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Stability of solutions to the classical SU(3) Yang-Mills theory with external sources
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Stability of solutions to the classical SU(3) Yang-Mills theory with prescribed static sources is
studied. It was found before that there existed a number of bifurcating solutions to the SU(3)
gauge grou. p equations. The stability of some of these was considered before by showing explicitly
their instability. For the rest it is only said that they share stability properties of solutions at the
bifurcation point. These solutions are shown here to be absolutely stable under small radial oscil-
lations. The possible consequences of the result are discussed.

There are two outstanding (and interwoven) problems
in the study of the classical Yang-Mills (YM) equations in
the presence of static external sources. ' One of them ad-
dresses the issue of screening of classical color and stems
from the belief that color confinement is inherent to QCD,
the renormalizable quantum gauge theory of the unbroken
local symmetry group SU(3) of color. The other interest-
ing development is aimed at the problem of stability of
classical solutions. '

In this paper we focus on the latter issue and first sketch
the most important results of earlier works s A spherical-
ly symmetric ansatz with the underlying SU(3) gauge
symmetry
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The effective Hamiltonian can be written as
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gives rise to a system of nonlinear coupled ordinary dif-
ferential equations through
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where J" (p,0,0,0). Here we are using a compact matrix
notation for all objects. Also,
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When the well-known constraint (Gauss's law) is satisfied the energy takes the form
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By taking a b'-shell source form

q ~ (r) g b(r —r ~ ) ("monopole" ) (7a)

q2(r) Rb(r —r2) ("quadrupole" ) (7b)

we find a variety of soiutionss which could lead to SU(2)
solutions' by taking the limit R ~ 0. Above some critical
values of Q and R some of the solutions to (3) bifurcate;
the energy for such solutions is presented in Fig. 1.

To understand the stability properties of static solutions
for the YM equations me use results of a general analysis
done by lackiw and Rossi. ' They pointed out that for a
general nonlinear theory
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FIG. l. Energy of bifurcating solutions to the SU(3) Yang-
Mills equations.
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Q, (R 12) 11.24,
and the corresponding energy is

8,(Q„12) 87.64;

(i3)

(14)

and from (9) we conclude that R is a measure of how far
from the bifurcating point the solutions are calculated.

Since c in (12) can have either sign and the zero-
eigenvalue solution is proportional to c, roo ~c, the con-
clusion is that the energy difference rises as (Q —Q, )'iI
and that the mean energy rises as Q

—Q, . Also, it is con-
cluded that the upper-branch solutions are unstable. '

In order to determine stability properties of the lower-
branch solutions we calculate the oscillation equations

where y is a normalized zero eigenmode

[-~'+U'(y, )1~-0
and p, supports a static solution

[-~'+U'(y, )]y, -0 .

The expression (9) for the bifurcating energy is ob-
tained when p in (8) is replaced by p, +sbp, and c is calcu-
lated from
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For one group of bifurcating solutions6 for which the en-

ergy is plotted in Fig. 1 we found the critical value of Q to
be

TABLE I. Stability analysis for the bifurcating solutions:
"monopole" (7a).

(g —g, )'" Ratio

12.0
14.0
16.0
18.0
20.0
22.0
24,0

0.66
4.59

10.39
17.58
25.93
35.30
45.58

0.18
1.33
3.09
5.32
7.97

10.97
14.29

0.3
0.3
0.3
0.3
0.3
0.3
0.3

able (finite-energy) solutions had been found this would
have implied that nonzero-frequency modes must be inves-
tigated. Reliability of our calculation is higher at this
point since the asymptotic behavior of fl 2 and 6 is much
easier to control than the corresponding solutions to the
original (unperturbed) system.

As a check of the stability formahsm we calculate the
bifurcating energy (9) for the SU(3) solutions.

We found that the ratio of the energy difference be-
tween the upper and the lower branch was stable and equal
to 0.3, as could be seen from Table I. This is in complete
agreement with Ref. 1. The same is also true for the
genuine SU(3) solutions generated by R in (7b), but for
which the ratio is equal to 0.5 (Table II).

In this case
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which follow from A A+i'IA and E E+8E. The ra-
dial equations to be solved are

8,(12,R, ) 18.74 .

The absence of normalizable solutions to (15) signals
stability of the lower-branch solutions. Qur conclusion is
based on the assumption that radially symmetric oscilla-
tions are relevant. Before considering other oscillatory
modes one should bear in mind that the situation here is
rather complicated by the fact that perturbative methods
do not apply here. ' At the same time it is not quite clear
how much physical reality one is able to extract from such
investigations even envisaging importance of stability
properties of classical solutions within the context of their
quantum role.

TABLE II. Stability analysis for the bifurcating solutions:
"quadrupole" (7b).

together with (R —R,)'" Ratio

as r~oand r~ .
There is an additional problem in solving the above

equations since "coefficients" f1 1 and 6 satisfy static
equations and they are not kno%'n 1n thc1r closed analyt1c
form. Fortunately, a numerical code COLSYS we were
using was able to handle this difficulty.

After careful investigation we found no normalizable
sollltlons to tile Rllove equatloIls. If 1101ltl lvlRl nol'Illallz-
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