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We examine a simple Cheshire Cat model in two dimensions, demonstrating that its properties are
independent of boundaries by solving for its complete spectrum. This calculation is used to eluci-
date the more difficult four-dimensional calculations of chiral bag spectra. We also discuss the rela-
tionship of the Cheshire Cat boundary conditions to bosonization and the chiral anomaly.

I. INTRODUCTION

There are several quantum field theories in two dimen-
sions which can be described using fermion or boson de-
grees of freedom. Nadkarni, Nielsen, and Zahed! have
shown that one can employ different descriptions in dif-
ferent regions of spacetime, if one can also discover the
proper boundary conditions to relate the quantum fields
in different regions. The boundaries one places between
different descriptions are completely arbitrary, and should
not affect any observable. This disappearance of the par-
titions from the observables has led to the name “Cheshire
Cat” model (CCM).

Why are CCM’s of interest? In the theories one knows
how to bosonize, partial bosonization merely complicates
calculations, as we shall see. These theories teach one
how to perform calculations within a CCM, however.
The ultimate utility of partial bosonization may be found
in theories which cannot be exactly solved, but which are
most easily treated at different distance scales using dif-
ferent degrees of freedom. In trying to describe baryons
with quantum chromodynamics (QCD) one encounters
the necessity of dealing with a quantum field theory non-
perturbatively. No methods exist yet which are adequate
to this task, which has led to the development of many
models. The bag model? allows one to model confinement
without spoiling asymptotic freedom; however, it confines
everything, making it difficult to include the effects of
light mesonic degrees of freedom. The topological
chiral-soliton model,’ motivated by an expansion of QCD
in inverse powers of the number of colors, requires an in-
finite number of mesons and complete knowledge of their
interactions to describe the short-distance behavior of
baryons. It is natural to seek some description which em-
ploys quark and gluon degrees of freedom only at short
distance, where they can be treated perturbatively, and
which at long distances employs mesonic degrees of free-
dom, where only the lightest mesons are relevant. The
chiral bag model* provides a simple version of such a
theory, a marriage of the bag and topological chiral soli-
ton models.

It is not clear how various momentum scales can be
translated into a separation of the “inner” and “outer” re-
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gions of hadrons but if such a separation is possible, the
descriptions inside and outside must at least in principle
be equivalent. In practice the bag would then form a
division of convenience, and one would choose a scale
which allows the best approximate treatment of both re-
gions (see the last reference in Ref. 4). This leads us to
seek a Cheshire Cat description of hadrons.

Perhaps the most relevant two-dimensional model to
examine is QCD,, but we will be far less ambitious. We
will study what may be the simplest model of which one
can conceive, free particles confined to a cavity. The cav-
ity is used to avoid the infrared problems associated with
massless bosons in two dimensions.> We will first demon-
strate the equivalence between free massless bosons and
free massless fermions by developing a complete map be-
tween the two Fock spaces. We then divide the cavity
into two regions and study the energy levels of the resul-
tant CCM. We show that these energy levels are indepen-
dent of the position of the partition, provided a suitable
subtraction of the Casimir energy is made.

II. FREE MASSLESS FERMIONS
AND FREE MASSLESS BOSONS

Consider a system of massless fermions confined to a
box. This confinement is most easily accomplished by let-
ting the mass of the fermions become infinite outside of
the box. The appropriate action is

S= [dx [ dri(x,0[id—Mx)(x,1)

with
M(x)=m9(|x|——R), m-—soo . (2.1)
In the limit of infinite m the equations of motion are
idP(x,t)=0, |x| <R,
v ! (2.2)

(1iy"W(£R)=0.

