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%e demonstrate the realization of supersymmetric quantum mechanics in the standard first-order
Dirac equation describing a massless Dirac particle in a magnetic field. This system is relevant to
the integer quantum Hall effect. In obtaining the first-order supersymmetry, square-root operators
are used and justified. A detailed discussion is also provided of the simpler problem of supersym-
metry in the context of the relativistic Pauli Hamiltonian squared. In addition ere discuss a realiza-
tion of the superalgebra osp{—,

'
) obtained from this system.

I. INTRODUCTION

The startling discovery' of the integer quantum Hall ef-
fect presented physicists with the possibilities of obtaining
an improved value of the fine-structure constant and a
standard of resistance at the quantum level. 2 A theoreti-
cal explanation of the phenomenon has been advanced by
Laughhn and others. ' The system studied by Laughlin
is that of nonrelativistic, spinless electrons confined to a
plane with a uniform electric field in the plane and a uni-
form magnetic field perpendicular to the plane. The
relevant Hamiltonian is the Pauli Harniltonian and the
solution of the eigenvalue problem is a series of Landau
levels, all doubly degenerate except for the ground state.

This explanation can be viewed as involving the proper-
ties of the magnetic translation group in the plane.
Laughlin's conclusions should therefore be unchanged by
the introduction of electron spin. Indeed, it is now known
that there are no relativistic corrections to Laughlin s ex-
planation. '

Many authors ' have investigated the normal quan-
tum mechanics of an electron in a uniform magnetic field.
These analyses can be pursued further in the context of
supersymmetry in quantum mechanics. ' *' For example,
if a nonrelativistic electron with a Pauli magnetic moment
having a gyromagnetic ratio of two is placed in Laughlin's
system, a supersymmetry occurs.

In the Dirac theory a gyromagnetic ratio of two arises
automatically. Further, as has recently been pointed
out, ' ' the square of the Dirac Hamiltonian containing
a uniform magnetic field coincides mathematically with
the previously mentioned supersymmetry of the Pauli
Hamiltonian. This supersymmetry is only manifest in the
energy-squared spectrum since the quantum-mechanical
algebra sqm(2) involves a second-order differential opera-
tor in its usual realization.

The above led us to ask if a supersymmetry could be

found in the first order Dir-ac formalism. In this work we
elucidate our affirmative answer. ' We shall present the
first example of supersymmetric quantum mechanics ap-
plied to the spectra obtained from the first-order Dirac
Hamiltonian, rather than to spectra obtained from a
second-order differential operator such as the Schrodinger
Hamiltonian, the Pauli Hamiltonian, the Iaein-Gordon
equation, or the squared Dirac Hamiltonian.

We will work with a model Hamiltonian that describes
massless Dirac fermions in a constant, uniform, magnetic
field. The absence of an electric field may, in principle, be
remedied by boosting the system. Also, although the
massless limit is unphysical, the extension to the massive
case is conceptually straightforward.

In Sec. II we establish our conventions, and we present
the derivation of solutions to our model Hamiltonian. A
discussion of the supersymmetry in the squared Dirac
Hamiltonian, or ("second-order relativistic Pauli Hamil-
tonian") follows in Sec. III.

Section IV contains the major results. %e explicitly
construct matrix operators that yield a realization of su-
persymmetric quantum mechanics for our model first-
order Dirac Hamiltonian. Intuitively, the "square root"
of the Dirac equation is thereby obtained.

The validity of using square-root operators is discussed
in Sec. V.

In Sec. VI magnetic translation symmetries for the
Dirac Hamiltonian are discussed. Together with oscilla-
tor raising and lowering operators that appear in the
Dirac Hamiltonian, we find that the generators of these
symmetries may be used to form a set of operators closing
into a superalgebra isomorphic to osp( —,

' ).

