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Structure of Yang-Mills field theory in the framework of many-body approximations
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The structure of the many-body problem defined by the regularized Coulomb-gauge Hamiltonian

of an SU(n) Yang-Mills field theory is investigated. Results for the glueball spectrum within a re-

cently proposed Bogoliubov approximation are presented. A consistent continuum limit is not

reached in this frame because nonlogarithmic divergences do not cancel. In order to guarantee this

cancellation structure, an extension of the Bogoliubov scheme, a combination of the exp(S) formal-

ism and cluster expansion (constructed in analogy to the hale-line expansion of standard many-body

theory) is introduced. Results for the ground state (= vacuum state) within this new framework are

presented and discussed.

I. INTRODUCTION

Recently, one of the authors has proposed to study the
structure of SU(n) Yang-Mills (YM) theories with nonper-
turbative many-body techniques (see Ref. 1, referred to as
I in the following). Our aim is to obtain insight into the
structure of gauge field theories which are an alternative
to lattice calculations. Analogous attempts have been un-
dertaken by Cutkosky~ using a hyperspherical formalism
and by Horn et al. using suitable Pade approximations.
The basic idea of our approach is to define (in the
Coulomb gauge) a regularized field-theoretical Hamiltoni-
an for the SU{n) YM theory, '

H(g (M),M, Q),

where M=momentum cutoff, Q=volume cutoff, g=
running coupling constant, and to study the spectrum of
H with many-body techniques borrowed (but suitably gen-
eralized} from nonrelativisitic many-body theory. Quite
analogous to the lattice procedure, g (M} is supposed to be
fixed by adjusting the length scale to one observable; other
observables should then become independent of M, if M is
large enaugh (i.e., if one is near enough to the continuum
limit}. From the construction of the many-body tech-
niques, all calculations can be done in the "thermodynam-
ical"' limit Q~ Oo.

It is the purpose of this paper to report on first numeri-
cal results and on some further developments of the
many-body techniques which proved necessary in order to
be consistent with renormalization. The necessity to con-
sider many-body approaches fulfilling such consistency
conditions was recognized by Nojiri. Summarized, the
main points of the paper are the following.

Within the Bogoliubov approximation proposed in I,
glueball spo:tra resulting from H(g(M), M, Q) have been
determined as functions of M {Sec.II). It turns out that
there is no consistent scaling of the results for M~oo.
The reason for this failure is traced back to an incon-
sistency of the Bogoliubov ansatz for the wave functions
(defined in I): Since the three-point interaction V3 does
not contribute within this scheme, there is no cancellation
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FIG. 1. Glueball mass spectrum within the Bogoliubov

scheme as a function of the momentum cutoff M. The running

coupling constant g (M) is fixed by setting the energy scale such

that the 0++ glueball mass is 1200 MeV.

of nonlogarithmic divergences in the gluon self-energies.
This is revealed within perturbation theory 111 Sec. III.

Analogous to the Brueckner approximatian of standard
many-body theory, it is possible ta generalize the Boga-
liubov scheme in a canonical way to a suitable exp(S)
method which takes into account the three-point interac-
tion (Sec. IV). First results within this "YM-Brueckner
theory" for the vacuum structure functions are presented
(Sec. V}. It turns out that the Bogoliubov structure func-
tion induces a suppression of small momenta and a mass

gap in the spectrum of physical particles —an expected
structure if canfinement holds. ' The consistency of the
YM-Brueckner theory with renormalization is discussed
in Sec. VI: If perturbation theory holds for large
momenta —which turns out to be true with all numerical
results obtained up to now —and a suitable ansatz for
gluon states (including a gluon cloud) is taken, all nonlog-
arithmic divergences cancel within the expression for the
glueball masses. Numerical details for glueball spectra
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within the YM-Brueckner theory, generalizations to QCD
(including quarks), and for temperature &0 will be dis-
cussed I other pubhcatlons. '

II. RESULTS %ITHIN THE BOGOLIUBOV SCHEME

The formalism needed in order to apply the Bogoliubov
theory in the lowest-order cluster expansion to the Hamil-
tonian H is described in detail in I. Figure 1 shows the
result for the smallest glueball masses e„(g(M),M) where
n runs through the quantum numbers 0++, 0 +, 2++.
The length scale is defined by fixing eo++{g(M),M)
=1200 MeV. It is seen that the mass splitting between
the glueball states goes to zero for M~ oo. Also, there is

no consistent scaling of the function g (M), i.e., we obtain
g(M)=1/M rather than g (M)=[in(M/Mc}] ' as ex-
pected from perturbation theory and renormalization-
group arguments.

