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%'e examine solutions to the field equations for an SU2 gauge theory with spherical symmetry.

We find the nonlinear equations governing the behavior of gauge-invariant projections of electric

and magnetic field strengths. New solutions are found by linearizing the equations around the sim-

ple "vacuum" solution and around the %'u-Yang monopole. The variational approach used is well

suited to the study of small fluctuations around more complicated starting points.

I. INTRODUCTION

The study of classical non-Abelian gau e theories has
proved to be a rich and fruitful enterprise. Successes as-
sociated with the classical approach include the discovery
of topologically stable field configurations such as Wu-
Yang monopoles and instantons. Other interesting solu-
tions such as merons and non-Abelian plane waves have
provided insight into the peculiar nonlinearities of non-
Abelian dynamics. However, it has not yet been shown
that the knowledge gained from studying classical non-
Abelian dynamics has been directly applicable to the
problems encountered in the quantum theory.

The basic idea that classical dynamics should be impor-
tant in understanding quantum dynamics can be easily ex-
plained. In the Euchdean path-integral formalism, the ex-
pectation value of an observable 0 (4) is

(0
~

0(4)
~
0)=f d [4&]0(4)exp[—S(4}], (1.1)

where S(4}is the action functional. The local minima of
S in function space correspond to the classical field con-
figurations obeying the classical equations of motion. In
the neighborhood of a classical solution,

4 =4„+54,

exp[ —S(4)]=exp( —S,i )exp[ —Q (54)]

collective motion. Indeed, the modern picture of spon-
taneous symmetry breaking relies heavily on the validity
of this classical approach.

We will not pursue here the general problem of provid-
ing alternative starting points for perturbative quantum
field theories. Strictly at the level of the classical field
equations, there exists a need for more systematic explora-
tion of non-Abelian dynamics. We will demonstrate this
within the context of an SUz gauge theory where all ob-
servables are constrained to display spherical symmetry.
The non-Abelian field equations

(1.4)

where D" is the gauge-covariant derivative, will be con-
structed in a manner which parallels the formulation of
Maxwell's equations as much as possible. It is found to be
convenient to deal with gauge-invariant projections of the
field strengths. A specific formalism for doing this is
used with an eye toward generalization to other types of
systems.

We approach the nonlinearities in the system (1.4) by
using variational techniques to find approximate solu-
tions. These variational techniques are demonstrated for
two simple cases—starting with the "trivial" vacuum
solution and starting with the Wu-Yang monopole.

X exp[ —R (54)], (1.3)

where Q(54) is a quadratic functional and 8 (54) is the
remainder. Since we understand how to do Gaussian
functional integrations we can set up a perturbation ex-
pansion based on (1.2) and (1.3) [provided 8 (54) is well
behaved]. In particle physics, the usual perturbation ex-
pansion involves an approxiination to the free-field,
plane-wave solutions of the classical equations. In any
theory with intrinsic nonlinearities it is quite possible that
alternative classical approximations exist which incorpo-
rate essential new dynamics not found in the trivial per-
turbation expansion. For example, in m.any systems in
condensed-matter physics, it has proved informative to
quantize around nontrivial classical solutions representing

II. SPHERICAL SYMMETRY AND SU2

Most successful applications of the classical formalism
for non-Abehan gauge theories have involved the use of a
simplifying Ansatz. One of the most useful Ansatze for an
SU2 gauge theory involves the assumption that in some
frame all observables display a spherical symmetry. This
Ansatz is one of the simplest available which still allows
nonlinear dynamical field equations. Although we will
not derive its general properties, we will, for completeness,
include some introductory material concerning its formu-
lation. We will be working in Minkowski space with
metric diag( —1,1,1,1) and will assume that the SU& vector
potential can be written in the form
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gAO(r, t) =AD(r, t)r, ,
(2.1)

gA; (r, t) =A i(r, t)p;, + ' since(r, t)5;,
r

a (r, t)cosa'(r, r) 1—+ ~ia

where we have absorbed the "coupling'* g into the vector
potential. The structure of Eq. (2.1) can be understood by
referring to Fig. 1 which displays pictorially the mapping
between a segment of three-dimensional Euclidean space
and the SU2 group manifold which is built into the An
satz Th. e tensors p;„5;„and e;, which relate spatial vec-
tor indices (ij,k =1,2, 3) to SUi group indices
( a,b, c =1,2, 3) in the adjoint representation are defined to
be