II. THE MODEL AND ITS SOLUTIONS

The minimally coupled Dirac equation for massless spi-
nors is
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g%=—[(B, —ieA, )y +(B+ieA) y]4=0. (2.1)

We choose to use the chiral representation of the Dirac y
matrices:

the 4 &4 diagonal matrix with nonzero entries
(1,—1, 1, —1).

In obtaining (2.11) we used the commutation relation

where

0 —I
—I 0

0 1 0
1 0 ' i

I

0 cr'

0
i =1,2,3,

0

(2.2}

(2.3}

[D,D+ ]=2eB . (2.12)

(t x y, &) —=exp[ie( co„—t+k x+k z)]g„(y)g

This indicates that D+ and D are unnormalized
harmonic-oscillator raising and lowering operators, which
will be of use to us in Secs. V and VI.

Equation (2.11) contains the gyromagnetic ratio of two.
It may be solved by the ansatz

1 0
0 =

0

A constant, uniform, magnetic field can be described by

(2.13)

where X, are chosen as the four, independent, constant,
four-component eigenspinors of the matrices

A, =0, A„=—By, Ay
——0, A, =0, (2 4) (2.14)

giving 8=VX A=Bz. Then, the particle will perform
cyclotron motion in the x-y plane. The operator g is
grven by

and a~2, with

57 ~ra +~vcr ~ (2.15)

@=yoB/Bt+y V ieByy' —. (2 5) and

We choose eB ~ 0 for definiteness.
Solutions of (2.1) may be found via the

Feynman ' '—Gell-Mann ' method. ' First, the Dirac
equation (2.1} is multiplied by the Dirac operator 9,
yielding a second-order four-component equation:

@@@=0. (2.6)

where

—Bi —Bg

—D+

—Bi+Be

+a+
0 (2.8}

Equation (2.6) will have eight independent solutions 4.
The solutions qi of Eq. (2.1) are then given by

(2.7)

The eight solutions so obtained are twice the number of
independent ones. Equation (2.5) implies 8 can be writ-
ten as

12o X~~—o'X
~@ (2.16)

where v, o =+1. The matrices y and a' commute with
each other and with the operator 8g. Thus, the spinors
X, have unity in the first through fourth rows, respec-
tively, and zeros elsewhere.

The solutions (2.13) are also labeled by the sign e of the
energy, and by an integer n &0. This integer arises be-
cause the functions g«~(y) in Eq. (2.13) are found to be
harmonic-oscillator functions, with centers displaced from
the origin by an amount dependent upon the x momen-
tum, k, (Ref. 22).

A conserved, Hermitian, but non-positive-definite sca-
lar product for any two solutions 4 and 4' of Eq. (2.11) is

(4
~

4') =i f d x 4—*(t,x)B/Bt@'(t,x) . (2.17)

With respect to this scalar product, a complete, o~hogo-
nal set of solutions to Eq. (2.11) for a given energy is
given by C&«,~ of Eq. (2.13), where

g„, (y) = exp[ —,' eB (y —ek„ /eB)—2]

and

D+ ——B/Bx ieBy +i B/By—, (2.9)
XH„ i/2, ~, ((eB)' (y ek„/eB)), —

co„=+ (k, +2neB) '

(2.18)

(2.19)

D =D+ ———B/Bx+ie—By+i B/By . (2.10)
and H„are the Hermite polynomials. %ith this solution
for 4„„wefind the identities

Then, Eq. (2.6) may be written as

gg@=[(B, —B„—B» —B, —2ieByB„

+e 8 y )I+eBo' ]4

D+4„„(y)= i (eB)'~ 4„—+ i, (y),

D 4„, (y)=+i(eB)'~ (2n —1 —o)
(2.20)

=[(B, B, +D+D )I+—eB(I+o'i)]4=0 .

