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Generalized monopole in (4+I(.")-dimensional Abelian theories
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In this paper we show the generalized monopole in (4+ I( )-dimensional Abelian theories which is

dependent on the y parameter and the average field strength is defined on the point of four-
dimensional spacetime. Like the Gross-Perry-Sorkin (GPS) solution the generalized y-dependent
monopole solutions of GPS type are nonsingular. However, the Schwarzschild type has naked
smgularltles.

I. INTRODUCTION

Kaluza-Klein theories, ' which unify Einstein's theory
of gravity with other gauge interactions, have been the
subject of revived interest in recent years. The classical
vacuum solution of the Kaluza-Klein theory is assumed
to be M X8, the direct product of four-dimensional Min-
kowski space and the compact manifold 8. Any classical
field configuration which approaches the vacuum solution
at special infinity thus defines a 8 "bundle" over the
sphere at spatial infinite S . If the 8 bundle over S can-
not be continuously deformed to the global direct product
S X8, then the field configuration cannot be continuous-
ly deformed to the vacuum solution. We conclude that it
is a topological soliton. %e can associate with every 8
bundle over S a loop in the isometry group H. The 8 is
a circle and H is U(1) in the five-dimensional theory, and
the monopoles are Z monopoles as would be expected
from topological arguments, tr ~( U(1) )=Z. In the
(4+ It' )-dimensional pure Kaluza-Klein theory, the
ground-state configuration may be defined on the partial-
ly compactified manifold, M XS'X XS', where
S'X XS' is interpreted as the U(1)X XU(1)
gauge group.

In this paper we consider pure Kaluza-IQein theory in
4+E dimensions, where the signature of the metric g —is
—++. . . +, and the caret denotes a coordinate
x"=(x",y'), @=0,1,2,3, and i =1, . . . ,E. In the last
couple of years, many authors have suggested the interest
of multidimensional monopole solutions which are in-
dependent on the y' parameters. However, we show the
general monopole solution which is dependent on the y
parameter and the average field strength is defined on the
point of four-dimensional spacetime.

In the next section we review the (4+K)-dimensional
Abelian theories and three different metrics in Kaluza-
IGein theories. In Sec. III we discuss the radial equations
in 4+ K dimensions. In Sec. IV the generalized y-
dependent monopole solutions for E =1,2 Schwarzschild
type are carried out. However, these solutions have naked

singularities. Other generalized y-dependent monopole
solutions are Gross-Perry-Sorkin (GPS) type for I(. =1,2.
Like the GPS solution these monopoles are nonsingular.
Section V is devoted to the discussion of the average field
strength. A summary is given in Sec. VI. We take the
formalism in parallel with Refs. 3 and 4.

II. REVIEW OF (4+ E)-DIMENSIONAL
ABELIAN THEORIES

The (4+K)-dimensional Abelian theories are neither
realistic nor typical of Kaluza-Klein theories of interest,
but they provide a useful theoretical "laboratory" for il-
lustrating certain ideas. First, let us consider pure gravity
in five dimensions described by the action

s=— 1
d x( —gs) Rs,5 1/2

2@65
(2.1)

where R& is the five-dimensional curvature scalar. To
avoid ghosts and tachyons, extra dimensions must be
spacelike, i.e., —++++ signature, the caret denotes a
coordinate x"=(x",y), @=0,1,2, 3. There are three dif-
ferent metrics which enter the discussion in Kaluza-Klein
theories and they should not be (but frequently are) con-
fused.

(1) The full metric:

gu„+tbAuA„PA„
g (x,y) = (2.2)

A&(x,y) = g A„'"'(x)exp(iny/R), (2.3)

P(x,y) = g ttt'"'(x)exp(iny/R),

where g„„, A„, and P depend on x" and y. The fields

g„„,A„, and (b may be Fourier expanded in the form

g„„(x,y) = g g„'"„'(x)exp(iny/R),
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with g'-"-" =g:-"', etc. The full metric describes the
pv pv

ground state plus massless (n =0) and massive (n&0)
modes.

(2) The Kaluza-Klein ansatz. As above, but discarding
the m.assive modes, this describes the "low-energy theory"
of the graviton g&„', photon A„' ', and scalar P' '. In the

case of S', this ansatz is the same as dimensional reduc-

tion, ' i.e., taking fields to be independent of the extra
coordinates, discarding the n&0 modes in (2.3) so that

g„„,A„, and (t depend only on x".
(3) The ground-state metric

0
(g„,) =

()

This describes the vacuum expectation value (VEV) of

g„-,(x,y) and contains neither massless nor massive fluc-

tuations. It is this "ground-state metric" which deter-

mines the unbroken symmetries of the vacuum not the
Kaluza-Klein ansatz nor the full metric.