A. A
pig =rgb

(2.2)

&ia =&~aI&I ~

With the identification of SUq and SOi indicated in Fig. 1

the tensor p;, is "radial" in both halves of the direct-
product space. Within this Ansatz, there is no component
which is radial in ordinary space and transverse in group
space (or vice versa). The two tensors which are trans-
verse in three-space and group space are designated 5;,
and e;, . These tensors can be written in an alternate form
to emphasize their geometrical structure. If we introduce
the usual spherical coordinate system and let P and 8 be
the transverse unit vectors, then

5,
T =(8;8.+P;f.),

correct for the difference in normalization between the
transverse and radial tensors. %e will, however, give an
explicit formula with the appropriate normalization when
defining "projections. "

One reason why the tensor structures (2.2) simplify the
form of the non-Abelian field equations can be seen by us-

ing still another representation of the transverse tensors
(2.3). Some simple algebra shows that

1
&ia — i [r~5i r]ar

(2.4)

[Xg„xy]=iE Xq (2.5)

is the SUi commutator. Equation (2.4) shows how the
mapping between three-space and the group manifold
built into the Ansatz simplifies many of the algebraic ma-
nipulations involved in the field equations. Because of the
separation of radial and transverse modes, it is simple to
consider how a spatial rotation about the '9 direction by an
angle 5 affects a vector structure

8 =R;~(5)BJ, (2.6)

where R;J is a rotation matrix which preserves the r direc-
tion. We see that R,&(5) can be written

R,J(5)=pij +cos55,J +sin5ei (2.7)

in terms of the same tensor structures that appear in (2.2)
except that both indices now refer to spatial orientations.

Similarly, we can investigate the effect of gauge
transformations of the type

The reader should keep in mind that p;,p;, =1, while
5;,5;, =2, and e;,e;, =2. Since the original form of the
Ansatz has become conventional, we will not attempt to

(2 8)

which preserve the 7 direction in group space. These
gauge transformations on a gauge-covariant object in the
adjoint representation (such as Fz„) yield

8,' =BbR~(f),
with

(2.9)

Ri (g)=(pi„+cosg5q, +sing&i ), (2.10)

where both indices on the tensors now refer to group
space.

Comparison of (2.6) and (2.9) points out that we can
compensate for the effect of a gauge transformation of the
type (2.8) by a spatial rotation or vice versa. Using the
algebra

FIG. 1. The sketch indicates the relationship between the
group space of SU2 and ordinary three-space which is inherent
in the Ansatz. At each point in space, a gauge transformation is
used to align the radial direction in group space represented by
9, arith the radial direction in three-space represented by jI';.
This does not exhaust the gauge freedom of the system since it
is possible to make further transformations which preserve 'P, .

(2.11)

we can see that the form of (2.1) is preserved by rotations
or gauge transformations which do not change the r
direction. This invariance suggests that it will be con-
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venient to reformulate the Ansatz using a new set of trans-
verse tensors involving the gauge angle co(r, t) which ap-
pears in the definition of the vector potential (2.1): D =c};5' +ge'+A (2.19)

e„(co)=e;, ( co)—,

e (co)= —e ( —co) .A A
(2.13}

The two tensors can also be related by a shift in the gauge
angle co(r, t) since

et~~(co+it/2) =e;",—( co),

e;",(co+n/2)=eb, (co) .
(2.14)

Spherically symmetric objects which transform covari-
antly under both rotations and gauge transformations can
be conveniently written in terms of these gauge-dependent
tensors. Examples include the color- electric and color-
magnetic components of the SU2 field strength tensor:

e~(co }=5;,cosco(r, t} e—;,sinco(r, t),
(2.12)

et' ( co ) = 5c~~ stilco ( r, t ) +egg cosco (r, t ) .

The superscripts A and S refer to the antisymmetric or
symmetric behavior under the interchange of spatial and
color indices:

It is interesting to observe that both of the covariant
structures on the left-hand side of (2.18) necessarily van-
ish when a(r, t)=0. From the form of (2.1) we see that
when a(r, t) vanishes identically, we have a Wu-Yang
monopole or a dyon located at r =0. With a(r, t)&0,
the transverse tensors e" and e obviously provide a con-
venient basis to exploit the algebraic properties of the
theory.