The reason for this failure of the Bogoliubov approxi-
mation is seen from the divergence structure of the glue-
ball masses when considered as a function of the momen-
tum cutoff M and for M~ oo. According to Eq. (60) of
I, the glueball mass e is split up into single-particle and
(irreducible) two-particle terms

e=esp+e2p . (2)

For n =0++ and 2++, the 2p term is related to the rela-
tive wave function y(k) of the glueball [Eq. (54) of I] by
(we take Q~ oo and assume f ~ y ~

d k = 1}

t'

&2t, =—f d pd ky'(k)y(p} Akkp[4 h(k—,p)] 2 —+1

h{k,p)=1+(k p) /k p2

nh(k,p), a=
. Ik —pl' (3)

Here, A,k is the structure function of the Bogoliubov
transformation [Eqs. (8) and (25) of I] which is deter-
mined by minimizing the vacuum energy expectation
value. The result is A,k '=(k +m )', m =600 MeV in
a good approximation. The point we want to make here is
that e2 contains na nonlogarithmic divergences, when
M~oo: The only "critical" integration is contained in
the integral equations determining the function hark [Eqs.
(43}and (45}of I],

ak sk [1—+Q&( a)], sk —[1—Qk(s)]

involving the "kernel" Qk defined by

Qt, (f)= f d qh{q, k) i Aq,
4(2~)3 lq i &st

h(q, k)=2 —h(q, k) .

If lowest-order perturbation theory holds for large mo-
menta, i.e., if

A,k ~1/k, ok, sk ~ 1 for k ~oo,

which is confirmed by all our numerical computations, it
is seen that Qk(f) is logarithmically divergent for M~ oo

and f=o or s.
However, this divergence structure is not true for the

single-particle term e,o which is given by

e',o=2 f i y(k) i e(k)d k,
E=f'O+64+EC,

ec(k)= —,'(k A,k+1/A, k),
~k

eq(k) =a f d q(A, q
—1/q),

ec(k)=a —,
' f h(k, q) + d3q .

lql &sq Aq Ak (k —q (i

He«, e4 is the contribution of the normal ordered-four
point interaction V4. This normal ordering was not taken
into account in I and is necessary to be consistent with
perturbation theory where tadpole diagrams involving V4
vanish. ec is the contribution of the Coulomb interac-
tion [this term was quoted erroneously in Eq. (53) of I].

If A,k~1/k, ok~1 for k oo, the first term of ec ls
quadratically divergent for M~ oo, whereas all other con-
tributions to e,~ are at most logarithmic divergent. This
explains our results for the glueball spectrum: For large
M, the quadratically divergent term dominates and sets
the scale, all the rest, especially the 2p-interaction term,
become negligible relative to this "Coulomb self-energy. "

Obviously, this quadratic divergence must be an artifact
of our approximation, since perturbation theory yields
only logarithmic divergent structures. In the axial gauge,
this deficiency of the Bogohubov approach was noticed by
Nojiri.

It must be our next task, therefore, to enlarge the Bogo-
liubov scheme such that a cancellation of nonlogarithmic
divergence occurs. Therefore, we must first understand
the structure of this cancellation in perturbation theory.

III. PERTURBATIVE STRUCTURE
OF GLUON SELF-ENERGIES

Up to second-order perturbation theory, the contribu-
tion to the gluon self-energy (within the Coulomb gauge)
is given by the diagrams of Fig. 2. Applying the rules of
noncovariant perturbation theory ' for the on-shell gluon
mass operator yields, in the notation of Eq. (7),

O +~4 +&C +&3e~ — 2 2 2 2

Here, the first three parts,
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FIG. 2. Diagrams contributing in lowest order to the gluon
self-energy: (a) and (b) result from the (normal ordered) four-

point interaction V& and from the (lowest order) Coulomb in-

teraction V„(c}and (d) involve the three-point interaction V3.

eo ——k,2

2
p4 ——0, (8)

Vapr igUa——p (Aahpkr)'/
(10)

U p„=[&(p +pp+p„)/&80]symf ' +"[p e(pp, rp)]

X[e(p„r ).e(pr, rr)],
e (p, i ) (r= 1,2) are the transverse polarization vectors, Eq.
(21) of I; sym stands for the symmetrization operatio~
with respect to (a,P,y).