The action (2.1) is invariant under five-dimensional

general coordinate transformations with parameters P:

n =0, it follows that for n&0, the fields A„'"'(x) and
P'"'(x} are the corresponding Goldstone-boson fields. The
corresponding gauge fields g„'"„', with two degrees of free-
dorn, will then each acquire masses by absorbing the two
degrees of freedom of each vector Goldstone boson A„'"'

and the one degree of freedom of each scalar Goldstone
boson P'"' to yield a pure spin-2 massive particle with five
degrees of freedom. It is easy to see that we generalize
these results to (4+ K)-dimensional Abelian theories.

In the (4+ K)-dimensional Kaluza-Klein theories,
R -„=0 is consistent with the ground state

"4"I XS X XS' and is metrically flat. The gauge
group would be [U(1)] . The flatness of the extra dimen-
sions implies no potential for the scalar fields. This in
turn means that the cosmo1ogica1 constant is zero and
there is no Higgs mechanism.

ID. RADIAL EQUATIONS IN 4+ X DIMENSIONS

A. Action

Let us consider pure gravity in 4+E dimensions
described by the action

(2.5) 1
d x+—gR4+x16+6

(3.1)

g (x,y) = g g'-"'(x)exp(iny/R), (2.6)

with g- =g:". An important observation is that the
4

assumed topology of the ground state, namely, M XS,
restricts us to general coordinate transformations periodic
in y. Since the parameters g&"'(x) and g&"'(x) each corre-

spond to spontaneously broken generators except for

Dolan and Duff have analyzed the four-dimen»onal

symmetries of the theory which result from retaining the

n~0 modes of (2.3) and which describe, in addition to the

above massless states an infinite tower of charged, mas-

sive, purely spin-2 particles. Following Ref. 6 we also ex-

pand the general coordinate parameter P(x,y) of (2.5) in

the form

+4;,(x,y) [dy'+ 2„'(x,y)dx "]
[dy'+ A J„(x,y)dx "] . (3.2)

The fields g&„, &&, and 4,z may be Fourier expanded jn
the form

where R4+x is the (4+ E)-dimensional curvature scalar.
it is assumed on the partially compactified manifold,
~ XS(ii X ' ' '

XS~yc~, where M denotes four-4 1 4

dimensional Minkowski space and S~';~ is a circle of radius
R;. The metric g-„becomes a periodic function of y'
with a periodicity of 2irR;. Next consider the change of
variables

g —„(x,y) =g„„(x,y)dx " dx"

g„(x,y)= g g„„' (x)exp[i(niy'/Ri+ . +nay /Rx)],
51 ' sg

3„'(x,y)= g 3&
' (x)exp[i(n&y'/Ri+ +nay /Rx)],

(3.3)

(3.4)

4;.(xy)= g 4J' " (x)exp[i(niy'/Ri+ . . +nay /Rx)], (3.5}

with g dxljdx» — e 2+dr 2+e 2bdp2+ r 2dg2+ 2 ~ 2edy2

(ni . ~ . n@)* (ni . - n~)
g„—„(x)=g-„(x)and nR; &y'&nR; . —

8. Schwarzschild type

%e make the static and spherically symmetric ansatz

3,' =tp'(r)h (y'), At' =0,

A~ = —g'cos8h (y'), A e =0,

+~ =h '(y')h '(yi)P, (p), "

(3.6)
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where h (y') is only dependent on the ith parameter y' and
h(nR;)=h( —mR; ) because of h(y') should be a mono-

tropic function.
The Riemann tensor is

+~I+J +t+bl 1 (3.11)

R"--=a-r~ —a r&+r~ r r~ r
vpo" p vcr g vp $p va g~ vp

JAW g AAA
VP VPP

R4++ —R ~ s

(3.7}

(3.8)

~'J+M,'. a' —b'+ —+ —,'~

2b li —~ I ip p' p,t, (3.12)
T

With this ansatz, we flilld fhe followlilg nonvanishlng
Christoffel connection:

0 ~ ~ ~ ~

r, =a', r„=e ~y;A', AJ, r, =e 'y;A&A~, /2,
r, i

——e 'Q~JA 1/2, 1 oo ——a'e '

rio=e KqA rArj/2 I 3o
——e Pt/A&A

J /2,

e =e p Jg'g~/2r +r(a' b'+—Ms/2)+1 . (3.15)

C. GPS type

2a" + 2a' 2(a—b)' 4b'—/r

= —M'tt+e '+ «Pjp'p~+b'Mtt MJ'—M//2, (3.13)

