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Dirac quantization of the chiral superfield
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We extend the method of Dirac quantization in superspace to the case of ckiral superfields. We
obtain quantization conditions in superspace which are consistent with the conditions for the com-
ponent fields. Furthermore, we show that with these modified Dirac brackets and the modified
Hamiltonian the correct Heisenberg equations of motion are obtained.

I. INTRODUCTION S= f d x d 8d 8 44+5i(g) —@~+52(g)—@2
2 2

A Lagrangian field theory which is subject to con-
straints does not have a unique Hamiltonian. Canonical
quantization of such a theory, therefore, requires modifi-
cation of the naive Poisson brackets. One way to handle
this problem was suggested by Dirac' and can be applied
to many constrained field theories. '

Supersymmetric theories inherently contain con-
straints. Such theories contain auxiliary fields whose re-

lations to the dynamical fields are constraints in the
theory. Additionally there may be other constraints one
wants to impose on the fields such as in the case of the
nonlinear cr model or the chiral superfields.

In a previous paper it was shown how Dirac's method
can be extended to superspace to give proper quantization
conditions for supersymmetric quantum mechanics as
well as the supersymmetric nonlinear cr model in 1+1 di-
mensions. Chiral superfields are more subtle since they
satisfy differential constraints in superspace rather than
the usual algebraic ones.

In this paper we show that the extension of Dirac's
method works well for the chiral superfields in superspace
as well. We obtain quantization conditions for the super-
fields which reduce to the known quantization conditions
for the component fields. As a spinoff we find a Hamil-
tonian formulation for chiral superfields.

The paper is organized as follows. In Sec. II we present
the Lagrangian for the chiral superfield and discuss vari-
ous constraints in this theory. Section III contains a dis-
cussion of Dirac's procedure as modified for superspace.
This procedure is applied to the chiral superfield theory
and the Dirac brackets are obtained for this theory. We
show that these brackets are consistent with the corre-
sponding component results. In Sec. IV we show that the
Dirac brackets together with the modified Hamiltonian
give the correct Heisenberg equations of motion.

II. THE CHIRAL LAGRANGIAN
AND ITS CONSTRAINTS

The superspace action * for the massive, interacting
chiral multiplet has the form

+ 5'(8) +4 '+5'(8)LC '
3 3

(2.1)

where 4(x,8,8) and 4(x,8, 8) satisfy the chiral and an-
tichiral constraints given by

Dd@=[ d i (—go' )—Q~]+=0,
D I'=[8 +i(tr 8) t) ]4=0. (2.2)

@=exp(iea ea )c, ,

@=exp( —igtr 88 )4
(2.3)

where the superfields 4+ and 4 satisfy the constraints

a,e, =o, a.e =0. (2.4)

It is clear from the form of 4 and 4 that they contain
time derivatives of functions and, therefore, their brackets
would necessarily involve brackets of velocities. In this
case it turns out that the velocities cannot be expressed in
terms of the canonical momenta and, therefore, we cannot
evaluate these brackets. Consequently we choose to work
with the superfields 4+ and 4 which satisfy the simple
constraints of Eq. (2.4).

We can now write the action of Eq. (2.1) in terms of
4+ and 4 and in order to generate the constraints given
in Eq. (2.4) from the Lagrangian we add these to the La-
grangian through appropriate Lagrange multiplier fields
A- and A~.

The action in superspace thus takes the form

Here and in what follows we use t) =8/Bx, m=0, 1,2,3;
a, =agee'; a.=azae', a,a=1,2. The conventions used
throughout in this paper are the same as those of Refs. 3
and 4.

The solutions of Eq. (2.2) determine the form of the
superfields to be
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= Jd xd ed «'+~' +ieo 8@ a @,—5'(8)5'(e)a e a-e, +52(8) +

+5'(8},q '+5'(8)Le '+Ave, +Aac (2.5)

A ~A' =A +p, (x,e) .