The important "spin sum" occurring in all computa-
tions with V3 is

o(pi@'2}= z g I Ua)a2a3 I

1 h(pi p2) 4 4 4
[pl p2 ~(pl p2)+(pi +p2 +p3 )]2

p3=pi+p2 . (11)

Evaluation of Figs. 2(c) and 2(d) yields then

e3 (k}= J o(k,p)
lk+p I

X
I

lk I+ ip I+ Ik-p I

+ l

lp I
—Ik+p I

—Ik I

d p. (12)

l 3

fk —q I

2d g

agree with Eq. (7) «r Ak
——1/k. e3 is a new term arising

from the three-point interaction V&. In compact notation,
V3 is given by

V3 ——
6 V~P 8~8PSy, B~=b~+s~b

Here a =(k„r,a) (=momentum, helicity, color) abbreviates
all quantum numbers necessary in order to specify a
transverse gluon state (see I), —a=( —k, r, a), s =s„[Eq.
(24} of I]. The matrix elements V,p„are given by

The important observation now is that all nonlogarithmic
divergences, contained in he =@3 +ac, exactly cancel
and we have b,e (0)=0. (Thus, also the infrared diver-
gence for k =0 cancels, as it should be. )

Applying covariani perturbation theory to the mass
operator and dimensional regularization, one gets
b,e(k)—=0, for all k and in any order of perturbation
theory —the mass of a gauge vector meson is not renor-
malized and remains zero yielding the dispersion relation
e(k) =k. Our finding that he (k)&0, therefore,
represents an effmt of our regularization which breaks the
relativistic covariance of the original theory. (The same
situation holds for lattice gauge theories. ) We have com-
puted be (k) and found be (k)/k & 3% (for g = 1) which
shows that the effects of breaking covariance are small.
The fact that our numerical results obtained up to now
clearly show that lowest-order perturbation theory is valid
for large momenta (see Secs. V and VII) makes us confi-
dent that these effects of breaking covariance will also
stay small within our nonperturbative approach.

Recalling our task to extend the Bogoliubov scheme, we
clearly learn from our perturbation exercise that an ap-
propriate generalization will have to to take into account
the three-point interaction V3. We propose, herefore, a
suitable "YM-Brueckner" theory which is described in the
next section.

IV. THE exp S METHOD
AND YM-BRUECKNER THEORY

It is well known from standard many-body theory that
there exists a systematic expansion of the ground-state
wave function 4 of an extended many-particle system of
the form

%=e
I
40} (13)

yielding linked expressions for observables and, therefore,
giving consistent results in the "thermodynamical" limit
0~00. Hereby, 40 has to be some "quasiparticle vac-
uum" and S is a function only of the creation operators.

In nuclear matter theory, " 40 is the free ground-state
Slater determinant and S has —because of particle-number
conservation —an expansion in terms of polynomials
S2,S4,$6, . . . , of euen order in the creation operators

S=S,(o,o„)+S4(

+S6(apapapat, at, at, )+
(Here, p and ii refer to particles and holes, respectively, oi,
is a creation operator with respect to 40.)

A systematic expansion (hole-line expansion) for the
ground-state problem is then defined by truncating the an-
satz for S (include only terms up to order 2n), by approxi-
mating the expectation value E(S)=('0 IH I

0'}/('P
I
qI}

via a suitable cluster expansion, '- and by determining the
coefficients yielding the operator S by minimizing E(S).

This yields Hartree-Fock theory for n =2, Hrueckner
theory for n =4, and Bethe-Faddeev theory for n =6
(Ref. 13). The consistency of this method can be con-
trolled by checking the truncation and the cluster expan-
sion by going to the next order.
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Ak=A, =(uk —vk)~/Ik I, a=(kra), (16)

Q~ =Qk, U~ =$~Uk

1

Sg ——, S p„b~bpbr—.