It is useful to rewrite the expression for the vector po-
tential (2.1) in terms of the new transverse basis

gAO(r, t) =AD(r, t)r, ,

gA (r, t) =A i(r, t)p;, + '
e;, (co) ——e~(0) .

r " r

(2.20)

Under a gauge transformation of the form (2.8) which
preserves the r direction, the time and radial components
of (2.20) transform like a two-dimensional Abelian vector
potential

gE(' EL(r, t)p——+Eg(r, t)e;",(co)+Es{r,t)e;, (co),

gB =BL (r, t)p;, +B„(r,t)e;",(co)+Bs(r,t)e;, (co) .
(2.15)

0
Ai(r, t)~ AI(r, t)=Ai+c}tQ (1=0,1),

while the transverse components transform

(2.21)

Under a spatial rotation or a gauge transformation which
preserves the r direction, the transformations (2.6) and
(2.9) induce "rotations" which can be written

0
(A ) ~(A';) = '

e;",(co+1()——e;",(0), (2.22)
r &a

R,J(5) p;J +e,j( —5),S

~.b(0) =P.b+ea'S( 4) . —
Using the algebra

(2.16)
keeping a (r, t) fixed.

It is not difficult to obtain expressions for the com-
ponents of the field strength tensor given in (2.15}. We
have

e; (coi)e, (coq) =e;,(coi+coq),

e; (coi)e",(co2) =e;",(coi+cop),

e;" (co, )e" (co2)= —e;, (co, +co,),
(2.17)

a —12

EL ——(c}AO/c}r—c}A i /c}t), Bt ——

r 2

1 0
Eq ————c}a/c}t, B~ ————(c}colcir—A i ),r r

(2.23)

we see that these transformations merely serve to rotate
the basis vectors. The coefficients in (2.15) are invariant
under such transformations. The change of basis to e"
and e is, in many ways, similar to transforming to body-
centered coordinates for a classical extended object. The
angle, co(r, t), which appears as an argument in the basis
tensors is a gauge angle which tneasures the orientation of
the group manifold relative to the three-space manifold.
The gauge invariance of the theory ensures that physical
observables do not depend on this angle.

The gauge-dependent transverse basis tensors e "(co) and
es(co) appear naturally in the manipulation of gauge-
covariant derivatives. Using the definition of the vector
potential in (2.1) we can show

0 1Es = — (c}coIdt —A o ) Bs=———c}aIBr .
r r

Under a radial gauge transformation, the two-dimensional
vector potential Ai transforms according to (2.21) while
co(r, t)~co(r, t)+ P(r, t) with a (r, t) fixed. We therefore see
that the combinations (c}tco—At) are gauge invariant so
that all the structures which appear in (2.23) are not
changed by radial gauge transformations as claimed ear-
lier.

We can use the representation of the field strength ten-
sor in (2.23) to explore the connection between this four-
dimensional SU2 theory with spherical symmetry and the
Abehan Higgs model in two dimensions. '0 If we write

{Dgb~ )
a (ryt) s{ )r

i [V,D;r]'= —' e "(co),
r

(2.18)

+i~ =~I~m —~m~I

+=ac'

DI —Bl —sAg,

(2.24)
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QiQ g ir2E4—B4

with components

(2.26}

Eo ——(a —1)A i
—a Bco/Br,

(2.27)
SC, = (ai —1)A —+a2a~/at .

This means, for example, that the combinations which
give the transverse fields

8E,= (a~/—Bt—A, ) =It—, A, , —
r

Q Ko+A )B„=——(a~/ar —A, ) =
r ar

(2.28)

can be written without reference to the gauge angle to(r, t).
The consequences of this representation are treated more
fully in Ref. 11. The arbitrariness of the topological
current and the freedom of the gauge angle to can be seen
as two aspects of the same underlying invariance.

Specific dynamical approximations within the frame-
work of classical physics involve the introduction of
dynamical sources. We will therefore study the response
of the spherically SU2 system in the presence of a current

j „'(r,t).

The field equations with sources

From our discussion above, it is apparent that we can
parametrize the spherically symmetric SU2-covariant
current in terms of the tensors (2.13):

1
Jo(r t) = Jo(r t)r. —

r 2

(2.29)

The generalization of Maxwell's equations to the SU& sys-

tem,

(D„G„„)'=j'„, (2.30}

we see that the Lagrangian I d x Wg(x) can be written

4m I dr dt (r Ws ) with

ring rz——(Ft F' )+2D'4DiC'+ —2( f
@ /' —1)'.1

r

(2.25)
This is the Lagrange density for an Abelian Higgs model
in a curved two-dimensional space with metric r gI .
The transverse components of the field strength tensor
correspond to the real and imaginary parts of D'4. This
analogy is extremely valuable in working out the proper-
ties of the classical theory.

