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Compactifications of Chem-Sirnons topological Lagrangians are discussed using tori and twisted

boundary conditions for the gauge fields.

The Chem-Simons term in three dimensions has been
extensively discussed in the literature. ' In odd dimensions
larger than three, Chem-Simons terms were derived in

Refs. 2 and 3 and, as in the three-dimensional case„ it
turns out that they are eligible to be a term in the La-
grangian at both the classical and quantum levels. 2 Here
we address ourselves to the question of what is the result of
a compactification of such terms from D 2n —1 to D 4
dimensions.

Given the general form of the Chem-Simons term~

(D 2n —1),

w2„ t ~n „dttr(AF, " ),
with

A A„')t,,dx",
F ,' F'„„),,dx" lt( d—x",

The theory is gauge invariant (including large gauge
transformations) only if

5

M

Compactifying in a five-dimensional torus with all
lengths equal to a, topological configurations of the gauge
fields appear naturally if one takes into account nontrivial
boundary conditions with gauge fields A, (x~ 0) and
A, (xtt a) (a,P 5, . . . ,D) equal only up to a gauge
transformation. These topological configurations can be
given by

A, (xtt a) QttA, (xtt 0),
where Qt( Qp(X5, . . . , xt(, . . . , X9) (meaning that 0&
does not depend on xp) represents the gauge transforma-
tion. In the case of gauge fields

F, t[F+(t —1)A ),
it is obvious that a trivial compactification to four dimen-
sions in which all "internal'* components A„a 5,6, . . . ,
2n —1 are set equal to zero results in no contribution to
the four-dimensional Lagrangian. However, if A, has a
nontrivial vacuum expectation value, contributions to the
four-dimensional theory can appear. Since CP is violated
by Chem-Simons terms, it is natural to expect CP viola-
tion in four dimensions; namely, we expect to end up with
a four-dimensional B term with a coefficient that is related
to the Chem-Simons coefficient in high dimensions. Be-
cause of the quantization condition imposed on the latter,
we can also expect a quantized FF coefficient if the vacu-
um expectation value of the gauge field is also quantized.

Let us start with a D 9 gauge theory with a Chern-
Simons term

w9 tr[AF" —
6 (2F A +AF A F+AFA F )

+ ,', (3F'A'+ 2A'FA—'F+AFA'F)

—,'4 A F+ —„', A ] . (1)

Since tr(rt) [t/5!(2n)s] f we is an integer, we can write
the Lagrangian

r, -m'tr(F„-g")
5

, w9' "'e„- „.„-, tv-tl, 2, . . . ,9 . (2)~' 5! 2n' PI . .P9s 1 7 s ~

n, A. -n, (A. -ta.)n, '

Following 't Hooft, we choose a topological configura-
tion in which only the gauge field in an Abelian subgroup
of the gauge group G acquires a (twisted) vacuum expec-
tation value. In this case, terms in w9 with more than one
A, vanish. The only nonvanishing term is

A OFO FO Fa Fb tr(gagb)&attyeaPtrkP

p, v, A, ,p 1, . . . , 4

a,P, y, b, cr 5, . . . ,9,
where A, is the vacuum expectation value of the (Abelian)
gauge field. From the antisymmetric properties of e we
can easily check that all other terms vanish.

A symmetric solution in the extra dimensions with vacu-
um expectation value ( F,tt j const, a,p 5,6, . . . , 9, can
be given by

A5 -(X6+x7)e,
A,' -(x7+xs)e,
A7 (Xs+X9)8

Aso -(»+»)e,
A,o -(x,+x,)t. .

Gauge transformations A, that link the fields at x 0
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and x, a are given by (4) and (5):
Ea (xg+x9)C

Og e
la (x9+x5)C

Q6 e
Ia (x5+x6)C07 e

—ia (x6+X7)8
8

(6)

x6-a, x7, xs, x9)l, we have

&s(x6-a) &6(xs -0)+(0,0),
+(xs -a,x6 a)

06(xs a) Qs(x6 0)+(0,0) .