The ansatz for the coefficients S pr is taken from the
structure of the three-point interaction

For our field-theoretical problem, defined by the Ham-
iltonian H(g, M, Q), the structure (13}of the exact ground
state is equally valid (this is a very general result of for-
mal perturbation theory}. Due to particle-number non-
conservation, we now have to choose @0——I 0) (free vac-
uum) and

S=si(a )+Sz(a a )+S3(a ata )

+S,(a'a'a'a')+ ~ ~ ~ . (15}

In the YM case, Si(a )=0 because of color symmetry.
Including only Si is the Bogoliubov approximation dis-
cussed in I [Eq. {23)of I].

A very natural and "canonical" extension of the Bogo-
liubov scheme is, therefore, to truncate the expansion (15)
with Si. We shall choose the same cluster expansion for
the expectation values as in the Bogoliubov case. Our re-
sults show that higher orders can be expected to be small
(see Sec. V). We shall call this new many-body approach
for the YM eigenvalue problem the YM-Brueckner
theory.

In order to simplify the expression for the energy ex-
pectation value it is convenient to incorporate the operator
Sz(a at) into the definition of the quasiparticle vacuum

4o by replacing ll
I
k

I
by an arbitrary function A, i, in the

field operators [see Eq. (21) of I]. Thus we write

0'=e '((}0, b $0——0, b =u aa+v a

S p„i—g—U p„S{p,pp) .
If the function S is rotation invariant, Ss fulfills all sym-
metry conditions demanded for the vacuum (trivial
momentum and angular momentum). The construction
of the energy expectation value within the two-cluster ap-
proximation

E(x,s)= &

qadi

)/(q e)
I „,

(18)

is now performed very much in analogy to standard
many-body theory. ' ' Therefore, one first defines "oc-
cupation factors" y (wave-function renormalization fac-
tors} by

y =(4
I
b b

I
4)/(%%) . (20)

The lowest-order cluster expansion of E(A, ,S) is then
given by adding to the Bogoliubov energy Eo(iL) [Eq. (46)
of I] the simplest terms involving V3, i.e.,

E,(x,s)=&y, I v,s, +s, v, I((},)„„ (21)
and "inserting" into each "line" occurring both in the
evaluation of Eo and E3 due to contractions, the occupa-
tion factor y . In other words, the prescription for ele-
mentary contractions, listed in Eq. (38) of I, are now
changed to

b b, =y, b b~=y 1, —

&f'&J =P'"h;;{kQkyl, /2Q, yk=2yi, —1, ls=(k, a),
qi";qrj

" 8'"h;J {k)A——,k ' yk/2Q,

H~;"= —~,"~;~=—is "h,,(k)/2Q .

Note that for the last contraction the occupation factors
disappear because of cancellations. We also have used

y =y~ [independent of r, a if a=(kra)] because of the
symmetry of %. This yields for E(A,,S) the expression

E(A.,S)=(n —1)Q(eo+e~+ei+e4+e, )/(2ir)
where

eo ——,
' f (k Ak+1/kk)ykd k,

ei ———f d3q d kh(k q, k)sksq/q—

e4= dqdka 3 3 1 1

6 k ~ ~
q

e, =—f d qd k ykyq —1 h(q k)
, ~q

' Ik —q I'

ei= g &~& lssV3+ V3Ss
I
~A'&y yp y„&~&y I

=b.bpb, I 0&
aPy

=—f d3pd k(AkA~Ar k)'~~s'(kp)cr(kp)yky~yi, r+c.c.

Qk(f) =—f d q h (q, k) Aqyq,
(k —q)

(5')

Here, the functions hark and sk are solutions of the integral
equation (4), but with the modified kernel

e& is the contribution of the Faddeev-Popov term, that
part of the Hamiltonian which guarantees the gauge in-
variance of the spectrum (see I}.

For consistency, the occupation factor yk is determined
from (20}within the same cluster expansion yielding
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y.= 1 —g y.yprr &~13y I SPi I &~y &

Py

yk
——1 ~ J d'pyky, yk -IS«u) I'~«S»

=1 Fk—(y,S) .

(24)

1.05

This is a nonlinear integral equation relating the function

S(p,q) to yk.
%'e Inention that exactly the same prescription leads to

Brueckner theory in the standard many-body case. ' ' In

that case, it is convenient to do the variation of E(A,,S) by
introducing the relation (24) as a constraint via Lagrange
multipliers ]Mk, i.e., to determine the functions

41k yk S«e) by

1.02.