(2.11)

Here, I is the 4X4 identity matrix and o"=—,i [y', y ] is

Equation (2.11) is a system of four second-order dif-
ferential equations that yields eight independent solutions,
4«,~, for each value of the momenta k„and k, . Further,
the functional form of the solutions is independent of r
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There is therefore a double degeneracy among the eight
solutions, although they are independent because the spi-
nors X, are orthogonal with respect to Eq. (2.17). Also,
the energy is independent of k„. This is the familiar
Landau-level degeneracy and reflects the magnetic
translation symmetry6'~ in the x-y plane.

Proceeding with the Feynrnan —Gell-Mann method, we
use Eq. (2.7) to obtain solutions of Eq. (2.1). Since Eq.
(2.1) is a first-order differential equation, not all of the
solutions 4' obtained from g4 are linearly independent
with respect to the conserved, Hermitian scalar product

1/2
exP(iek„x} (eB)'/2

(2 )1/2 i/22nn t

Xexp( ——,
' I; )H„(&,),

with the properties

f f„'j'„Px dy =5„„5(e(k—k')),

D+fn. =+i [«»(2n +1+1)]'"fn+i,.

(2.30)

(2.31)

(2.32)

('p
~

q' & = f d'x +(t,x)y'q '(t, x)

= f d x + (t, x)%'(t, x) .

we can simply obtain the eigenstates normalized to

5(e(k„—k„'))5(e(k, —k,')) .

(2.21) They are

Another aspect of this is that when we write Eq. (2.21) in
the Hamiltonian form lim, :—0,fn

n~o g
(2.33)

.8'0
=HDQ,

where HD is the 4&4 matrix

hD 0
~a= 0

and ha is the 2 y 2 matrix
' —ia/az iD

(2.22)

(2.23)

0
n += '+ e(co —k }(2n) 'nf

(eB)1/2f

e(con +kz )(2n) ' f„
(eB)'/'f—

0

(2.34)

(2.35)

(2.24)iD+ —i c) /c),

we find that [HD, y ]=0 but [Ha, cr' ]&0. This means
that the eigenvalues cr of cr' cannot be used to label the
solutions of HD. In fact, this can be viewed as the origin
of there being only four instead of eight independent solu-
tions %.

This overcompleteness is explicitly seen by calculating

exp[ie( co„t +k,—z)]
(2~)'"

X [eB+(1—5„0)(co„+k,)]2 (2.36)

re(a)„+rk, )
nor — i/2 &+ner+

(eB)
(2.25)

I;=(eB)'/ (y —ek, /eB),

6,=exp[+i e( co„t+k„+xk,—)]zxpe( ——,
' I', ),

(2.26)

(2.27)

the four independent unnormalized solutions are (e=+1)

Equation (2.25) shows that cr is not an independent quan-
tum number in the Dirac space, whereas e and ~ are. De-
fining

III. SUPERSYMMETRY AND THE RELATIVISTIC
PAULI HAMILTONIAN SQUARED

A quantum-mechanical system is said to be supersym-
metric' ' if there exist operators Q;, i = 1, . . . , X, that
commute with the Hamiltonian Hss and that anticom-
mute to generate the Hamiltonian

[Q»ss]=0
l Qi QJ ] =5~JHSS .

0
one+ =&~'ne++ =Ge i&(~ k )H ( y

i (eB)'/ H„( I', )

ie(co„+k,)H„)(Y, )

—i (eB)' H„(I;)

(2.28) We refer to the superalgebra (3.1) as sqm(N).
In this paper, we shall restrict our attention to the su-

peralgebra sqrn(2), which has two anticommuting genera-
tors. Furthermore, we shall work with matrices Q and

Q, defined by

1
Q = (Q i+i'Q2)

2
(3.2)

where the H„are the Hermite polynomials (H i
—=0).

By now defining

Q = (Qi —iQ2} .1

2

Then, the superalgebra sqm(2) may be written as
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[Q»ss3=EQ Hss]=0

I Q, g I
= [Q Q ] =0

I Q Q I =Hss .

