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We investigate the relation between finiteness of a four-dimensional quantum field theory and glo-
bal supersymmetry. To this end we consider the most general quantum field theory and analyze the
finiteness conditions resulting from the requirement of the absence of divergent contributions to the
renormalizations of the parameters of the theory. In addition to the gauge bosons, both fermions
and scalar bosons turn out to be a necessary ingredient in a nontrivial finite gauge theory. In all
cases discussed, the supersymmetric theory restricted by two well-known constraints on the dimen-
sionless couplings proves to be the unique solution of the finiteness conditions.

I. INTRODUCTION

The most exciting feature of supersymmetry is its abili-
ty to soften the high-energy behavior of quantum field
theories by reducing the number of uncorrelated ultravio-
let divergences. This property rendered possible the con-
struction of finite supersymmetric quantum field theories
in four space-time dimensions:! Supersymmetry suffices
to ensure finiteness in quantum field theories singled out
from the general case by certain relations—called “finite-
ness conditions”—between the dimensionless couplings in
the theory. Simple supersymmetry in cooperation with
two finiteness conditions guarantees finiteness up to two
loops. Extended supersymmetry imposes, of course, still
more restrictions on a theory. As a consequence, (N =2)
supersymmetric theories constrained by only a single fi-
niteness condition are finite to all orders of perturbation
theory.

In this work we invert the logic and investigate the fol-
lowing problem: Which classes of theories are allowed
when imposing the requirement of finiteness upon the
most general renormalizable quantum field theory? In
particular, we are interested in the question of whether or
not finiteness necessarily implies supersymmetry for the
particle content and the interactions in the theory. To
this end we analyze the finiteness conditions obtained by
demanding the absence of divergent contributions to the
renormalizations of the parameters of a general gauge
theory.

Motivated by the observation that supersymmetric
theories are free of quadratic divergences, similar investi-
gations have been performed previously with respect to
the absence of quadratic divergences in a renormalizable
quantum field theory.2 In all special cases studied, the
requirement of the cancellation of the quadratic
divergences—either up to two-loop order or with the addi-
tional restriction of renormalization-group invariance of
the one-loop conditions—uniquely leads to the (softly bro-
ken) supersymmetry of the theory. Supersymmetry then
ensures the absence of quadratic divergences to all orders
in the loop expansion.

This paper is organized as follows: In order to embed
the present investigation in the ongoing developments and
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to establish our notation we give in Sec. II a brief sketch
of supersymmetric finite quantum field theories. Section
III is devoted to the renormalization of a general gauge
theory. In Sec. IV we formulate the finiteness conditions
for an arbitrary gauge theory and deduce some immediate
implications. In their most general form these finiteness
conditions constitute, however, an extremely complicated
nonlinear set of equations for masses and coupling con-
stants. Consequently, in Sec. V, we consider a somewhat
restricted class of theories which, nevertheless, still
comprehends all supersymmetric theories and hence all fi-
nite quantum field theories in four dimensions known so
far. Although not fully general, the discussion of these
models is quite instructive in order to answer the question
of whether or not finiteness implies supersymmetry
(SUSY). Our conclusions are summarized in Sec. VI,

II. FINITE SUPERSYMMETRIC
QUANTUM FIELD THEORIES

The most general renormalizable, gauge-invariant and
(N =1) supersymmetric theory is described by the La-
grangian

Liwn=[ d*00le®"®

Jd%

1
4T (R)

“+

TrW“Wa+W(<I>)|+H.c.

(2.1

Here the following notation is adopted: Vector super-
fields, which represent a massless vector boson V), as well
as a two-component Weyl spinor A, both of them
transforming according to the adjoint representation G of
the gauge group, are denoted by V,

V,=(As, VE)~G, V=V'=V,T°. 2.2
Chiral superfields, which represent a two-component
Weyl spinor X as well as a complex scalar boson 4, both
of them transforming according to some representation R
of the gauge group, are denoted by @,
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®;=(4;,X;)~R, D, ®;=0. (2.3)

The chiral field-strength superfield W, is responsible for
the kinetic Lagrangian of gauge bosons and gauge fer-
mions:

1l == _
Wa=—§1)pe %VD %" .

D,,D ; label the SUSY-covariant derivatives. W(®) is
the so-called superpotential, a gauge-invariant, analytic
function of the chiral superfields ®; describing all mass
terms, Yukawa couplings, and scalar self-interactions in
the theory. Renormalizability restricts it to be a polyno-
mial of at most third degree,

W (®)=s;D; + 7m;®®; + 7cju DD, Py . 2.4)
Finally, 6 labels the fermionic Grassmann coordinates of
the superspace (x*,04,0,,).

