.5) of Ref. I] with the result

Kp(m) -(N/64rr )m In(e'i A /m )

+ (N/48 )T „dyy B~F(y ) . (13)~ m2jiT2

We note that this expression for Kp(m ) differs, by an in-
tegration constant, from that in Eq. (5.7) of Ref. 1. This
change will modify our subsequent expressions for the free
energy from those of Ref. I but does not modify any of the
physical conclusions. At large N, the free energy density
becomes

W, (m,e, ) =Kp(m )+(V(e)&,
=Kp(m )+—,

' ~.'(e, '+(e'&,)+—,' ~,(e,'+(e'&,)'

=(N/64rr ) 'In( ' 'A'/ )+(N/48)T, , dyy&, F(y)
+—'k {e +po /Ao+(N/161f )[A —m In(eA /m )]+(N/24)T F(m /T )] ——'po /k (i4)

The renormalized theory is defined as in Ref. I, and in the limit of infinite cutoff, the bare coupling constant vanishes,
0 . The free energy density can be expressed in terms of renormalized quantities in this limit [Eq. (5.13) of Ref. I]:

V,(m,e, ) = W, (m,e, )+—,'
p.,'/X,

,'m'(e, '~—~'/Z) „' m[ I~/—+—(N/i62)I { n'~e'/ )m]
—(N/48)T4,"m'/T2

(is)
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FIG. 1. The disappearance of the false vacuum as the tem-
perature increases beyond T,.

tures, the metastable phase exists as the minimum at finite
m . As the temperature is increased, this secondary
minimum disappears, and the metastable phase ceases to
exist. Only the minimum at zero mass survives and this
phase is unstable to decay to large values of @„seeEq.
(14). Hence we conclude that there is a limiting tempera-
ture beyond which a false vacuum solution ceases to exist.
The result is in direct contradiction to the physics con-
clusion of Ref. 3 which claimed a new phase structure
based on the false vacuum solution at high temperature.

This strange behavior of the renormalized theory can be
traced directly to the negative coupling constant. Since
the temperature dependence of the effective mass is pro-
portional to the coupling constant, we find that the effec-
tive mass decreases as the temperature increases. Hence
the system can become more ordered as the temperature
increases which is contrary to the usual expectations of
thermal systems. Finally, we remark that this strange
behavior is not a property of the "trivial" version of the
theory where the coupling constant remains positive.
Here, the usual thermal properties hold for the system,
and no limiting temperature exists within the range of
temperatures permitted by the presence of the physical
cutoff scale for the theory.

This form of the free energy density hides a basic instabili-

ty of the theory which occurs at large 4, for large but fi-
nite cutoff and ko & 0, but which is obvious from Eq. (14).
However, it is the temperature dependence of the free en-

ergy density which is directly related to the criticism of
Ref. 3. In Fig. 1, we present a plot of the free energy den-

sity as a function of the effective mass m for a range of
temperatures. Solutions to the renormalized gap equation
represent stationary points on this plot. At low tempera-
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