With the choices yo=0,, = —i03, ¥s=Yo¥1=03, the
eigenmodes are
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where
2n+1)mw
w"=—4R——", Uu=t—x, v=t+x . (2-3)

We have used the light-cone variables, u and v, for later
convenience. Note that the free Dirac equation is solved
by any spinor whose upper component depends only on u
and whose lower component depends only on v. The fer-
mion field operator can then be expanded as

Ylu,v)= i [Xn(u,v)a, +§,,(u,v)b:] ,

n=0
with
(8180} = (04,00} =8mns Xn=Unsbn=V_n_y. (2.4
The vacuum |0) satisfies

a,|0)=b,]0)=0. (2.5)

Finite observables are easily defined in terms of
normal-ordered products of these field operators. The
current operators are

Ju)=Ne[$(x)y, p(x)] . (2.6)

Here Ny indicates normal ordering with respect to the
above one-body fermion operators, as distinguished from
boson normal ordering which will also be used later. The
unrenormalized energy-momentum tensor, apart from the
step-function mass term, can be written in Sugawara
form® in terms of these currents

T, = %(Zjﬂjv—gwjaj") . 2.7

We are now in a position to bosonize the theory by em-
ploying the well-known relationships’

, 1 v
Ju= ‘/1—7_6;41’8 ¢ ’

_ (2.8)
Myyy=—ZM cos(Vard) .

Here €,, is the completely antisymmetric tensor with
€y1=—€10=1, and ¢ is the boson field operator. Z is a
constant which depends on the manner in which normal
ordering is implemented. For our purpose Z can be ig-
nored, because M is either zero or infinite. Using (2.7)
and (2.8) we obtain, for the unrenormalized energy,

2 2
_ 1186 | 1]9¢
E_fdx[z ar | T2 ax]

——ZM(x)cos(\/T‘lnrqS)l . (2.9)

From this we can obtain the equations of motion for ¢:

Oe(x,t)=0,
(2.10)

#(tR,)=n, V7T (ns=0,%1,...).

b

We can arbitrarily fix ¢(—R )=0, and obtain
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Knp(x,t)= [Zwl,,R sin[w,(x +R)]e —ient
with
o, =T
"7 2R
and
mvT X
Om(x)= 3 1+—§ (2.11)

The first set of modes are the standard boson excitations,
while the second are simple topological solitons.
The boson field operator can be expanded as

0 ~‘/"
d(x,1)=3 [Kka(x,t), +K,',(x,t)aI]+N———1r 1+ ,
n=1 2 R
with
[ama:‘nlzsnm . (2.12)

Here N is a number operator, which will later be seen to
be the fermion number operator. The boson Fock space is
built on a set of ground states defined by the relationships

N|n)=n|n) (n=0,+1,...),
(2.13)
am |n)=0.

Once again finite observables are expressed in terms of
normal-ordered products of these operators.

Returning to the current bosonization relation (2.8), we
note that ¢(x,t) can also be expanded in terms of fermion
one-body operators:

ptx,0)=V7 [ dy Ne[9(p,0000,0] .

Using this equation it is straightforward to confirm that

(2.14)

N=3 (a}an—bib,),
m =0

(2.15)
[1

ap={—
n

172
n—1
E bmay _m
m=0

< (.t
+ 2 (arham +n _brrlbm +n)

m=0

We see that N is indeed the fermion number operator.
One can verify that this last expression obeys the proper
commutation relations.

Given these identities one can easily map the boson
Fock space onto the fermion Fock space. In particular,
one will find that |n) corresponds to the ground state
with fermion number n. Creating a meson corresponds to
exciting fermions and/or antifermions. This means that
excited “baryons” can also be thought of as baryon plus
meson states. A single boson always consists of states
with a single excited fermion, but an m boson excitation
consists of states with anywhere from one to m excited
fermions and/or antifermions.
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Finally, it is possible to find an expression for the fer-
mion field operator in terms of the boson field operator.?
To do so, divide the boson field operator into two parts,
one depending on u only and one on v only. This division
is accomplished using

s =3 [Enwan+Ewal],

n=1
1/2
—iw,(u—R)
’

1
2w,R

1
Ep(u)= 2

sa0)= 3 [Lawla, +E5 )],

n=1

Vi u 1 _
~ V' v 1
¢2(U)——N 4 1+R +‘/; ’

where w, =nm/2R and [N,p]=i.

The variable conjugate to N,p, has been introduced be-
cause the fermion field operator must not commute with
the fermion-number operator. The constant in front of p
is fixed by insisting that [N,)]=—1. With the above

definitions, we see that
B(u,v)=¢1(u)—dy(v)+d (u)—d ,(v) . 2.17)

We will not outline the calculation, but the Dirac equation
and boundary conditions are then satisfied by

(2.18)

12 (2.16)
¢ (u)=—1— 1 o "ion(VHR)
" 2 | 2w0,R ’
|
o | 172\ Np{expl —iVamd,(u)]} exp[ —iVard (u)]
Ylu,v)= 4R —iNp{exp[ —iVand,(v)]} exp[ —iVard ,(v)]

Here N indicates normal ordering with respect to the bo-
son operators. This expression also satisfies the correct
anticommutation relations.