1.01

1.00
0.0

HOHENTUH

1.0

5E 5E 5E
y] =I Fk—(y S»

5A, 5S 5y
(25)

E(&,S,y,p) =E(&,S)+ f pk(yk —1 Fk(y, S—))d'k

Pk'Yk k+8
This allows us to determine S directly,

=0—+S~p~ ——

5S P a+9p+Py
(27)

We do not quote the variation equation for A, and y, expli-
citly, we only mention that the Lagrange parameter pk is
a "single-particle energy" given by

gl
]]lk —— ——

& 4
~
b~Hb,

~

%') /& ee)
~ 2C]

—E(A„S) . (28)
5y]

It can be shown that the expression (26) for the YM-
Brueckner ground-state energy can be constructed by per-
turbation theory when summing up suitable (infinite)
classes of diagrams —quite in analogy to standard
Brueckner theory. Here, the perturbation expansion is de-
fined via

0
0.0

MOMENTUM

1.0

H =Ho+H', Ho gpP b~, p——=pk . (29)

In contrast to the standard case, however, there is always
an essentially nonperturbative part in the theory, namely,
the Bogoliubov part, represented by the function A, k to be
determined just variationally.

The relation of the exp(S) method to perturbation
theory allows one to construct a generalization of the
theory yielding a well-defined "YM-Brueckner" expres-
sion for the free energy of the system as a function of the
temperature. The basic vehicles, therefore, are contained
in an old paper by Bloch and de Dominicis. ' Details of
these perturbative structures and extensions will be given
in a separate paper.

V. NUMERICAL RESULTS FOR THE
GROUND STATE V@THIN YM-BRUECKNER THEORY

2,

Qi I I I I I

0.0 0.2 0.4 0.6 0.8 1.0
MOMENTUM

We have determined numerically the solution of the
variational equations (25). Results (for g= 1) are present-
ed in Fig. 3. The most important structures are the fol-
10%vlng.

FIG. 3. The vacuum structure functions within the YM-
Brueckner theory (units are defined by M = I): (a) '*occupation
factor", Eq. (20); (b) Bogoliubov structure function, Eq. (16); (c)
Lagrange multiplier =single-particle energy, Eq. (28).
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(1) The occupation factors yk always stay very near to
1. This means that only a few (quasi)particles are excited
to higher levels due to the operator Si. (Note yk ——1 for
4=40.) Experience of many-body theorists' is that the
validity of a cluster expansion is governed by the average
value of yk —1 (the "wound integral"}. Since yk —1 is al-

ways very small in our case, we are confident that our ap-
proximation scheme makes sense. Of course, higher or-
ders have to be checked in the future in more detail.

(2) The function A,k goes to zero for k~0. Thus defin-

ing an "effective mass" P(k) through

A,k = 1/[k ~+p, 2(k) ] '~~

this function is not constant —like in the pure (but incon-
sistent) Bogoliubov theory —but we have

p(k)~0 for k~ao,

p(k)= for k~0 .
1

k

This has the consequence that small momenta (large dis-
tances) will be suppressed. This structure has been first
suggested by Gribov and was also found by Cutkosky2
who traced it back to the singularity of the Coulomb-
gauge Hamiltonian at the Gribov horizon. Our results
confirm Cutkosky's analysis. More specifically, our vari-
ational principle gives the following structure to this
"Gribov singularity" of the function A,k. Analogous to
the standard Hartree-Pock or Hartree-Bogoliubov theory
(involving fermions), the condition 5E/5A, =O is
equivalent to

Rk= X ('pI Hs b b ~ ~

q') =0, ct=(k, r, ct) . (30)
r, a

For small k, the important contribution to Rk comes
from the Coulomb-potential contractions (see I for nota-
tion) of the type

R~=HARRAIIb b = c7 J d kd qh(k, k —q)h(k, p) q 2 yqyk q
—1 (2crksksk Ip+sk crk p) .