One final feature of the Ansatz must be examined before
we can proceed to look at the field equations. In non-
Abelian gauge theories, one must be aware of the possibil-
ity of nontrivial topological connections. In the Ansatz
(2.1) we can see that there is a "topological current, " Ei,
1=0,1 with divergence

then gives the set of equations

(r. EL )+2arEs J——o(r, t),
Br

(r—EL )+2arB& J——i(r, t},
(2.31)

a(—arE—s }+ (arB„)=arps(r, t),
dt Br

z i z a (a —1)2 2

aCl~i~a r(—Es —Bq ) =arpz(r, t) .
2

The generalization of the Bianchi constraints gives

8 (arE„ ) ——(arB, }=0,
dr Bt

EL+ —(arEs)+ (arB„—) =aiIC'
"dr dt

(2.32)

g 2r 2E+g+

The first constraint is trivial in view of the definitions
(2.23). The second constraint gives an important relation-
ship which cannot be ignored in our "field strength" for-
mulation of the dynamics. " In addition to the equations
above, we must for consistency impose the requirement
that the SU& current (2.29) be covariantly conserved:

(Dqj q)=0 .

Using the definitions above, this gives

dtJ'=2a(r, t)rp (r, t) .

(2.33)

(2.34)

Since a (r, t) appears on the right-hand side (RHS), this re-
lationship does not necessarily just give a constraint on
the color sources. The most conservative approach, how-
ever, is to interpret this as two constraints

p (r, t)=0,
(2.35)

III. SOLUTIONS TO THE FIELD EQUATIONS

Maxwdl's equations form the foundation for classical
electrodynamics so that the problem of determining clas-
sical electric and magnetic field configurations reduces to
the study of partial differential equations with specified
boundary conditions. An important distinction arises be-
tween Maxwell's equations and the classical field equa-
tions of a non-Abelian field theory in that the non-
Abelian field equations are inherently nonlinear. The
nonlinearities arise because the gauge fields themselves
carry a non-Abelian charge.

There exists no complete theory of nonlinear particle
differential equations and its is therefore not clear that a
study of the non-Abelian field equations can lead to any

8iJ'(r, t) =0,
so that a (r, t) can be given by (2.31). Other possible inter-
pretations are discussed briefly in Ref. 11. The fact that
we appear to have already an over-constrained theory may
indicate a conceptual flaw in the idea that fields and
sources can be clearly separated in non-Abelian theories.
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universal insight about non-Abelian dynamics. By and
large, the study of nonlinear partial differential equations
can be considered a collection of ad hoc techniques. One
of the most important differences involves the absence of
a superposition principle. For a linear operator, if u i(r, t)
and uz(r, t) are solutions to

(3.1)

Inserting the expressions for the transverse fields, (3.3),

(Jo+Be/Br)(J)+Be/Bt )
P;=r; +—

0 p Bt Bp'
(3.6}

This can be formulated in a manner which is more sym-
metric under electric and magnetic modes by letting
P=a —l=r BL

then the principle of linear superposition tells us that

U =au)(r, t)+bu2(r, t) (3.2)
P; =

z z (Jo+Be/Br)(J) +Be/Bt)+
r; BP BP

4(1+P )r Bt r

Zs —— (Jo+B&/'Br), as=-= 1 1 a
2ar P BT

1Ba 1
Bg —— (Ji+Be/Bt),

Bt 2QP

(3.3)

where e=e(r, t} and a =a (r, t) are solutions of the coupled
nonlinear wave equations

is also a solution. The application of superposition to the
study of Maxwell's equations is obvious. We can build up
solutions involving complicated current configurations
from a set of more elementary solutions. This capability
is lost to us in non-Abelian theories.

Occasionally, it is possible to recover some of the useful
properties of a superposition principle through the use of
nonlinear connecting functions. ' This, however, does not
provide a systematic treatment for constructing compli-
cated solutions. If we scale down our expectations, there
are some simple things we can do to expand the range of
solutions available to us. We can sometimes find special
solutions to nonlinear equations which are somehow "ob-
vious" or have some particular physical interpretation.
Using these solutions as a starting point we can utilize a
variational approach to deal with small fluctuations
around them by means of a linearized system of equa-
tions. The linearization leads to useful approximations to
new solutions subject to some constraints and restrictions.

