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The construction of sextic osciliators using Hill determinants [V. Singh, S. N. Biswas, and
K. Datta, Phys. Rev. D 1$, 1901 (1978)l fails for certain couplings [cf., e.g., R. N. Chaudhuri,
Phys. Rev. D 31, 2687 (1985)]. A simple explanation and a cure are found: The better choice of
the underlying ansatz is proved to give all the energy levels for any couplings.

I. INTRODUCTION

An interest in anharmonic oscillators is currently mo-
tivated by their phenomenological' as well as methodologi-
cal2 use. In the latter context, Singh, Biswas, and Datta3
have conjectured an analytic resummation of the divergent
perturbation series for the particular example

d l (I +1)+ +ar2+br"+cr E tit(r) —0 . (1.1)
dr2 r2

Unfortunately, as a number of authors have pointed
out, the construction ceases to be physical for b«0.
Such an anomaly is rather puzzling for a number of
reasons.

(i) The construction proceeds in full analogy with the
exactly solvable harmonic oscillator. In the wave function
tit(r ) specified by an infinite series

y(r ) -r'+'exp[ —(—,
' ar')' ——,

' pr2] g par'",
n 0

c -a', P -b/(2a'), (l.2)

the physical threshold and asymptotic behavior are fac-
tored out.

(ii) Formula (1.2) characterizes the sextic anharmonic-
ity as one of the simplest "next-to-solvable" interactions.
Indeed, an insertion of Eq. (1.2) makes the differential ra-
dial Schrodinger equation equivalent to the algebraic
three-term recurrences:

~nPn+ i
—

&nPn —CnPn- l -0,
a„-(2n+2i+ 3)(2n+ 2),
A„-(4n + 21 + 3 )P E, —

C„(4n+2l+ l)a +a —p

n Ol, . . . , p —i 0.
For any other polynomial anharmonicity (including the

quartic one), a similar procedure always leads to at least
four-term recurrences.

(iii) With respect to an explicit solvability of Eq. (1.3),

p. +i - ff leak

0

Ao

detP„, (1.4)

—Bg, n =0,1, . . . ,

C„

the Hill-determinant requirement ptv ~ ~ 0 or

det&tv 0, 1V»1 (1.5)

represents an extremely plausible secular equation. Com-
putationally, its reliability has been confirmed for a num-
ber of interactions.

(iv) The roots of Eq. (1.5) are physical for b )0 (Ref.
6) and manifestly unphysical for b «O. s It is difficult to
understand the reasons for such an asymmetry. 9

An immediate motivation of this paper lies in the recent
construction of explicit b«0 counterexamples. Indeed
these are the very interactions that are interesting from the
purely phenomenological point of view: The shape of po-
tentials varies between the single- and triple-well structure
[for b~ —(3ac)' and b ( —(3ac)', respectively],
while the double-well form appears for the negative values
of coupling a.

In essence, my comment has two parts. In the first one
(Secs. II and III), a short reevaluation of the solution of
Singh et aI. employs the standard theory of difference
equations. ' For b & 0, I reconfirm the reliability of Eq.
(1.5) and for b «0 one finds that the Hill-determinant
prescription leaves the binding energies entirely indeter-
minate in the limit X~ ~.

In the second part of the paper (Sec. IV), the idea of re-
moving the indeterminacy of energies is developed in de-

34 1224 Q~ 1986 The American Physica1 Society



COMMENTS

tail. Because of the introduction of a free parameter in

(1.2), I am able to derive Eq. (1.5) as a physical boundary
condition pertaining to a modified form of recurrences
(1.3). In the summary (Sec. V), I then emphasize that the
standard "derivation" of the Hill determinants as reflect-
ing some "truncation of recurrences" is misleading and
unable to specify a domain of validity of the eigenvalue
condition (1.5).