The group invariants for a (possibly reducible) represen-
tation R are defined in terms of the generators T as usu-
al: The quadratic Casimir operator C,(R) is defined by

S Co(REG=(TgTR)i » 2.5)

where E“ denotes the projector onto the irreducible repre-
sentation R, in the decomposition

R=&R,.

The second-order Dynkin index T (R) is defined by

T(R)8=TrH(TRTR), T(R)=3 T(R,) . (2.6)

These invariants are related to each other by the dimen-
sion of the group, d(G), and the dimension of the repre-
sentation R, d(R), according to

T(R)d(G)=T C,(R,)d(R,) . 2.7

Specified to the adjoint representation G, the above defini-
tions read

CZ(G)Sab =( Té T& )ab =facdfbcd

=TrH(TE¢TE)=T(G)s, , (2.8)

ie.,

C(G)=T(G), (2.9)

where fg, is the structure constant tensor of the gauge
group, [ T4, T®]=if . TC.

The only possible supersymmetric and gauge-invariant
extension of the Lagrangian (2.1) would be a so-called “D
term”

Lp=n [d'ov (2.10)
associated with a U(1) factor of the gauge group. This D
term receives, at the one-loop level only, a quadratically
divergent contribution proportional to the trace of the
U(1) charge.? It will thus not be present in any theory
based on a semisimple gauge group.

Suppressing all indices, one counts six renormalization
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constants for the theory characterized by the Lagrangian
(2.1), viz., the wave-function renormalizations for vector
and chiral superfield,

Vo=2Zy' 2V, &y=Z4'*d, 2.11)

the gauge-coupling-constant renormalization,

80=2,8 , (2.12)

as well as the renormalization of the parameters in the su-
perpotential (2.4),

so=2Zss, mo=Z,m, co=2Z. . (2.13)

However, not all of these renormalization constants are
independent. The general line of arguments for this runs
as follows.

First of all, in the background-field method—when
employed*—the product of gauge coupling constant g
times vector superfield V is not renormalized at all,’
goVo =gV, which implies the relation

Z,Z,' =1 (2.14)
for the corresponding renormalization constants.

Furthermore, there is a nonrenormalization theorem,
valid for theories invariant under N-extended supersym-
metry. In its general form this theorem states that in an
N-extended supersymmetric theory any quantum contri-
bution to the effective action must be an integral over the
full extended superspace (x*,65,05%), L =1,2,...,N, and
that any contribution arising above the one-loop level
must be a gauge invariant function of the matter super-
fields and the Yang-Mills potentials (connections) A%
only.®

In the case of (N =1) supersymmetry the above one-
loop exception does not exist. The (N =1) nonrenormal-
ization theorem simply states that any quantum contribu-
tion to the effective action has to be an integral over the
complete superspace (x“,Oa,éd) (Refs. 7 and 8). Conse-
quently, all counterterms in the Lagrangian (2.1) must be
of the form

L= [dofve), (2.15)
where f is a function of the superfields and their covari-
ant derivatives. This in turn implies that the superpoten-
tial W (®P)—being integrated over only a subspace of the
whole superspace—is not renormalized at all, which is ex-
pressed by the relations

Z,24'?=1, Z,Zo=1, Z,Zs*=1 (2.16)
for the renormalization constants of the parameters in the
superpotential.

As a consequence of Eqgs. (2.14) and (2.16), one is left
with only two independent renormalization constants, for
instance, Z; and Zg. For a supersymmetric theory the
whole renormalization procedure can be carried through
with the gauge-coupling-constant renormalization as well
as wave-function renormalizations of the chiral super-
fields. Only the gauge 8 function B, =1(8/3u)g and the
anomalous dimensions
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- )
vyi=(Ze llz)ikﬂa(ZOI/z)kj

of the chiral superfields are of interest for the discussion
of the high-energy behavior of supersymmetric theories.

The one-loop contributions to the B function and the
anomalous dimensions are given by

B“]=— 83
g

3C,(G)—-T(R)], (.17
4y € ]
2
v'= = AT Ty —clucyu] - (2.18)
Hence imposition of the finiteness conditions
3C,(G)=T(R), (2.19)
CikiCik1 =8 X T°T?); (2.20)

guarantees the finiteness of an otherwise arbitrary super-
symmetric theory at the one-loop level.” Even a certain
amount of soft supersymmetry breaking can be tolerated
without upsetting one-loop finiteness.!® The anomaly-free
solutions of the finiteness condition (2.19) may be found
in Ref. 11.