This completes our discussion of the equivalence be-
tween the two theories. Using the above operator identi-
ties one can readily demonstrate the equivalence of any
observable in the two descriptions.

III. THE CHESHIRE CAT MODEL

To develop a CCM one need only introduce a partition
into the box, at an arbitrary point y, and use different
descriptions on each side of the partition. It would be at-
tractive if one could derive the proper boundary condi-
tions simply by changing variables in part of the box, us-
ing (2.18), for example. However, we shall see that this
does not work. Instead, we will assume that the chiral
bag boundary conditions are correct, and demonstrate that
the correct spectrum results.

The chiral bag boundary conditions, for a boundary
with normal n,, are

{expliV/4md(y,t)ys]+in)iy,t)=0,
n-3d(y,t)=Va(y,Onysp(y,t) .

The fermion current on the right-hand side of the second
expression must be regulated in some fashion. It appears
as if the second boundary condition will follow directly
from bosonization, as it is one component of the current
bosonization relations (2.18); and it is indeed obeyed by
the bosonized fermion field operator (2.8). However, the
bosonized field operator does not obey the first boundary
condition. This makes perfect sense because it can know
nothing about what direction one has chosen the normal
to the partition to point. The boundary conditions depend
on which side of the partition one has decided to place the
fermions; but, the fermion field operator in (2.18) is com-
pletely independent of this choice. In fact, one can verify

3.1

I

by substitution that it obeys a boundary condition with
n,=(—i,0) (Ref. 9). Thus, the fact that the second
boundary condition is obeyed by the fermion field opera-
tor, which acts on the whole of space, need not indicate it
will be obeyed by the operator, which acts on only one
side of the partition.

It is possible to find a bosonized fermion operator
which obeys both of the above boundary conditions by
changing the constant in front of 7 in expression (2.18);
however, this spoils the fermion anticommutation rela-
tions. This will in turn yield an incorrect energy momen-
tum tensor, because the Sugawara form of this tensor (2.7)
is derived using the anticommutation relations. We have
not been able to discover a Mandelstam-type bosonization
operator which satisfies all of the equations of motion and
reproduces the correct anticommutation relations.

We will show the equivalence of this CCM to the free
fermion/boson model by calculating the complete spec-
trum. First, let us ask what the states of the theory are?
If we have a CCM, specifying the boson part of the state
should completely determine the state. That is to say,
given ¢(x,t), the fermion part of the state is completely
determined. In fact, as the partition is moved from one
side of the box to the other, we should be able to watch a
boson state evolve into a fermion state, with the
correspondence found in the last section. This means that
for a fixed y, the individual fermion excitations have no
meaning. One cannot excite a fermion mode without
changing the boson state and thereby changing the fer-
mion modes.

To make these points explicit, let us first calculate the
energy of a ground state with fermion number N. The
first problem we face is determining how to handle the
boundary conditions (3.1), which are operator boundary
conditions. At present we will ignore this difficulty and
follow a procedure often used in calculations in four di-
mensions. It goes as follows.

Treat ¢(x,t) as if it were a ¢ number field, while ¥(x,?)
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is treated as a quantum field. Erect a partition at y, with
fermions to the left and bosons to the right. The equa-
tions of motion are given by (3.1) and

igY(x,t)=0 (—R<x<y),
(14+in)P(—R)=0,
—D0O¢(x,t)=0 (y<x<R),
#(R)=NVT.