(3.3)

Hss has an eigenspectrum with a set of pairwise degen-
erate "boson" and "fermion" levels, and with a single "bo-
son" ground state. The operator Q takes a fermionic
eigenstate ~F) into a bosonic ei enstate

~

8). The re-
verse transformation is done by Q . In equation form we
have

Q iP) El/2 i+)
gt

~
g) gl/2

~
F)

(3 4)

where E is the common eigenenergy of 8) and
~

E).
For unbroken supersymmetry, both Q and Q annihilate
the ground state

~
0):

g io)=g'io)=o.
This and the superalgebra (3.3) imply that the eigenenergy
of the ground state is necessarily zero, i,e.,

A relationship of this type might have been expected,
since both gitp and HD are "square roots" of (H )ap.

%'e remark that what we are calling the "ground state"
of (H )Rp is really an infinite set of levels, labeled by the
continuous variable k„as may be seen from Eqs. (2.13),
(2.18), and (2.19). The "ground state" energy is coo ——k, ,
which is zero only when k, =o. Therefore, from Eqs.
(3.5} and (3.6) and the associated discussion, the sqm(2)
supersymmetry of Eq. (3.9) is an unbroken symmetry of
the second-order relativistic Pauli system only in the limit
k, —+0. Interestingly, this limit is in force under the ex-
perimental conditions of the quantized Hall effect.

The breaking of the supersymmetry for k,&0 may be
explicitly seen by acting with QRP of Eq. (3.8) on the
ground-state eigenvector of Eqs. (2.13), (2.18), and (2.19).
We find

QRP@0„(o,x,y, z) = —ek, @0, (O,x,y,z) .

Although part of the ground-state eigenvector, specifically
40,+, is indeed annihilated by QRp, the remainder

is not.

Hss
~
0& =o (3.6)

Note that the superalgebra (3.3) and Eq. (3.6) mean that
Hss has eigenvalues that all must be greater than or equal
to zero.

Let us turn to the role of the superalgebra sqm(2) in the
system described by the relativistic Pauli Hamiltonian
squared,

(H )Rp=(HD)', (3.7)

where HD is given by Eqs. (2.23) and (2.24). There is a re-
1ationship between this system and the nonrelativistic su-
persymmetric harmonic oscillator. ' Defining

0 0
QRP I ()

(3.8)
0

QRP —
0 0

IV. SUPERSYMMETRY
AND THE DIRAC HAMILTONIAN

In this section, we investigate the existence of super-
symmetry for particles in the system described by the
first-order Dirac Hamiltonian HD, Eqs. (2.22) and (2.23).
Inspired by the results of the last section, we look for
operators QD and QD that are square roots of HD.

The easiest way to obtain such QD and QD is first to
find the diagonal form HD of HD. To see that the diago-
nal form HD can be constructed, note that (HD ) =(H )Rp
is diagonal. Therefore, HD has entries that are one of the
square roots of the diagonal entries of (H )Rp. Then,
after one obtains the supersymmetry operators QD and
QD from HD, they must be converted to the HD basis.
The Foldy-Wouthuysen (FW) transformation of HD into
HD is the straightforward way of doing this. We use the
FW transformation

we find that

I QRP QRP l =(H')RP .
tThe operators QRp and QRp satisfy the sqm(2) algebra in

Eq. (3.3). Now,

I QRp*r'I = CgtRP r'I =o. (3.10)

HD=r (QRP —QRP) .0

Thus, the supersymmetry generators Qap and QRP act on
the eigenvectors of (H }Rp to change the eigenvalue r of
y and also to change the sign e of the Dirac energy.
However, since the eigenvalues of (H )imp are energies
squared, QRP and QRp interrelate degenerate eigenstates
in the relativistic Pauli system, as expected.

It is also interesting to note that the Dirac Hamiltonian
may be written as

HD = U-'HDU,

w~ere

U=exp( ,
' r'IIi y—i8) .

