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Radiative isotropic cosmologies with extra dimensions
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We solve Einstein’s equations in an n-dimensional vacuum with the simplest Ansatz leading to a

Friedmann-Robertson-Walker (FRW) four-dimensional space-time.

We show that the FRW

model must be of radiation. For the open models the extra dimensions contract as a result of
cosmological evolution. For flat and closed models they contract only when there is one extra di-

mension.

Kaluza-Klein theories have been studied recently as an
attractive way to unify all gauge interactions with gravity.
In these theories gauge symmetries are seen as coordinate
transformations on an extra-dimensional space. One of
the current problems facing these theories is to explain
why the extra-dimensional space is so small, since other-
wise it would be observed. One usually assumes that the
extra-dimensional space is a compact space with the topol-
ogy of S(»—4). Such compactification may arise naturally
if the space-time has n =11 dimensions and there is a su-
pergravity field of seven indices.> But another mech-
anism is to explain the compactification as a result of
cosmological evolution in a universe satisfying n-dimen-
sional Einstein equations.® Although the ultimate reason
for the compactification and the size of the extra space, of
the scale of the Planck length, may have a quantum ori-
gin,*"7 it is of interest to derive classical solutions undergo-
ing compactification.

The first simple cosmological model in which the extra
dimensions contract as a result of cosmological evolution
was proposed by Chodos and Detweiler.> Their model was
a generalization of the anisotropic Kasner solution in an
n-dimensional vacuum. In this solution one can have three
of the space dimensions expanding (the observable
universe), while the extra dimensions contract. This solu-
tion considerably improves the usual four-dimensional
Kasner solution, which has contraction in one dimension
and does not describe the real Universe, without need of
introducing matter fields. The expansion of the Universe
can then be seen as a consequence of matter sources. To-
wards the initial cosmological singularity the Universe
however, looks very different from today; it has essentially
the dimensions of the extra space.

There is now extensive literature dealing with different
aspects of higher-dimensional cosmologies. Some authors
explain entropy production®’ and inflation'®!! as a result
of the contraction of the extra space. A great number of
exact cosmological solutions of Einstein equations with
different equations of state and different symmetries, in-
cluding or not a cosmological constant, has been found
with five'2~!* dimensions and, also, with an arbitrary num-
ber of dimensions.!*~'®* Most solutions present a time-
varying extra-dimensional radius, although some solutions
have been found with a constant extra-dimensional radius
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and expanding three-dimensional space,'®?® which is con-

sistent with the lack of variability of gauge coupling with
time.

Exact cosmological solutions have also been found for
the bosonic part of supergravity in n =11 dimensions?'~%’
using mainly the Freund and Rubin ansatz.! Some solu-
tions have also a constant extra-dimensional radius.

Here we consider a set of classical homogeneous cosmo-
logical models which give expanding three-dimensional
isotropic spaces, that is, Friedmann-Robertson-Walker
(FRW) models, which are solutions of an n-dimensional
vacuum. We will see that all vacuum solutions reproduce
a FRW model with a radiative perfect fluid. For other
equations of state other Ansdtze are needed. The extra di-
mensions contract as a result of cosmological evolution in
certain cases only, depending on the number of extra di-
mensions and the type of FRW model.

We look for solutions to Einstein’s equations of the form

d
ds2=(ds2)pkw+Zai(t)(dxi)z , (1)
i=]

where (ds?)grw is the line element of the FRW metrics in
four dimensions, and d is the number of extra dimensions
(d =n—4). That is, we assume a homogeneous space-
time with a diagonal extra metric whose coefficients de-
pend on ¢ only. This is the simplest ansatz which reduces
to the FRW models in four dimensions.

The vacuum Einstein’s equations in n dimensions reduce
to the following set of equations:
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where R (¢) is the radius of the FRW universe, ¢ is the
speed of light, K is a constant characterizing the different
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models (K =0 flat, K = — 1 open, K =1 closed), and D (z)
is a function defined as

d
D*(t) =TT a:(t) .