Comparing these expressions and using (6) we get

2xÃ2
7

a
—ia (x7+xg) C09~e

Solution (5) is not the only one that gives ) F ~
const for

the internal components. But for our purposes the other
possibilities with

~
F

~
const give the same final result.

A quantization condition for C emerges if we also con-
sider charged matter fields that may satisfy similar
boundary conditions:

e(x.-a) -n.~(x.- 0) .

Since %' must be well defined at the edges [e.g., (xs a,

where iV2 is an integer (number of twists).
The reduction to four dimensions can be done by in-

tegrating out the five compactified dimensions, using the
twisted configuration described above for the vacuum ex-
pectation value of the internal components A, and assum-
ing B,A„O (F„, 0). The kinetic term gives

dx dx M tr(F„-+"") M a tr(F„„F"")+A,
where p, v 1, . . . ,4, A-M 8 a, and Msas 1/g2, with
the g coupling constant. The Chem-Simons term is re-
duced to

(+F4) 2&~ &P vlPaPybe

Tcs „dxs dx9tr(F„„F„p)F,pF„g A
M' " 5!(2z)' 5!(2x)'2

(8)

where p, v,A, ,p 1, . . . , 4 and a,P, y, 8,o 5, . . . , 9. Count-
ing all the possible permutations of indices, we end up with

and, with 8 given by (7),

Tcs -2nW a""'tr(F„„F„p),W -W, W2' .1

16

The reduced (four-dimensional) Lagrangian is

2
tr(F„,F"")+A+2m'N tr(F„„F"') .

g' 16

It is interesting to note that the FF term does not depend
on a and has the right coefficient to assure CP conserva-
tion, despite the fact that this symmetry is not present in

X9.
An extension of this compactification to other (odd) di-

mensions is straightforward. For D 2n —1 space-time
dimensions and I 2n —5 internal dimensions, the non-

vanishing contribution of the Chem-Simon term is given

by

T„- " tr(WF" ')1

M' n!(2~)"

with p /M 2'. After compactification [using an ex-
tension of (5) and (6)l we have roughly

~F" '- F' xaF"-'- F„„F~"e"-'
40 space- internal

time indices indices

All possible permutatioos of indices must be taken into ac-
count. [The factors to be considered are (2n —1) ' for
n —1 F —,

' F„,dx"A dx', 2n —5 because a (in A, ) can be
any one of 2n —5 possibilities, ,'(n —1)!—to pick up
g —3F's out of n —I F's, and 2" for each F,p,Fp, .l
After integrating over the 2n —5 internal dimensions, ~e

get
(2n —5)

Tcs 2m& tr(F„„F"").
16

To have an integer coefficient for FF we need

5
2 —— integer,

which has essentially only one solution: n 5(D 9). We
can also have particular solutions with more twists, that
can cancel n or else, with luck, we can have X~/n

integer, where N ~, coming from quantization of the
Chem-Simons coefficient has, a priori, nothing to do with
n But ex. cluding these unnatural solutions, D 9 is sin-

gled out as the unique possibility for a CP-conserving
four-dimensional theory coming from the reduction of an
odd-dimension theory with Chem-Simons term and twist-
ed gauge fields. Topological and quantum-mechanical re-
quirements provide a quantization mechanism for the 8
term and, in the particular case of D 9, they even con-
spire to give the CP-conserving four-dimensional theory.
Finally, I point out that, a priori, we could expect addi-
tional contributions to the four-dimensional 8 term coming
from Chem-Simons terms other than ro2„~. In particu-
lar, for D 9, we would have Chem-Simons terms rostr2
and co&tr . But if we compactify following the same pro-
cedures used with ro9, these extra terms would only
contribute with additional integers to be added to 2 —5/n
and all the above conclusions concerning CP conservation
~ould remain unchanged.
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