Combined with the asymptotic representations'

1.(x+) ) . . . () -~)(~+~—1) +I-(x+ a) 2x
, x&&l

(2.6)

II. THE METHOD OF SINGH et a/. , AND TAYLOR
COEFFICIENTS AS SOLUTIONS OF

A DIFFERENCE EQUATION

a — 2

3+2I+ P+2E +0
a2 n

n»1, (2.7)

the truncated Taylor series (2.5) gives
The solution (1.2)-(1.4) of the differential Schrodinger

equation (1.1) is physical at the origin: y(r )-r'+', r-0
Its asymptotic behavior is in general unphysical:

q„= q„, n» I, P&0 .
2a n

(2.S)

y(r)-d(exp( ,' a'r'—)+d,exp( ——,
' a2r4), r »1 . (2. 1)

At the physical energies E E~h„„ the dominant com-
ponent disappears and changes sign. " Thus, we have
d1

=d((Ephor,

) 0, i.e. ,

y(r) —exp( —
4 a2r4), E Ephor„r»1 (2.2)

Here, for the time being, the sign of c will be kept free,
a + va . Then, we may rewrite Eq. (1.3) in the two
possible nonequivalent forms:

qn+1 qn —
1 =Qnqn

r(i+ ,' n)r( ,'+—,' n)r—(r———,'+ —,
' n) ~

Q Q(~)
I-(1+—,'+ —,

'
)nr( 1+,'n)I (1+ ,'—n) 8agr —'

n 0, 1, . . . , sgna=+ 1 . (2.4)

In both these cases, an estimate Q„=O(I/vn ) is valid
and implies that

i q„+1 —q„1 i (& i q„ i, n » 1 .

Such a "smoothness property" motivates approximations
of the type

q„+ -q„+rn q„+ -, n»~m
~

.
d

dn

An explicit use of this change of sign is the main idea.
Formula (1.2) converts the differential equation (1.1)

into the difference equation (1.3) and, formally, we may
treat p„as a new representation of the wave function.
Indeed, we may choose po 1 as normalization and under-
stand p ~

=0 as a boundary condition "at the origin. " Let
us now complement it by an appropriate reinterpretation
of the asymptotic boundary conditions.

The analysis may be significantly simplified by chang-
ing variables p„q„:

a"2 "~ 21(v+ ,'n)—
1 5

pgf qpf ~ ] ~ ~ I y, n =0,1, . . . , l =
2 I + 4I (1+ 2 n)I Lt+ 2 n)

v = —,r+ (a —p2) .I 1

8a

(2.3)

After simple integration, we get an asymptotic estimate

q„=exp ~un, n&&1, P~O, (2.9)

compatible to Eq. (2.5). For P-O, a similar procedure
leads to the similar result

q„=exp , n»1, P=O .
4a n

(2.10)

x c(exp un +( 1) c2cxp

n »1 . (2.11)

At the point b 0, the symbol P is formally to be replaced
by the value of E/(4n ).

III. AN ANALYSIS OF THE PHYSICAL ASYMPTOTICS

In accord with the preceding comment on Ref. 3, one
may visualize y(r ) as a superposition of the two functions
1+1(r) and X (r) defined as summations (1.2) over the
even and odd indices, respectively. Their mutual asymp-
totic cancellation may characterize the physical behavior
(2.2).

In the present setting, we may employ the formula
(2.11) and write the general form of y(r) as a superposi-
tion of four terms

y(r) =c,g'++'(r)+c S'+ '(r)+c(Z' +'(r)
—c2Z' '(r), r»1, X' ——'(r) &0, (3.1)

~here the new superscript denotes the sign of a in the for-
Illlllas (2.3) an(i (2.9). Obviously, because of tllc rcspcc-
tive definitions, we may derive estimates of the type

One may conclude that in the n ~ asymptotic region,
the general solution of the difference equation for the Tay-
lor coefficients p„ is a superposition of the two linearly in-
dependent exponential components:

I"( ,' n+U—)
p I (—,

' n+ I)1 (—,
' n+r )
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g(+,s) g „2n+i+i p( & 2„4 & p„2)(r)

r

( ) g 4m+i+1( ~ 2)m ~ exp[(Pi a)~2~ ~ +O1.(m+1)

-exp(. )g[(& a r ) jm!+corrections)-exp( —,'a r + ), r»l . (3.2)