(3.2)

Analytically continue into the left region, assuming with
foreknowledge that ¢(—R)=0. As we did in the last sec-
tion, divide ¢(x,¢) into two pieces, such that

o(x,t)=¢(u)—¢,(v) . (3.3)

Then, if 1 satisfies the Dirac equation and boundary con-

ditions when ¢ =0, the solution to the above equations is
exp[ —iVard(u)] 0

Ylx, )= 0 expl —iVaTdy(v)] [P0

= exp{ —iV[d(x,t)ys+d1(u)+2(0) ]} Po(x,1) .
(3.4)

Since ¥y satisfies the equations when ¢ =0, it will have

an expansion similar to (2.4), but now
]

Nel¢')p)]=7 lim (9" +e0,90 —¢,0)]

exp[4iVTed'¢,(y)]

T
Poly +€,1), 0

1 .
=+ lim
e—~0t

=N2[¢g(y)¢o(y)]+z’; lim —(
€—0

=NRLY» W) 1— —=3'9(y)

Here NP is used to refer to normal ordering with
respect to the operators in the expansion of ;. We can
assume that N 21/:31//0 is zero on all physical states (i.e., that
there are only induced currents), so that (3.7) is just the
second boundary condition. The above calculation works
for any ¢(y), but it depends on the assumption that
¢(—R)=0, so we have not really lost a boundary condi-
tion.

We have satisfied the equations of motion, and next we
should calculate the energy spectrum. When ¢(y) is time
independent we have a set of eigenstates of the Dirac
Hamiltonian. The relevant time-independent boson states
are

Vi x
¢(X)—N 2 1+§° ,
Vi t—x
#1(x,t)=N youll i z | (3.8)
VT t+x
¢i(x,t)=—N n 1+ R

exp[4iV'med ¢ ()]

1 e4i\/.1;-sa'¢](y) e4i\/1_r€al¢2(y))
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1 . +R
Youlu,v)= _2-(y+—R) exp |iw, XT— ¥s
—~imnu
e
X . —iw,v ] ’
—ie
with
2n +
=" (3.5)
“"= 2 +R)

Next let us study the second boundary condition in
(3.1). If we naively substitute the above result into the
right-hand side of Eq. (3.1) we get

Py sh=—v'v=—l, . (3.6)

This result is independent of #(y) and cannot equal
3'¢(y). The problem is that the above expression is unre-
gulated, and one must be careful in deciding how it should
be regulated. To decide this we return to our original def-
inition of finite currents (2.6), where fermion normal or-
dering was used. We do not want to normal order with
respect to the single-particle operators in ;. Instead, we
note that the original fermion normal ordering was
equivalent to point splitting in space. (For 1,0*7/51/1 one
should use point splitting in time.) Using such point split-
ting we get

0
Yoy —¢€,t)

(3.7)

f
When these are plugged into (3.4) and the shifted energy
levels calculated, we get

_Q@n4l)r | 7N
"7 20p+R) ' 2R’

These energy levels depend on y, and in fact diverge when
y goes to —R. As we will see below, however, with a suit-
able subtraction this dependence has no effect on observ-
ables.

We can calculate the total energy of the fermion sector
by remembering that all of the states which begin at nega-
tive energy are filled. Exactly N of these states will move
to positive energy as the partition is moved to y=R. The
total energy is

o0

E=30_,= lim 2 3 eso-

(3.9)

n=1 s—0t OS
. 1 |y+R 7N*? y
= = [+ 1+
s‘l’;ﬁ! JEX e 8R | TR
S S— (3.10)
24(y+R)
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The first and last terms are independent of N, represent-
ing the Casimir energy of the fermion vacuum. These
terms depend on y despite the fact that the energy should
be independent of the position of the partition in a CCM.
They represent a false vacuum energy which must be sub-
tracted. This energy is not simply a fraction of the vac-
uum energy provided by the filled Dirac sea in the whole
box, although the divergent part is. This means that the
CCM can be maintained only by employing a subtraction
scheme which is dependent on the partitions, and this result
will carry through to four dimensions.

Earlier we saw that normal ordering with respect to the
original fermion operators was sufficient to render the
currents finite. This procedure could be carried over to
the Cheshire Cat model because of its equivalence to a
point-splitting procedure which normal orders the energy
density, so we know of no method of directly relating the
renormalization schemes in the two pictures.

The lesson is that one must be careful when regulariz-
ing a CCM to ensure that the regularization scheme does
not introduce spurious dependence of the renormalized
observables on the positions of the partitions.