We will apply this variational approach to some solu-
tions to the SU& field equations with spherical symmetry
for the fields and sources given in Sec. II. After some
manipulation, the equations (2.31) for the invariant field
strength projections can be put in the form

E Q —1
2

EI. ~ ~L
p 2

p
2

p ~2(e 2+p 2)
4(l+p )r

(3.8)

This is consistent with the idea that the Poynting vector is
associated with the energy flow of the fields. One some-
times encounters static (time-independent) solutions to the
non-Abelian field equations. The question of whether
such solutions are stable can be addressed by looking for
time-dependent fluctuations around them.

A. Variational approach to constructing solutions

Given the complicated form of the nonlinear equations
(3.4) for e(r, t) and a (r, t) it is not obvious that the most
general solutions can be found for a specific configuration
of currents (Ji,p„). Once a particular solution is found,
however, we can use a simple variational approach to
study approximate new solutions. Let eo(r, t) and ao(r, t)
be solutions to (3.4) for a given Ji,pz. Let

e( p, r ) =60( I', r ) +AEi( p, t), ,
'

o (r&t) =ao(r&t)+5a, (r&t) &

J,(~, ~)=J)'(i, r)+~j& (~, t)+5ji'(~, t),
pq (r, t) =p„(r,t)+Apq (r, t)+5p„(r,t),

(3.9)

(3.7)

Our assumptions constrain the direction of this Poynt-
ing vector to be radial. If we assume, at large r, that the
sources vanish and we have wavelike behavior

p(„r) p
'

( t)—
( p, r ) E+&'co ( r t)—

then

then the equations found by inserting (3.9) into (3.4a) and
(3.4b) and neglecting terms of order higher than linear in
A, ,5 will be linear partial differential equations for e)(r, t)
and a, (r, t). The coefficients will depend on eo(r, t) and
ao{r,t).

%'e can illustrate the application of this variational
technique by considering two simple starting point with
Jo ——Ji ——pz ——O. The first starting point corresponds to
the classical vacuum in which all fields vanish. We con-
sider (3.9} with eo{r,t)=0 and ao(r, t)=1. Variation with
A, and 5 of Eq. (3.4a) yields, for X,

(3.4a)

C32a — [(Be/Bt+Ji ) —(Be/Br+ Jo) ]4a

a (a —1)
2 rpz . (3.4b)——

Looking at wave equations suggests that it is instructive
to form the generalization of the Poynting vector of clas-
sical electrodynalMCS:

ImC32& — (Bie'BiQ) — = —E™BiJ~+ F. JiB a—I m

~ = i(&jkEJ'&k)=r;«s&~ —E~&s) . (3.5) (3.10a)
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for 5

5iJm =0
~

while variation with A, and 5 for (3.4b) gives, for A, ,

(3.10b)

(3.11a)

ei(r, t) =+ICi(a), +)e'"'[corp', "(cur))

+Cz(co, +)e' '[corp'i '(a)r)]

+Ci(co, —)e '"'[a)r(I "(a)r)]

+C2(co, —)e '"'[a)rg'i '(a)r)] I (3.1S)

(3.11b)

ei(r)= 1

+82r (3.12)

Equations (3.10b) and (3.1la) inerely restrict the form
of the external sources while (3.10a) and (3.11b) are decou-
pled linear partial differential equations for e, and ai.
The linear nature of (3.10a) actually follows from setting
a (r, t) =1 in (3.4a) and does not require any restriction to
small I,. This signals an important overall difference in
the dynamical role of electric and magnetic degrees of
freedom.

The simple wave equations (3.10a) and (3.11b) can be
solved by conventional techniques. In regions where

I
ui(r r)

I
and

I
ei«r)

I
are bounded, the solutions (3.9)

with small A, ,5 provide a local approximation to a solution
of the nonlinear system. Consider, for example, the spe-
cial case of static solutions and vanishing sources. Equa-
tion (3.10a) admits a solution

in terms of a superposition of spherical Bessel functions.
The functions

' 1/2

In+ in(z)(l,2) (3.16)

are defined as in Ref. 13. The general form of (3.15) is
one of the ingoing and outgoing spherical waves. We can
use (3.15) to construct Green's functions for various possi-
ble harmonic source configurations as in the case of static
solutions.