It is therefore always possible to make a transformation
such that the multiplier fields are of the form

A.=|9.A, A =8 A, (2.7)

where A=A(x, 8,8) and A=A(x, e, e) are so far general
scalar superflelds. The form of Eqs. (2.7) can be formu-
lated equivalently through the gauge-fixing constraints:

where we have used A a =A .a and Aa =A a .
The action in Eq. (2.5) is completely equivalent to the

original action with the constraints. In Eq. (2.5) the
Lagrange multiplier flelds A, A are general fermionic
superfields. Note here that the action in Eq. (2.5) is in-
variant under the gauge transformations

A, A'. =A, +P.(x,e)

(2.6)

5S 5S=a 4+=0, =a~@ =0.+ '
5A

(2.9b)

II+(x,8,8)=
a@+(x,e,e)

The equations of motion for the multiplier fields (2.9b)
give the desired constraints of Eq. (2.4). Moreover, Eq.
(2.9) gives rise to more constraints: for example,
5Sl54+ ——0=5S/54 implies

5 (8) =0=5 (8)
54+ 54

which has the equivalent form

5'(e)(~ +aA)=0=5'(8)(e, +aA) .

Several constraints are generated in this way.
The momenta are obtained from the Lagrangian in Eq.

(2.5) as

5 (8)A =0, 5 (8)A =0 . (2.8)
=ieo 84 +5i(8)5~(8)@

As it should be, we will show that there are first-class
constraints in the theory which reflect the gauge invari-
ance and which can be made second class by incorporat-
ing Eq. (2.8) in the set of constraints.

The equations of motion are obtained from Eq. (2.5) by
the usual variational prinriple:

II (x,e, e) =
a4 (x,8,8)

= —ie~'@ +5'(8)5'(8)@+,

(2.10a}

—2iecr ea 4 +5 (8)5 (8)U@

+5 (8)m@++5 (8)g4+ +a A=O,

5S =e, +2ie~ ea„c,+5'(e}5'(e)ac,

+5'(8)me +5i(e)ge '+aA=O;

(2.9a)

p (x,8,8}= . =0
aA ~(x,e,e)

p (x,8,8)= . =0aL

aA (x, e, e)
(2.10b)

(where ~ =ao&). The forms of the momenta give rise to
additional constraints. Altogether we have the following
set of constraints ( = means weakly equal2):

r, =5'(e) e, =o, r,=5'(e)11 =o, r, =5'(e) c =o, r, =5'(8)ll =o, r,,=5'(e}a,e,=o,

I ~——8.11++ 5(8)(eo )—4 =0,

I 9——5 (8) 4 +m4++g4+4

17 =5 (8)a 4 =0, I s ——8 II ——5 (8)(o 8) 4+=0,
T

=0, I io ——5 (8)II =0, I ii ——5 (8) 4++m@ +gC& =0,

r|2——5 (8)II+-0, I )3~——8~11++ 5(8)(o 8—)~4 =0, I,~——8 II ——5 (8)(eo } 4+=0, I i5
——5 (8) p =0,

1,~——5 (8)A =0, I i7~ ——5 (8) p~=o, I ig
——5 (8)A~=0, I i9

——5 (8)ap=o, rqo ——5 (8)(4 +aA)=0,
(2.11)
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r„=5'(8)ap=o, r„=5'(8)(c,+aA)=0, r„,=5'(8)5'(e)p, =o, r,„.=e,5(e) 3K=0,

res~=5 (8)5 (8)p~=o, I z6
——8 5 (8) I)A=O, 117.——5I(8)5 (8) p, -o,

r„,=5'(e)5'(e) [e,(c +3K)]=0, r„.=5'(e)5'(e) p. =o, r, =5'(e)5'(e) [8.(c +ax)]=0,

I, =5 (8)5 (8)B~.=O, I .=2'o .(II ie—o 84 )+5 (8)5 (8)(2icr" d4. +B B.BA)=0 (k =1,2,3),
5 (8)5 (89~ =0, I", 2io (II +ieo 84 )+5 (8)5 (8)(2io" I) e,—a.a,aA)=0 (k =1,2, 3) .

Note here that the constraints I &~ and I &s are the

gauge-fllxlIlg coils'tralllts of Eq. (2.7) whlcli do Iiot coIlle
from the Lagrangian. These gauge-fixing constraints
make the initially first-class constraints rls. and I i7

second class. Furthermore, as can be easily seen if one
uses the fundamental Poisson brackets given in Sec. III,
all I; are second-class constraints.

FinaBy it is important to note that only I ~
—I ~4 are

constraints on the dynamic fields, whereas the remaining
constraints simply determine the Lagrange multiplier
fields in terms of the dynamic fields of the theory. This
will become more obvious if one looks at the results in

component form as we shaH do in Sec. III.