In Eq. (4.2),

~~.ri =~'X'+ &I'r'

H' =k„—eBy,

H =k

Further defining

4'= —(IIi.yi)'

Eqs. (4.1) and (4.2) can be combined to write HD as

(4.1)

(4.2)

(4.3)
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+(D D, —a, ')'"
(D D g 2)1/2

2)1/2

+(D D g 2)1/2

(4.5)

In the unbroken supersymmetry case we are interested in (Ref. 26), k, =0 so that

HD(k, =0)= (4.6)

The spectrum of HD(k, =0) is composed of four pieces.
Each of them is associated with one of the operators that
is on the diagonal in Eq. (4.6). Starting on the upper left-
hand corner and going to the bottom right-hand corner,
the four operators correspond to (i) positive energy and
eB.cr & 0, (ii) negative energy and eB n ~ 0, (iii) negative
energy and e8 o ~ 0, and (iv) positive energy and
eB.cr~0. However, the supersymmetric generators of
sqm(2) link one bosonic spectrum to one fermionic spec-
trum. Thus, only two of these four spectra can be accom-
modated simultaneously. We shall now discuss the dif-
ferent possible choices allowed by Eq. (4.6).

%e start by constructing the supersymmetric quantum
mechanics relating the two positive-energy spectra. The
supersymmetric generators may be written

0

0 0 0

and

0 0

QD, 0

then we find

I Q D, Q D j = Hn(kz ——O—,e= —1)

0

(4.10)

(4.11)

and

QD=

QD=

OOQD
0 0

0 0

0 0
0 0

QD+ 0 0

(4.7)

(4.8)

(4.12)

Except for the minus sign in front of the Hamiltonian,
this superalgebra obeys the commutation relations of
sqm(2) given in Eq. (3.3). The relationship of this su-
peralgebra to sqm(2) is similar to the relationship between
the compact algebra so(3) and the noncompact algebra
so(2, 1).

Then, since

These operators indeed generate the positive-energy spec-
tra, since

I Qj) QD I =HD(k =0 a=+1)

HD«, =0)= ( QD QD I
—

t Q 'D Q D l

we also have that

HD«*=0)=fQD QDl —fQD QDI

(4.13)

(4.14)

(4.9)
QD=UQDU '

*

QD=UQDU
(4.15)

Next, we consider the superalgebra linking the
negative-energy states of Eq. (4.6). In Sec. III we noted
that a Hamiltonian associated with the superalgebra
sqm(2) necessarily has positive or zero eigenvalues.
Therefore, the negative-energy states are nor linked by
sqm(2). If we take

XD ——0
0

(4.16)

One can also construct algebras linking the positive-
and negative-energy spectra of Eq. (4.6). For example, de-
fining
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0 0 0

XD ——QD+ 0

0 0

we fmd

[Xj),XD ]=HD(kz ——0,~= + 1)

QD D,

0

(4.17)

Here, a is a complex number

a =a&+i a2=p exp(i 8),
with 0&arga ~2m and —2m. ~arga' &0. Thus,

&Pl. '"l &= '"&Pl &,

(P l

(a')'"
l

a&=(P')'"&P la&,

&Pla&=exp(P"a '"lal'-
z IPI'),

(5.3)

(5.4)

(5.5)

(5.6)

where arg(a'~ ) =8/2.
Therefore, as with the FW Hamiltonian, these square

roots can be defined as matrices in the coherent-state
basis. Their product can be written by using the resolu-
tion of the identity

However, this algebra is not a superalgebra, since XD and
XD commute to yield HD(k, =0,r=+ I). Furthermore,
XD and XD are not constants of the motion.

Similarly one can construct algebras between any
positive-energy spectrum and any negative-energy one.
However, since these, too, are not superalgebras, we shall
not consider them further, as our goal here is to investi-
gate the role of supersymmetry in the Dirac equation.