=1

From (2¢) and (2d) it is easy to see that

2w &
ai=D", Y pi=1, 3)
i=1
where p; are constants. Equations (2a) and (2b) may be
recognized as Einstein’s equations in four dimensions
where the right-hand side of these equations are the com-
ponents of a source tensor T (a,b =0,1,2,3) with a trace
.32
D d
(3] i-En

i=-1

4)

We may identify such a tensor with the energy-momentum
tensor of a perfect fluid 7, with an equation of state
p=up (u €[0,1]), whose trace is

T'=Q@u—1)p. 5)

Equating (4) and (5) and taking into account (2a) and
(2b) one can see that the equations are only compatible
when u =+, which corresponds to a radiative perfect fluid.
Thus, from (4),

d
2 pi=1. (6)
i=1

Therefore, the Ansatz (1) and the n-dimensional vacuum

field equations are compatible with a four-dimensional

FRW model for a radiative perfect fluid only. This was

also noted in five dimensions by Davidson, Sonnenschein,

and Vozmediano."3
Now we can determine the function D(¢). The final
solution is

d
dst= (dsZ)FRw'i" 2

=]

d 4
Y pi=3 p‘=1,

i=] i=]

2p;
c(4—2K1) 2
I0) ] (@x)?,

@)

where A is a constant which appears in the radius of the
radiative universe:

RG)=c(4r —Kt)'V2, 4>0 . 8)

The constant 4 can be related to the Hubble constant
Hy and age of the Universe to (Weinberg?®):

A “'2Kto(1 —'Hoto)(l _‘211()10)_1 .

The relations (7) for the parameters p; imply that for
d > 3 at least one of the p; is negative, unless one takes the
trivial solution p; =1, p,=—--- =p, =0 (this is the only
solution for d =1 and d =2) which implies a (d —1)-
dimensional Euclidean space.

We can now analyze the behavior of the extra dimen-
sions for the three different FRW models.

(i) Flat (K =0). By redefining the extra coordinates we
obtain

a; -t—p' s (9)
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so that the extra space behaves as the Kasner solution.
This means that, except for d =1 or the trivial Euclidean
solution, at least one of the extra dimensions expands with
time for d =3, since one of the p; is negative. Therefore,
in this model there is no compactification as a result of
time evolution when d=3. The five-dimensional case
(d =1), which admits extra dimensional contraction, cor-
responds to the Chodos and Detweiler? solution for an iso-
tropic three-dimensional space.

(ii) Open (K = —1). In this case from (7) and (8) we
have

a; =[(4+2¢)%/ (4t +13))7 . 10)

Thus, when 1 — oo, all g; go to some constants, and
when 1— 0, a;— (4/t)”. When p; >0, a;— o, and
when p; <0, a;— 0. Therefore, for open models the extra
dimensions evolve with time towards a constant value, so
that eventually they will get smaller than the four-dimen-
sional FRW model. Near the cosmological singularity
some of the extra dimensions become larger than the
four-dimensional space-time, and this should have cosmo-
logical implications.

(iii) Closed (K =1). Now we have from (7) and (8)

a; =104 —21)*/(4r — 1)1 . an

According to the sign of p; we have the following.

For p; > 0 near the cosmological singularity (z — 0) the
corresponding extra dimension goes to infinity. After-
wards, a; decreases with time, and when the radius of
the Universe gets its maximum (¢ =4/2), a;=0. For
t > A/2, a; increases with time approaching infinity when
t— A.

For p; <0, the corresponding a; starts from zero at the
cosmological singularity and increases towards infinity
when R(:) reaches its maximum. After this time,
t =A/2, it decreases to zero when t — A.

Thus, as a result of dynamical evolution, only the open
FRW models contract all the extra dimensions indepen-
dently of their number. The sizes of the extra dimensions
become nonzero constants and one can adjust the parame-
ters to fit cosmological observations. Near the cosmologi-
cal singularity some of the extra dimensions become dom-
inant.

For the flat models there is no compactification unless
one takes d =1 or the trivial case p,=1 and p,=---
=pq=0.

For the closed model there is no compactification either,
unless d =1 or the trivial case as before. However, one
may envisage a situation in which all extra dimensions are
much smaller than the radius R (¢), some of them growing
and the others decreasing. The dimensions that contract
go to zero radius. Before they reach zero radius, quantum
effects should be considered.

Some points suggested by the above analysis are the fol-
lowing. We see that a radiative four-dimensional FRW
model can be obtained as a consequence of an n-
dimensional vacuum. FRW models with other equations
of state do not allow the simplest Ansarz (1) and they may
be obtained introducing an n-dimensional energy-mo-
mentum tensor or perhaps vacuum with a more complicat-
ed Ansatz. Another source of matter may come from
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quantum effects due to the contracted extra dimensions as
follows. Our calculation has ignored any dependence on
the extra coordinates; it corresponds to the zero mode of
the Fourier expansion in terms of the extra coordinates.
The higher-order modes can be interpreted in the four-
dimensional picture as an infinite tower of massive parti-
cles whose masses are quantized in terms of the inverse
size of the extra space. When this size is small those mas-
sive particles may produce an important effect.

Another quantum effect may come from the Casimir
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potential associated with the size of the extra space,*’
which will make the extra dimensions contract to a size on
the order of the Planck length.
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