1)$(A)$(8)[BA j

t A,B+Cj = I A,Bj+ t A, C j,
tA, BCj =(—1) '"' ' 'Bt A, Cj +IA,B jC,
AB Cj ( 1)$(a)s(c)IA,CjB+A IB,C

( 1)$(A)$(c)IA IB Cj j+( 1)s(A)s(&)[B IC A j j

+(—I )'""'"Ic, [A,B j j =o .

(3.1)

I@~(z),11+(z')j,=5 (z —z')

The only nonvanishing Poisson brackets of our fields
are

III. THE DIRAC BRACKETS OF THE THEORY

Let us introduce the following notations: denote the su-

perspace variable by z =(x,e,e .) and define

d z =dixd ed 8,

5 (z —z') =5 (x x')5 (8—8')5 (8—8')—

= I 4 (z), II (z')j

IA.(z) pp(z')j„, = —e.P~(z —z'),

tA (z),pp(z') j„,, = —e P (z —z') .
xo =So

(3.2)

and the signature function S by

0 if A is bosonic,
I if A is fermionic,

such that 8A =( —1) '"'Ae for all anticommuting vari-

ables 8. We define the fundamental Poisson brackets as in

Refs. 4 and 9. These brackets satisfy the following set of
identities:

Following Dirac's method, we have to make sure that
I;=0, i =1, . . . , 34. The canonical Hamiltonian for our
system is

Hc= z II+@++II 4 +A~p +A. ~—I

with L obtained from Eq. (2.5). H, can be cast in the
orm

H, = I d'z[ ,', aa(II, I—e~'ee )3—3(II + e~I'eC, ) l8084 ~()—@ +'5 (8)5 (8)Q @ (j @,

—Lz+A p~+AP —ABC —A 84+] (k =1,.2, 3), (3.3)

H =H, + I d'z A,;(z)r;(z) (3.4)

L =—[5 (8)@ +5 (8)4 ]

[5 (8)4+'+5 (8)4 ] .

Hc is defined only on the constrained hypersurface I;=0
and we assume that the velocities A, A can be expressed as
fuilctloIls of @+,II+,A, A,p,p.

Following Dirac we let the time development be
governed by the Hamiltonian

I;(z)= I 1;(z),H j =0 . (3.5)

It is straightforward though tedious to verify that Eq.
(3.5) can be satisfied for all I; by a proper choice of the

in terms of 4+,II+,A, A,p,p and their spatial and
Grassmannian derivatives. We thus have found that the

which coincides with Hc on the constrained hypersurface,
namely H =H, . The "velocities" I; of the constraints
must vanish weakly, i.e.,
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constraints I i, . . . , I &4 given in Eq. (2.11) are all the con-
straints in the theory and they are aH second class.

In proceeding we use the fact that Dirac's method can
be applied iteratively and we choose subsets of constraints

I

[ I;(z),I J(z')]„

for these iterations as follows: I i, . . . , I 4; I 5, . . . , I' s;
I 9 ~ ~ ~ I ii I /3 I ig I +3 for r= 15,19,23,27,31.

Starting with I i, . . . , I 4 we find that the matrix of the
Poisson brackets of the constraints is given by

=5 (x —x')
5'—(8 8'—)5 (8)5 (8')

5'(8—8')5'(8)5'(8 ')

O

—5 (8—8')5 (8)5 (8')

Q

5 (8—8')5 (8)5 (8')

(ij=1, . . . , 4). (3.6)

This matrix is not invertible due to the Grassmannian nature of the variables. However, as already pointed out in Ref. 4,
for consistent quantization conditions it is sufficient to find a inatrix D;~(z",z"') such that the newly defined brackets

I ~ (z),B(z )j', = [~ (z),B(z )],—f d'z-d'z- [~{z),r, (z")]D; (z",z'")
t I (z"'),B(z') ] (3.7)

satisfy

tA (z), I;(z')]'=0 (3.8)

for any dynamical 3 (z) and all constraints I;. Since we consider here only I,, . . . , I 4 in this first iteration step we
have to require that Eq. (3.8) be satisfied only for these constraints. Equations (3.8) determine the matrix D;J(z",z"')
which is effectively unique and has the form

T

rt s&e) 5z( &s irrupt)

0
52(8/l 8(ll

)

—5 (8"—8'")