The remaining part of the energy (3.10),
(mN?/8R)(1+y/R), is exactly what is needed to comple-
ment the energy in the boson sector, yielding the correct
total energy for the complete set of ground states. To cal-
culate the energy of states containing excited bosons, one
needs to modify the above procedure, because eigenstates
of the Hamiltonian do not exist. There are several paths
one can follow. First, one can derive a Sugawara form for
the energy-momentum tensor.® We have already seen that

. - 1
Jo=Ngl¢pyo)=— —‘/73145

from (3.7), and using time point splitting, one can also
show that
- 1
j1 =Nl )=—=23%. (3.11)
J1=NpYy ¢ by (]

Using these results, and the Sugawara form of the energy
density (2.7), one can easily show that in general

E= ij dx[+(3% )2+ +(3'¢)] .

Once again this correctly complements the energy in the
boson sector.

Alternatively, one can use the fact that the Euclidean
effective action is related to the ground-state energy of a
system,'® which is all we need. Thus we get

(3.12)

Z(¢$)=exp

1
—Zfth(gb)]

= f D¢vD1/JT exp

——é—ffRdxfdnp*azp].
(3.13)

In this path integral one integrates only over fields satisfy-
ing the proper boundary conditions at x=—R and at
x =y. Making the change of variables found in expres-
sion (3.4), we can eliminate the dependence of the path in-
tegral on ¢(y). This change of variables produces an
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anomaly, so that the Jacobian of the transformation must
be taken into account properly.' The result is

z)=exp |~ 3 [t [ dx[13,671|Z(0). (.14

If one calculates Z(0) one will find that it depends on y
just as expression (3.10). Dividing by Z(0) to get a renor-
malized energy is equivalent to the y-dependent vacuum
energy subtraction discussed above. The ¢-dependent
piece of Z(¢) again correctly complements the energy
found in the boson sector.

IV. CONCLUSION

We have used a simple model to illustrate bosonization,
demonstrating the one-to-one correspondence between
states and observables of systems of free massless fer-
mions or bosons in a box. In particular, we have shown
how one can easily fermionize the boson field operator
(2.15) or bosonize the fermion field operator (2.18). Al-
though the details of such a transformation have long
been known, by putting the system in a box the relation-
ship between the states in the two descriptions becomes
particularly transparent.

The development of bosonization in a box was a prelude
to the main purpose of this work—to illustrate the princi-
ples underlying the Cheshire Cat picture in a simple situa-
tion, and ultimately to explore what is required to set up a
Cheshire Cat model in four dimensions. In the Cheshire
Cat picture one describes a single system in two regions
using two equivalent field theories. If this is done proper-
ly, observables show no dependence on the partitions, as
was shown to be the case for the entire spectrum of states
in the free theories employed here.

What was required to eliminate any dependence of the
energy on the position of the partition? We needed the
correct boundary conditions (i.e., chiral bag boundary con-
ditions),! the correct renormalization procedure, and two
equivalent field theories. We have tried to emphasize that
the theories are equivalent quantum theories, so that one
must be careful to treat the equations of motion and
boundary conditions as operator equations. This means,
for example, that one can never treat valence fermions
separate from the Dirac sea. In addition we have illus-
trated the importance of finding the proper renormaliza-
tion prescriptions. To satisfy one boundary condition,
conservation of the axial-vector current at the partition,
we had to discover a means of implementing normal or-
dering without reference to operators (i.e., point splitting).
To renormalize the energy we had to subtract a Casimir
energy.

There are many issues with which we have not dealt.
The only divergences we encountered in our simple calcu-
lation were eliminated by point splitting and vacuum en-
ergy subtraction. When interactions are added one will
see new divergences, which need to match on each side of
the bag surface. This issue may be most easily studied us-
ing the massive Thirring model, which bosonizes into the
sine-Gordon model.” Another important issue is that of
total momentum. There should be a means of setting up a
CCM which does not explicitly break translation invari-
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ance. It would also be of interest to study CCM’s at finite
temperature.'?

Let us now turn to the more relevant problem of setting
up a Cheshire Cat model in four dimensions. Although
we are not yet in a position to rigorously generalize our
results to four dimensions, we believe that most, if not all,
of what one learns in two dimensions will carry over to
four dimensions. The same ingredients will be necessary
to set up a Cheshire Cat model. One must find the proper
boundary conditions, renormalization prescriptions, and
two equivalent field theories.