When "linearized" around the simple vacuum solution,
eo(r, t)=0 and ao(r, t)=1, the nonlinear equations (3.4a)
and (3.4b) therefore admit solutions which correspond to
the propagation of simple waveforms. Solutions with lo-
calized sources and fields can radiate energy just as in
electrodynamics. This, however, does not give a complete
description of the possible solutions. We must also con-
sider fluctuations around alternate starting points.

with di and di arbitrary constants. In regions where

~

hei(r)
~

&&1, we have an approximate solution to the
nonlinear system. This constraint excludes regions near
r =0 or r = ao. We can construct the Green's function

B. Small Auctuations around a point monopole

The %'u- Yang monopole solution to the Yang-Mills
field equations in our Ansatz corresponds to e(r, t) =0 and
a (r, t) =0. It is instructive to look for new classical solu-
tions which constitute small local fiuctuations around a
monopole field configuration. We will write

(3.13)

subject to the constraint 6(0,ro) =0, 6( ao, ro) =0 This.
gives

e(r, t) =hei(r, t)+
a (r, t) =5a i(r, t)+

This gives, for the field strengths,

(3.17)

(3.14)

and we can construct solutions to the linearized inhomo-
geneous equation. Similar static solutions for a, (r) also
exist. For sources localized around the origin, we can use
e(r, t}=r EI (r, t) and see from (3.3) that the large r
behavior

E,= (J,+Xati/Br), 8„= (J, +ABe, /Bt),
l 1

25air 25a, r
(3.18)

Oui 5 BQi
A 8 =—

r Bt r Br

In order to consistently interpret the field equations we
require

Eg ——0 (5,A, ), Bg ——0 (5,A, }
EI (r)=0(l/r ),
Es(r)=0(1/r )

is damped by an extra power of r compared to the static
Coulomb solution in electrodynamics.

The general, time-dependent, solution to (3.10a) can
also be constructed. In regions of space without sources, a
solution to (3.10a) can be written

Jo= ABei/Br+0—(iL5,5 ),
Ji = ABei/Br+0(A5, —5 ) .

This leads to the equations for a, (r, t):

(3.19)

(3.20}
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a, ( r, t) =a, (co, r)e +-'"' .

%'e will choose the causal solutions

a, (r, t)=ci+ai+(to, r)e'"'+c& ai (co,r)e

(3.21}

In order for the RHS of (3.20) to be consistent, we must
have P"(r,t) =O(5). It is instructive to look at solutions
to the source-free equations of the form

example, in Refs. 15 and 16 certain static solutions corre-
sponding to simple sources were constructed and studied.
Any of these time-independent solutions ~ould be a possi-
ble starting point for the variational approach to lineariza-
tion discussed above. It would also be interesting to con-
sider fluctuations around the meron-pair solution to the
field equations given by

a i (ro, r) =r'~ [J+;„(tor)+J;„{car)] (3.23)

1+( —r
a (r, t) ==

[(1+t2 „2)2+4„2]in '

e(r, t}=0
(4.1)

with v=i/3/2. The Hessel functions of imaginary order
are defined

J ( )
exp[to ln(z/2)]F (1

. i/4)
I {1+icr)

(3.24)

We can take the limit to~0 to see the static solutions

&1/2(c+&iv+ C —
& iv)— (3.25)

which have been obtained independently from the time-
independent form of the linearized equation. ' Fluctua-
tions around the Wu-Yang monopole can also involve
wave propagation. In the absence of additional sources,
we have

e,(r, t) =0

and, from {3.18), the nontrivial fields are E„(r,t) and
Bv(r, t). All other modes are "quenched" by the radial
magnetic field. In contrast with starting with a simple
vacuum solution we have fewer degrees of freedom.

in order to further clarify the issue of whether meron con-
figurations play a special dynamic role in non-Abelian
gauge theories.

Our approach to equations for spherically symmetric
SU& has been to work with the gauge-independent projec-
tions of covariant field strengths. This gives a system of
two nonlinear coupled wave equations. Because certain
explicit solutions to these nonlinear equations are known
we can construct new approximate solutions by using
linearized forms of the equations. The nonlinearities of
the original equations serve to induce nontrivial depen-
dence on the starting point.

For two simple starting points, the fluctuations obey
simple wave equations so that familiar solutions involving
the radiation of energy are allowed. The non-Abelian sys-
tem in this approximation is not fundamentally different
from complicated configurations of electrodynamic
sources.
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