This is compatible with the form (2.1).
At the physical energies, the mutual cancellation of ex-

ponentials must be discussed separately in the following
two situations.

t

for b =0. In such a case, an estimate of the type

i'(r )-exp(+ —,' a'r')
[ciao(r""")+c20(r""")]

-exp( —,' a'r')O(r"""), r» I (3.5)

A. b&0

On an arbitrary level of precision 1+0(n """),we

may notice that Eq. (2.11), i.e.,

q -c exp Wn +(—I)"c exp — vn

n»I, P&0, (33)

represents in effect a single exponential. Indeed, the sec-
ond (sign-changing) term in (3.3) is exponentially smaller
than the first one. Without any loss of precision, it may
(and must) be incorporated in an error estimate (ct=—0).

In the light of Eq. (3.2), one may conclude that the
c2 0 general solution of recurrences (1.3) always speci-
fies an exponentially increasing function y(r). The only
possibility for y(r) to change sign at E E~h„, lies just in
the coefficient ci ci(E) in (3.3). Obviously, the zeros of
y(~) and c ~ (E ) coincide —the wave function has an
asymptotic node if and only if the energy satisfies the con-
dition ci(E) 0.

For sufficiently large index n, the zeros of ci(E) also
coincide with the zeros of p„p„(E)—this is obvious im-
mediately, e.g., for formula (2.3). Thus, one may con-
clude that E E~h„, if and only if Eq. (1.5) holds, at least
in the limit N c . Obviously, a use of a sufficiently
large but finite index N introduces a small error. Unfor-
tunately, in practice, we are doing the computations far
from the "real" asymptotic domain n»1 [e.g. , we do not
have n """»exp(—const' ), etc.]. Nevertheless, in
practical applications the convergence of Eq. (1.5) is usu-
ally fairly good. v

8. b~o.

Proceeding in full analogy with the preceding case, we

may ~rite

q„-ci 1+ +(—I)"c2 1—E „E
, n&&1

4(af n 4[a] n

(3.4)

shows that the sign of y(~) becomes indeterminate.
From Eq. (1.5), we would get merely ci ( —1) +'c2

+c2 or —c2, so that one of the exponentials in y(r)
remains unsuppressed for r ~. The wave function be-
comes manifestly unphysical in this case.

For b &0 and n»1, the exponential suppression will
now "swallow up" the coefficient ci in Eq. (2.11). Unfor-
tunately, the two dominant exponentials compensate each
other in the remaining part of asymptotic form (3.1). For
r ao, the difference between the physical and unphysical
asymptotic behaviors disappears.

In analogy with the similar results obtained in a slightly
different problem by Masson, we may try to replace Eq.
(1.5) by another condition obtainable, e.g., by an analytic
continuation or fixed-point expansion. This lies beyond
the scope of the present paper.

IV. THE MODIFIED EXPONENTIAL FACTOR

A. The choice of ~ave functions

We may notice that the indeterminate character of the
b «0 asymptotics of Sec. III B is in fact related merely to
the sign of P in (2.11). Vice versa, whenever we choose P
as a parameter independent of the coupling b, we may
hope for an improved behavior of the corresponding wave
functions.

Technically, the above-mentioned modification is ex-
tremely easy. When one denotes p b/(2a2) and assumes
that pWp in general, an insertion of (1.2) in (1.1) leads
merely to a slightly modified form of the recurrences
(1.3):

B„p„+i—A„p„—C,p„ i
—D„p„-2 0, n 0, 1, . . . . (4.1)

Here, D„D0=2a (p —p) is nonzero and the difference
equation (4.1) is in general of the third order. '

Of course, a transition to four-term recurrences does not
alter the general form of their solution (1.4). Indeed, the
initial cond1tlons p —) p —2 0 make this solut1on un1que,
with the explicit determinantal form

Ap

DI, Ck AI, —Bk, n 0, 1, . . . .
I (I+—', )po

Pn+1 4""(n+ I )!I.(n+ I+ ',)— (4.2)