2a "+2a' 2(ab—)'+4a'/r =e '+ «P;Jp'pj Msa—', (3.14}

rg'o ——e Q,IA ~ /2, I i i
b' ——e—P,'qA„'A~J/2,

I 22
—— re ", I ii————e (r sin 8+PIJA~AJ~/r),

I';3———e p;~A /2, I;1= —e p~)/2,
-2b t J & -2b

I ii ——I qi
——1/r, I pi

—— $;JA,'(a—sA~p)/2r
3 — 2= 2

I i&
—— sin8—cos8 (P, A—~aeA~&)/r2,

I Ji ——(M~+e «p tAtJ,'A, )/2,

r; = —4;(a~~&)/2r, r, =Dy; A,'a A~&,

I i2
——cot8+DP, J A paeA Jp, r; p

——DP,JasA Jp,
(3.10)

When we used isotropic coordinates, the static and
spherically symmetric ansatz of Gross Perry S-orkin -type
1s

g„„dx&dx"= e'dt +e—(dr +r aB +r sin 8dg ),
A ~

———g'cos8h (y'), A,'=pih (y'), (3.16)

4,
&

—h '(y')h '(y J)P,J (r), A„' =A e =0,
where h (y') is only dependent on the ith parameter y' and
h (mR; ) =h ( —irR; ) because of h (y') should be a mono-
tropic function, and p' are constants. The equations of
motion can be put in the following form:

roo ———a'A„'e ', r'io ——(1—e "QgJA', AJ)A '„/2,

rio= efjk A, A y
—A '„'/2, rj o

———e A,'P AJs„ /2,
I"'ii —— b'A,'+—MttA, +A''„+e $~qA, AJA,',
I 2i = DgqgApA~jas—Ap,
I 3i ———Ap/r +(Mt't +e P~qA„'A~)A ~ /2,
I 22

——e rA, ,
i —2b i

a"+a' —+a'+ b'+ —,M~ ——0,r

gt&+g& 2+2blt+ bt+ l ~r g }~g~j

a'b' —,Ms b—' =0,—

b"+b' +a'+b'+ , M—~~ + {a'+—b'+—,'Mf )—

(3.17)

(3.18)

r'„= tan8A~+aeA~—/2 Dy,,A,'A~~a~—, /2,
I 33

——(r sin 8+P~ttA~&A&/2)e «A„',

r,', = —Dy„,A ~a,A~,

rj i ——e QttJ A,'A p /2, I Jtt
—e 2«QJJ;A,'+5,J5jsg,

+ 4ffjgg e =0,
2r

(3.19)

where M~ =P' P~J.

M'&+ —+a'+b'+
z Mtt +—Pzjg'g e 2«=0, (3.20)

D =(2r sin 8) ', MJ'=P' P~~,

X =h (y')ah '(y')/ay',

a'=da/dr, A, =aA„/at, etc.

In the absence of other fields, the equations of motion
are, of course, R —=0. The field equations can be put in

Jtl V

the following form:

p'(r) =0,
A, (g') exp( —2a)a sinh a(a +P)

(4.1)

X [(A,/5)sinh(5a/A, )] =r, (4.2)

IV. SOLUTIONS FOR E =1,2
A. Schmarzschild type

In the E =1 case, straightfonvard calculation gives
complete integration of field equations (2.11}—(2.15) for
generalized monopole solutions:
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ex&„=—(5/r)exp( —a)[»nh(~ /~) 1

expb = —ra '[(A, /5)sinh(5a /&)]

(4.3)

(4.4)

In the E =2 case, we shall define

y„=r exp( —,
' Tr lny),

1

Pi&
——Pzi ——s exp( —,Tr lng),

Pzi
——g exp( —,

' Tr lnt}}},
where tq —s = 1 and we also write

gi=g ~+I'~ g2=g'~+I q .

Change the variable to z such that

z= r 1 r exp b —a ——,'Trln

(4.6)

(4.7)

(4.8)

Straightforward calculation gives complete integration of
field equations for generalized monopole solutians:

where A, , a, P are integration constants and the following

necessary condition is satisfied:

4(5/A. ) —a =3 .

(g 'g, +g gz )exp[ —', (Tr in/)+2a] = —4+/4

(g 'g i+g'g2)'@- =&'++'

r sinh(az) =a exp(b —a —,
' Tr in/),

@+——exp[+oui(z —zi )]/(cubi —coi)(cog —coi)

+exp[+oi2(z —zz )]/(coi —co2)(coq —coi)

+exp[+cu3(z z3)]/(coz —co3)(c03 N]),

(4.14)

(4.15)

(4.16)

(4.17)

where a, P, y, co»co2&co&, and z; are integration con-
stants and the following necessary conditions are satisfied:

N~+N2+N3=0, N~Z~ +N2Z2+N3Z3 =0 .

However, these solutions have naked singularities.