5i(8 Il 8 lit)

—5 (8"—8'") (3.9)

The fundamental brackets now modify to

I++(z),H+(z')],', , =5 (x —x')5 (8—8')[5 (8')—288'],

(z), II (z'}]',=5 (x —x')5 (8—8')[5 (8') —288'] .
So =So

The remaining brackets between the elementary fields are as the original ones.
For the next imration now calculate [ I";,I

z
]' for ij =5, . . . , 8 and repeat the procedure to find I A,B]'",etc. After

the ten iterations indicated earlier we find the following final Dirac brackets of the theory:

I4+(z},II+(z')], =5 (x —x')5 (8')[5 (8') —88'],

[4 (z), II (z')]„„,=5 (x —x')5 (8')[5 (8')—88'],
Xo =Xp

I II (z),4+(z'}j,, =5'(x —x')5 (8)5 (8)52(8')[m+2g@ (z)],

t H+(z), 4 (z')], =5 (x —x'}5 (8)5 (8)5 (8')[m +2g@+(z)],

[4+(z},4 (z')], =2i8cr 8'5 (x —x'),

I H+(z), II (z')], =i5 (x —x')[5 (8)5 (8)8'o 8'+5 (8')5 (8')8o 8+ —5 (8')5 (8)8o 8']

[4+{z),4+(z')j,= I@ (z),4 (z')], =0,

[H+(z),II+(z')], =[II (z},II (z')], =0,

[@ (z), A (z')], =i5 (x —x')5 (8')(8'o) 5 (8)[m +2g4+(x, 0,0)],
[4+{z),A.(z')j,= —i5'(x —x')5 (8')[(8'+8)o ] . ,

[ II (z),A (z')]„„.= [——,0 5 (8')5'(8)+ —,
' 8' 5 (8)5'(8)—5'(8')(8'oo) .8ooe

+i5 (8')(8'o ) -5 (8)5 (8)5k]5 (x —x') (k =1,2,3),

(3.10)
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I II+ (z),A .(z')j,=0,

I 4~(z), A~(z')j,= —i5 (x —x')5 (8')5 (8)(cr 8') [m +2g4 (x,0,0)],

I4 (z),A~(z')j,= i—5 (x —x')5 (8')[o (8—8')]~,
Xo =Xo

I II+(z'), & (z') j. .. =[——,
' 8 5 (8')5'(8)+ ,' 8'—5'(8)5(8)+5'(8')(o 8') Oo 8

—i5 (8')(o' 8')~5 (8)5 (8)Bk]5 (x —x') (k =1,2,3),

(A (z), A~(z')j „,= — c—r 5 (8)5 (8') ——5 (8)(go ) O~ ——5 (8')g.(o 8')~
xo =So

+ 5 (8)5 (8')8~8~ (oo "&+oo &)Bk 5 (x —x'),

tp, 4+j =tp, , 11+j = [@,Ajj =I@,A j
= Ip. ,ppj = Ip,pjj =0,

Ip»@+j=tp 11+j=Ip &pj=tp A. j=Ip plij=0.

Since our method preserves the relations in Eq. (3.1) these
brackets I A,Bj also satisfy these properties. Note that
all brackets with p . or p vanish as a result of the con-

straints and, therefore, these can be set strongly equal to
zero.

Equations (3.10}give the final Dirac brackets which are
consistent with all constraints I;=0, i = I, . . . , 34.
These brackets give the consistent quantization conditions
for the superfields. We have obtained these in superspace
without making use of the component field language.

Having found the Dirac brackets we can now set all
constraints strongly equal to zero I;=0, i =1, . . . , 34.
As a result the superfields have the following component
expansion:

4+(z) =4+(x,g) =A (x)+v 28$(x)+5'(8)F(x),
(3.11a}

(z)=4 (x,g) =A '(x)+ ~28 P(x)+5 (8)F'(x),

A (z)= —8~[ —,'A(x)+v 28$(x)+2igo Od A(x)],
(3.11b)

A.(z)= —8,[ —,'A'(x)+v 28$(x)—2igo 88 A'(x)],

where A (x) is a complex scalar field and f(x) a complex
Weyl spinor as usual. i Using the expansions of Eqs.
(3.11a) in the definition of the momenta (2.10a) they take
the form

~X ~
~ X r=lO' - X —X

(3.12)
IF(x), A(x')j,= —5 (x —x')[m +2gA '(x')],

I F'(x),A '(x')j,= —5 (x —x')[m +2gA (x')] .