1227

In the n ~ ~ asymptotic region, we may proceed in an
almost complete analogy with Sec. II. Indeed, (un-
changed) parametrization (2.3) gives the difference equa-
tions

q. +i —qn-i -Qnqn+&nq. z -~ (4.3)

q„exp Wn, n »I, sgnc + I .
+
2c

(4.4)

Now, the first nontrivial problem may be formulated as a
l

(p p—)I (n/2+ —I)I-((n+I)/2)1 ((n —1)/2+ r )
2m&vI {(n+1)/2+u)r(n/2)I (n/2+r —1)

= & /'+0(n '&'-), q, -q, -0, .-0,1, . . . ,
2Q n

containing Eq. (2.4) as a special case with P P. Along
the same lines, we may also obtain the extension of Eq.
(2.9),

necessity to find the third independent solution to the
four-term recurrences (4.1).

%ithout going into detail, ' me may notice that the
missing solutions of Eq. (4.1) may be parametrized via a
formula complementing Eq. (2.3):

El

P P q"
() 1 (4.S)

n!

The third independent reformulation of Eq. (4.1) is then
obtained:

2 2

q„—q„& — q„+corrections, n »1 . (4.6)
4a

Its asymptotic solution

q„-n(P'-P')l(4") n»1 (4.7)

represents the third independent asymptotic component of
the general solution of Eq. (4.1):

I r

p„- c)exp y Jn +(—1)"c2exp — y in
l~l

+c n'~ &' "' ' n&&1 y
—'(P+P)

p (I+ ,' n )I"(r—+2n ) —Jp
(4.S)

Fortunately, the third component becomes asymptotically
negligible compared to the preceding two terms. Thus, it
may be omitted from all the forthcoming formulas. We
may conclude that Eq. (2.11) remains valid in the present
case as well. The only difference lies in the modified inter-
pretation of the parameter P.

+corrections, n»1 . (4.10)

As a consequence, the oscillation theorem for y(r ), r
becomes again equivalent to the eigenvalue condition
c~(E) 0, i.e., up to a nonzero factor in (4.10), to the old
Hill-determinant condition pN+~ 0, %&&1. With the
new form of the corresponding matrix P„,we have

Ao —80

-0, N»1. (4.11)

This is our final equation —it defines the physical spec-

8. Formulation and proof of the new

Hill-determinant prescription

In our ansatz (1.2) with the free parameter P~P, let us
choose P such that y & 0:

P& P (4.9)

Then, the asymptotic formula (4.8) will become analogous
to Eq. (3.3):

r(u+ —,
' n)

'l (I+—,'n)1 (r+ —,'n) &2 (a~

trum of energies (exactly in the limit N ~).
Whenever b & 0, we may return to the old prescription

and, choosing P P & 0, reproduce precisely the algorithm
of Singh et al. Even in that case, a variation of P~P may
be employed for an acceleration of convergence. For the
"dangerous" couplings b «0, the condition (4.9) excludes
the former choice: The four-term recurrences cannot be
shortened to the three-term form within the framework of
the method of Hill determinants.

V. SUMMARY

We have found for the potential V(r) ar2+br4+cr6
and its bound states, that the compact form of re-
eurrences, for b «0, leads to an indeterminate character
of the asymptotic behavior of the wave functions y(r ) at
r ao. The Hill determinants may be used in the b &0
cases only.

We have also found that a less compact form of the
Hill-determinant reeurrenees corresponds to a variable
form of the asymptotics. As a consequence, an introduc-
tion of a free parameter in the basic ansatz for y(r ) may
restore the vahdity of the Hill-determinant secular equa-
tion. This result may probably be extended to the various
further potentials. In the present case, the condition of ap-
plicability of the Hill-determinant method is simple and
has a form of inequality (4.9).

In a broader methodical context, the transformation of
ordinary differential equation (1.1) into (a triplet of) an
equivalent difference equation fcf., e.g., Eqs. (4.3) and
(4.4)] proved to be a useful technical trick which simpli-
fies understanding the underlying mathematics. In this
setting, the essence of the method is almost trivial —we
solve the difference Schrodinger equation and impose the
physical "Hill-determinant" boundary conditions on p„ for
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