Nadkarni, Nielsen, and Zahed! have shown how one
can determine the proper boundary conditions to be used
at the bag surface. Causality, available symmetries, and
renormalizability can be used to eliminate most surface
terms. All possible surface terms remaining must be con-
sidered. We saw that in two dimensions the proper
boundary conditions for the bosonization of fermions with
a U(1) symmetry could be determined by considering the
chiral anomaly. In a path integral formalism one can seek
the correct boundary conditions by first asking what
change of variables in the fermion sector has a Jacobian
which properly reproduces the free part of a boson action.
In general such a change of variables will also induce
Wess-Zumino terms,'? allowing one to infer that except in
the U(1) case an equivalent boson theory will include such
terms (see the last reference in Ref. 1). We expect that the
chiral bag boundary conditions already in use are correct;
however, the chiral field in these conditions may corre-
spond to an infinite number of pseudoscalar, isovector
fields with the pion being only the lightest particle in-
volved.

What have we learned about renormalization that is
relevant to four dimensions? We illustrated that one must
include quantum effects when considering current conser-
vation at the bag boundary. In addition we discovered
that in calculating the energy one must subtract the fer-
mion energy found at zero chiral angle (i.e., the Casimir
energy). These conclusions are valid in four dimensions,
but they address only the simplest divergence problems
one finds there. New divergences will occur which must
be subtracted consistently on each side of the bag. Fur-
ther study of two-dimensional systems with interactions
should clarify this point.

The final ingredient for the successful development of a
Cheshire Cat model in four dimensions is two equivalent
field theories. Of particular interest is a mesonic theory
equivalent to QCD (Ref. 14). This will be the most diffi-
cult ingredient to obtain, but it should not be necessary to
either solve QCD inside the bag or obtain the full mesonic
theory outside the bag. Indeed, perhaps the main utility
of the Cheshire Cat picture is that it provides a test of
how well one is matching two field theories. It is not
necessary to obtain complete independence from the bag.
What one desires is a range of bag sizes for which observ-
ables are approximately independent of the bag.

In four dimensions one is forced to make several ap-
proximations, all of which will introduce some spurious
dependence of various observables on the size and shape
of the bag. By striving to eliminate such dependence,
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both one’s approximate treatment of QCD inside the bag
and one’s approximate effective mesonic action outside
the bag can be improved. Naturally one must be some-
what optimistic about the possibility of finding a range of
bag sizes in which the approximations that cannot be
avoided do not spoil the approximate CCM behavior of
the system; however, there are already some indications
that such hope may be justified.'

How should one proceed to determine the proper
mesonic theory outside the bag? First, as we have seen,
bag boundary conditions are most easily solved if one can
treat the bosonic fields entering them as ¢ numbers. This
means that outside the bag one should employ an effective
action;'? that is to say, an action which already includes
what would normally be regarded as quantum corrections.
In fact it is not clear that a renormalizable mesonic theory
exists which can give rise to an effective action which is
equivalent to QCD. Given that one is working with an ef-
fective action, any terms allowed by Lorentz invariance
and the other symmetries of the problem should be in-
cluded, but most terms will be unimportant for sufficient-
ly large bag sizes. After one has determined which terms
are relevant in the effective meson action, one should next
decide on an approximation to QCD. Finally, one should
compute observables such as ground-state energies, and
check their dependence on the size and shape of the bag.
By varying the mesonic effective action and improving
the approximation to QCD one should be able to gradual-
ly eliminate any dependence on the bag.

Since the correct meson theory is equivalent to QCD it
must reproduce meson scattering data. Therefore to
lowest order one expects a nonlinear o model to arise,
with higher derivative self-interactions and interactions
with heavier mesonic fields that must be determined. In-
side the bag one hopes that to lowest order the quarks can
be approximated as noninteracting. Thus, one is led to
consider the chiral bag model* as a lowest-order approxi-
mation to a Cheshire Cat description of QCD. A recent
calculation indicates that this may be the case.!

Two-dimensional calculations, such as the one we have
presented, should continue to serve as important tools for
solving many of the formal difficulties which arise in
such a program. In two dimensions one is able to separate
problems arising from the proper treatment of a field
theory, and problems arising from the approximations one
is forced to adopt to complete a calculation. For the
study of such issues as renormalization in a bag theory
this is invaluable.
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