Equations (3.12) give the brackets which one would ob-
tain if one had applied Dirac's method to each component
individually. The results of the superspace quantization
are thus consistent with the results of the component
fields. Our method, however, allows us to quantize super-
fields directly.

D' HEISENBERG EQUATIONS OF MOTION

We can now use the Dirac brackets derived in Sec. III
and the Hamiltonian H given by Eq. (3.4) in order to cal-
culate the Heisenberg equations of motion:

4+(z) = I@+(z),H j, II+(z)= I II+(z),H j (4.1)

component fields can be inserted into the Dirac brackets
to obtain the quantization conditions for the component
fields:

I A (x), A '(x') j. .. =5 (x —x'),

0

II+(z) =igcr 8A'(x) — 5 (8)8o itt(x)
2

+5'(8)5 (8)A '(x),

II (z)= igcr OA(x}+—
5( )8f( )x'o8

2

+5'(8)5'(8)A(x) .

(3.11c)

As can be seen from the constraints in Eq. (2.11) or more
explicitly from Eqs. (3.11b) the multiplier fields are given
in terms of the dynamical fields W+. The equations of
motion for A and A therefore do not give us any new in-
formation and I A, H j and [A,H j need not be comput-
ed. Before we evaluate the brackets in Eqs. (4.1) we
should note that by our construction of the Dirac brackets
I A (4+,II+,A,p, A,P),I; j =0 and thus

IA(e, II,A,p, A,p),Hj =IA(e, rI, A, pA,p), Hj

These expressions for the superfields in terms of the where H is the final Hamiltonian of our theory:



34 DIRAC QUANTIZATION OF THE CHIRAL SUPERFIELD

8= J d'z[ ,',—(aaII,}(aaII ) —e,e —ieo"ee a,e,+5'(8)5'(e)a„C a"e, —L.. —L.,] (k=1,2, 3).

Consequently the Heisenberg equations of motion (4.1) can be written as

e (z) = Ie.(z),H I', 11.(z) = I 11.(z),H ]' .

Evaluating the brackets in Eqs. (4.3) we find the following equations of motion:

4+(z)=4+(x,O)+(eo o ak} [8~4+(z)]+ . [Ieo 8[m@ (z)+g4 (z)]I —5 (8)4 (x,O)[m+2gd& (x,O)],

i (z)=i (x,o)+(eoo&ka„). [e C (z)]+ . [eooe[me (z)+go 2(z)]~ 5—i(e)e (x,o)[m+2ge (x,o}],~2 2i

II+(z)=i8o' 84 (x,O) —5 (8)8 [i(o' 8)~ak4 (z)]+ I 8~[m@+(z}+g4+ (z)]I

(4.2)

(4.3)

(4.4)

+5'(8}5'(e}ta„a"C (z)+-,'ae, (z)ae, (z) —[me (z)+ga '(z)][m+2ga, (z}]I,

II (z)= —ie~'ee, (x,o) —5'(e)e, [—i(o'8) ae, ( z)] + Ie [me (z)+go '(z}]I

+5 (8)5 (8)Iaka"4 (z)+ —,'a4 (z)a4 (z) —[m4 (z)+g4 (z)][m+2g@ (z)]I (k =1,2, 3) .

&'o a q+mq+ 2gAq, —

io a itr+mp= —2gA'it,
(4.5)

(CI —m )A =gPP+mgA +2gA'(mA+gA2),

(Cl —m )A'=gPg+mgA'2+2gA (mA'+gA'2) .

These are the well-known field equations for the com-
ponent fields. 3'5 As in Sec. III our results for the super-
fields, which were derived in superspace without making
use of component fields, yield the correct equations for
the components.

We thus obtain the Heisenberg equations of motion for
the component fields which can be written in the follow-
ing form:

V. CONCLUSION

We have applied a modification of Dirac's method for
constrained systems to chiral superfields. With this we
derived quantization conditions, which are consistent with
the constraints in the theory. We found a Hamiltonian
for our system and showed that it generates the known
equations of motion for the component fields We h. ave,
therefore, presented a complete scheme for the canonical
quantization of chiral superfields whose quantization pre-
viously employed path integral methods.
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