(4.18)

B. GPS type

In the K =1 case, we shall take a =0, Pii ——e and
the boundary condition b( ao ) =0. Equations (3.17) and

(3.18) would be of the form

b"+ 2
b +b 2=0

r =[a/sin(az) ]P r exp( —2a/3)4 (z),

4(cr —2a /3) = —(Qlico2+coicoi+coicoi),

(4.9)

(4.10)
I
g' l, -zi
2r 2

(4.19)

a = —3y/4g 'g',

(g'gi —g'gz)'=(2g'g')'(I/@ )(@+)',
4g'g'z =(g'gi+g'g~ }

—(2g 'g')'@'+++/(g 'g i+g'g2)@'-,

(411) The requir~ solution take the fo~
(4.12)

b = —,'ln 1+ lg'I
r

(4.20)

(4.13) The y-dependent monopole solution may be written as

1

dsz= drz= 1+ l—g I (drz+rid8 +r sin 8dp )+
1

fZ(y 1) [dy +g 'cos8f (y ')dp]z, (4.21)

which is the direct generalization of the Gross-Perry-
Sorkin solution. Like that solution these monopoles are
nonsing Glar.

In the K =2 case, straightforward calculation gives a
class of solutions which are nonsingular. These solutions
are

F(8,$)=g 'h (y')sin8, (5.1)

mui«piet ( i j,rt ) = (&„"',g„",'p' ') in five-dimensional
Kaluza-Klein theory. As yet the Kaluza-Klein monopole
solution of the field multiplet (0,0,0) was investigated by
many authors. ' ' Now, for a general solution, we
have

a =0, b = —,ln 1+—[P; (ao)g'gj]'~IJ

—1/2

4&= 1+ [NJ(~)g'gj]'"—
r

(F e 'F)

where cri is the Pauli matrix and F F=P( 00 ).

V. AVERAGE FIELD STRENGTH

(4.22}

(ij =1,2),

F~ =gh (yo)sin8 . (5.3)

where mR i &y
' &—mR i and f (mR i ) =f ( mR i ). On th—e

point of four-dimensional spacetime, the average field
strength is defined as

mR,

F~= f g'h(y')sin8dy'/2mR, . (5.2)

If the h (y') is continuous, then there exists at least one
point yo on the circle such that (the mean value theorem)

%e have shown the general monopole solution which is
dependent on y' in the Abelian Kaluza-K. lein theory.
Next, the average field strength is defined on the point of
four-dimensional spacetime. Let us consider the field F~ g'sinmg sin8/2m(——. (5.4)

We choose h(y'}=exp(i''/Ri) where ( is any real

number; then
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If we take g=n (n is a nonzero integer), then the solution
of (n, 0, —2n) is described by (3.6) and (4.1)—(4.4) but
their average field strength vanishes.

It is easy to see that we generalize the average field
strength to (4+ K)-dimensional theory.

yI. SUMMARY

The classical vacuum solution of the Kaluza-Klein
theory is assumed to be M XB. Any field configuration
which approaches the vacuum solution at spatial infinity
thus defines a 8 bundle over the sphere at spatial infinity
S . If the 8 bundle over S cannot be continuously de-
formed to the global direct products S XB, then the field
configuration cannot be continuously deformed to the
vacuum solution. %e conclude that it is a topological sol-
iton. In the effective low-energy five-dimensional theory,
the simplest case is the Gross-Perry-Sorkin monopole. It
is well known that the effective low-energy theory can be
deduced by considering the metric g-„ to be independent

of g.
In this paper, we consider the full metric g-„depend-

ing on x and y. This describes the ground state plus both
massless (n =0) and (n&0) modes. FoHowing Ref. 6, an

important observation is that the assumed topology of the
ground state, namely, M )&5 g . . &5 restricts us to
general coordinate transformations periodic in y . The y-
dependent generalized monopole solutions are the field
configurations of the vector Goldstone boson A&"', scalar
Goldstone boson P'"', and massless fields (n =0). In fact,
g'-"-,' with two degrees of freedom will then each acquire
masses by absorbing the two degrees of frecxiom of each
A„'"' and the one degree of freedom of each P'"' to yield a
pure spin-2 massive particle with five degrees of freedom.
For this configuration we have shown the simplest case,
i.e., y-dependent Gross-Perry-Sorkin solution which is
nonsingular.

Recently, there has been much interest in the problem
of bound states of a fermion in the field of a fixed Dirac
monopole' ' or in a monopole of the unification of the
fundamental interactions. '

The above generalized y-dependent monopole may be
considered as a background field which is topologically
different from the vacuum background field. It is in-
teresting to examine the dynamical property of a fermion
in this monopole background field which will be reported
elsewhere.
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