~k-q '
(31)

This term diverges for k~O to +ao, and in order to
make Rk ——0 it has to be compensated by the contribution
of the kinetic energy Rk "———,

' (k Ak —lib, k) by increasing
1/A, k correspondingly. In the pure Bogohubov case,
yk ——1 and the singularity of Rk is smoothened by the fac-
tor (Aq/A, —

q 1).
(3) The Lagrange multiplier: p, k ls closely related to

1/Ak. Therefore, pk develops the reciprocal structure of
Fig. 3(c). Interpreting pk as the gluon single-particle en-

ergy, and writing

pk=[k +m (k)]' i (32)

QD(s}=1—1/s0 . (33)

Our numerical calculations give Qii(s)=0. 3, quite con-
sistent with the condition Q0(s) & 1.

we have —as for p(k)—m ~00 for k~O (also the per-
turbative structure m ~0 for k~00 clearly holds).
Constructing two-particle states out of such gluons, one
would, therefore, expect a mass gap in the glueball spec-
trum. Masses of glueballs should be of the order of 2p, 0
where p0 yields the minimum of pk. Taking M=3 GeV
for g =1 from lattice calculations, we thus would predict
glueballs with masses of 1—2 GeV—a commonly accepted
order of magnitude. Details of glueball calculations will
be presented in a future paper.

(4) Ail results are consistent with the restriction of the
transverse gluon fields due to the Gribov horizon. As dis-
cussed in I, the quantity characterizing how near the
ground-state function + is approaching the horizon is
given by

VI. COMPENSATION OF NONI OGARITHMIC
DIVERGENCES

In this section we will indicate how the necessary can-
cellations of nonlogarithmic divergences in the expres-
sions for glueball masses emerge, when the YM-Brueckner
scheme is applied to these observables. Therefore, we
write for the glueball states in analogy to Eq. (54}of I

I
g&= gf tt&&tt I'p& (34)

where %=(expSi)40 is the vacuum state of Eq. (16) and
8

~
4) describes an (unphysical} gluon state. In order to

be consistent with perturbation theory, the operator &
has to contain a "gluon cloud, "i.e.,

8 =b + gs S p„bttb (35)

The functions fett and S~ti„have to be determined by
minimizing the expectation value (g ~

H
~
g)/(g

~ g ), ap-
proximated within the same "YM-Brueckner" cluster ex-
pansion, keeping fixed the vacuum structure functions Si
and A,k [Eq. (16}]. We skip the rather lengthy expression
for these expectation values here. In second-order pertur-
bation theory, the coefficients S tt„[Eq. (17)) and S ttr
become

[2)
S~pr ———I stir /(~~+cott+~r),

(36)
S '

)q„= V'ti„/(co —coti —co„)

(of course, Uk ——0 in this case). S' ' generates the four-
particle, S' ' the two-particle intermediate states corre-
sponding to Figs. 2(d) and 2(c). Both are sufficient contri-
butions to the one-gluon state in order to induce the can-
cellations of nonlogarithmic divergences within second-
order perturbation theory (Sec. III).
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The important observation now is that these cancella-
tions are still present under rather weak, i.e., more gen-
eral, necessary conditions. This condition is that the
high momentum behavior of the single-particle energies
[defined as in Eq. (2)] is that of second-order perturbation
theory. This is guaranteed if

(2)
S~py ~S~py

(23
S~py ~S~py

(37)

and if the single-particle part of the expectation value for
the glueball masses tends to the perturbation result for
large momenta.

Both conditions turn out to be fulfilled within our
YM-Brueckner scheme: The relation (37) is verified
within all our numerical computations —in fact the
behavior of the vacuum structure functions A,k~k, yk for
large k display already this perturbative character. On
the other hand, the cluster expansion of the expectation
value (g (H ~g)/(g ~g) also is consistent with perturba-
tion results in the required sense —a well-known structure
of this approximation technique (for more details see Ref.
17).

Summarizing, we conclude that it seems possible to de-

fine extensions of nonperturbative many-body approxima-
tions applicable to gauge field theories which produce re-
sults consistent with renormalization. The crucial condi-
tion for these many-body techniques is that the correct
cancellations of nonlogarithmic divergences should occur.
%e mention that these cancellations are automatic in lat-
tice calculations since here the entire many-body
problem —regularized via the given lattice cutoff—is
solved rigorously with much more effort. (Up to now, the
computer times needed for the presented results are on the
order of standard nuclear physics many-body calcula-

tions. ) Application of our approximation scheme to the

ground-state problem yields a "Gribov singularity" in the
structure functions indicating confinement in the sense of
a suppression of small moinenta and of the occurrence of
a mass gap in the spectrum of glueballs.

The important check of the validity of our approach-
the consistency of the continuum limit for observables like
glueball spectra and a comparison to reliable lattice
results —will be investigated in the future.
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