V. SQUARE-ROOT OPERATORS

one has for coherent states
l
a & that

a la&=ala&, (alat=(ala'. (52)

We now commute on the meaning of the square roots
we have used in the operators of Sec. IV.

The square root in the FW Hamiltonian operators of
Eqs. (4.5) and (4.6) is not unusual. It is a standard result
when diagonalizing a Dirac Hamiltonian. The Dirac
Hamiltonian itself has units of energy. Because of the
Lorentz invariance of the problem, it will be represented
by the square root of a momentum-squared term plus a
mass-squared term. This is the same fact that led Dirac
to his algebra as a device for taking the "square root" of
the Klein-Gordon second-order operators.

Formally, since the sign of the square root is deter-
mined as positive (the overall sign coming from the diago-
nal Dirac matrix), its use can be justified in terms of
power-series expansions. However, a transparent justifi-
cation is that these operators can be defined operationally.
They can be written in terms of the eigenstates we have
defined previously.

Explicitly, given the diagonal F% eigenstates and eigen-
values, one can define the operators as diagonal matrices
whose entries are the eigenvalues in the rom column de-
fined by particular eigenvectors.

The definitions of (D )'~ and (D+)' at first appear
less obvious. However, with the results of Sec. II they fol-
low similarly. The key is the observation, from Eq. (2.12),
that D and D+ are harmonic-oscillator lowering and
raising operators. Thus, even though they are not Hermi-
tian, their square roots can be defined in terms of coherent
states.

Using the normed forms

a =D /v'2eB, a =D+ /v'2eB, (5.1)

I=— Rea Ima a a (5.7)

b —= +i +ieBx
X

(6.1)

b = +i —ieBx,
By Bx

with

[b,HD) =[b,HD]=0, (6.3)

[b,b ]=2eB . (6.4)

This implies that the Landau-level degeneracy is (eB/2n )

levels ~er unit area in the x-y plane. The generators QRP
and QRp of Eq. (3.8) are independent of these symmetries
since

I »QRP] = Ib' QRP I = Ib QRP l
= Ib', QRP j =o . (6.5)

Laughlin's explanation of the nonrelativistic quantized
Hall effect uses these symmetries of the problem. He
shows that the center of the harmonic-oscillator (Landau-
level) wave functions is moved in the y direction by an x-
dependent gauge transformation. However, an electric
field can be considered as an adiabatic interpolation be-
tween two such gauge-transformed systems. Therefore,
the charge transfer and the Hall current may be easily cal-
culated.

VA'th this physical insight in mind, we wish to present a
superalgebra containing b, b and the raising and lowering
operators D and D of Eqs. (2.9) and (2.10). First, define
the normalized operators a; and a;, i =1,2, as

VI. MAGNETIC TRANSLATION SYMMETRIES
AND osp( 2 )

The Dirac Hamiltonian of Eq. (2.23) is translationally
invariant in x. Further, up to an x-dependent gauge
transformation, it is also translationally invariant in y.
There are tmo oscillator raising and lowering operators
which can generate these symmetry transform ations.
They are
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a1 —— . D
&2e8

l
v'2eB

1

v'2eB

1

v'2eB

This gives

[a;,aj ]—5J .

Now define the operators

2

Ko=2 g«a+2»

(6.6)

(6.7)

where the Pauli matrices cri and oq are defined in Eq.
(2.3).

The five operators of Eq. (6.8} generate the superalgebra

osp( —,
'

) given by

[Ko,K ]=+K,[K+,K ]= —2Ko,

[Ko F+]=+—,'F+,

[K+,F+ ]=0, [K+,F+ ]=+F+,

[ F+,F+ I =K+, I F+,F j =Ko .

In Ref. 30, a physically related realization of osp( —,
'

) is
given.

g aiai

2
1K =
2 g a;a;

F+ ——i g a;a';,

2
1F =T Q atcr(

(6.8)
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