Moreover, it has been shown that (in supersymmetric
theories) one-loop finiteness automatically implies two-
loop finiteness, i.e., the finiteness conditions (2.19) and
(2.20) suffice to enforce the vanishing of the two-loop
contributions to the B function and anomalous dimensions
too.!? Finiteness will, however, in general be destroyed at
the three-loop level.!> Nevertheless, attempts have been
undertaken in order to construct a realistic two-loop finite
SUSY SU(5) grand unified theory.'*

Renormalizable (N =2) supersymmetric theories know
of two basic building blocks: The (N =2) vector multi-
plet Vy_,, transforming according to the adjoint repre-
sentation G of the gauge group, contains an (N =1) vec-
tor superfield ¥V and a chiral superfield ® in the adjoint
representation:

Vy—2=(V,®)~G, V~G, ®~G . @.21)

The hypermultiplet H, transforming according to some
representation Ry of the gauge group, contains two chiral
superfields P, CD; of opposite chirality—a circumstance
which makes every (N =2) supersymmetric theory non-

chiral, i.e., vectorlike,
H=(d,®)~Ry, ®,~Ry, ®,~Ry . (2.22)

The most general renormalizable, (N =2) supersym-
metric Lagrangian, expressed in terms of (N =1) super-
fields, reads

L van= [ d*0(®e¥ D, + Dl %" 0,1 0l )
[ a%

+H.c.

1
4T (R)

+ TIWe W, +igV 20,0,

(2.23)

Note that (N =2) supersymmetry restricts the superpo-
tential W(®) to a unique trilinear interaction fixed by
gauge invariance,

W( D)y —2=igV 2D, >, . (2.24)

Hence there is only a single coupling constant, that is the
gauge coupling constant g, and only one independent re-
normalization constant, Z,. The gauge B function is the
only relevant quantity for finiteness considerations.

Now, the application of the nonrenormalization
theorem to the N =2 case shows, on dimensional grounds,
that (N =2) supersymmetric theories are finite above the
one-loop level."> The only possible contribution to the 8
function arises from one-loop graphs and can be obtained
by setting T(R)=C,(G)+2T(Ry) in Eq. (2.17), as
demanded by the (N =1) superfield content of the
(N =2) supermultiplets:

3
B(N=2)=——§g—)2-[C2(G)—T(RH)]. (2.25)

(47
Thus, finiteness to all orders of perturbation theory is
achieved for

C2(G)=T(Ry) . (2.26)

Again, this finiteness is preserved by certain soft super-
symmetry breaking operators.'® The solutions of the fi-
niteness condition (2.26) form a large class of finite
(N =2) supersymmetric quantum field theories in four
space-time dimensions.!"” However, all efforts to build
realistic models, based on (N =2) supersymmetry amend-
ed by suitably chosen soft breaking terms, face a number
of phenomenological obstacles.®

The (N =4) super-Yang-Mills theory proves to be a
special case of the (N =2) theories for the hypermultiplet
H transforming according to the adjoint representation of
the gauge group, i.e., Ry=G. Renormalizable (N =4)
supersymmetric theories allow for exactly one (N =4) su-
permultiplet, namely the (N =4) vector multiplet Vy_,,
which consists of an (N =2) vector multiplet ¥y _, and a
hypermultiplet H in the adjoint representation,

Vi —a=Vy 2, H) =(V,0,,®,,®;)~G . (2.27)

Finiteness to all orders of perturbation theory, By —4,=0,
is then a trivial consequence of Eq. (2.9) (Ref. 19).

Table I summarizes the evolution of the one-loop con-
tribution to the gauge S8 function from the well-known ex-
pression in a general gauge theory to its automatic vanish-
ing in the (N =4) super-Yang-Mills theory.

III. RENORMALIZATION OF A GENERAL
GAUGE THEORY

The most general renormalizable quantum field theory
is (equivalent to) a spontaneously broken gauge theory,®
described by the Lagrangian

&L =—FuFi+ iy DUy +5(Dy8) D
—3[¥k(m —h"$, ¥ +H.c.]—V($)
+ gauge-fixing terms+ ghost terms
+ counterterms . (3.1

The particle content of this theory consists of Hermitian
vector gauge fields V), associated with a compact gauge
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group, two-component Weyl spinor fields 3;; transform-
ing according to some representation F of the gauge
group, ¥;; ~F, and Hermitian scalar fields ¢,, transform-
ing according to some representation S of the gauge
group, ¢,, ~S. All fermions may be assumed to be, say,
left handed because of Yx°=Cy¥ g =4,. (For simplici-
ty, we consider only the case of a simple gauge group.
The generalization to nonsimple gauge groups is straight-
forward.) The gauge covariant field strength tensor Fy,, is
given by

Fo,=3,Vi—3,Va+gfu VaVS . 3.2)
The covariant derivatives D, acting on the fermion and
scalar fields are given by

D,y =0, —igV,T)Y, , (3.3)

D,p=(8,—igV,L,)¢ , (3.4)

where 7, and L, are the Hermitian representation ma-
trices for the generators of the gauge group in the fermion
representation F and in the scalar boson representation S,
respectively. Since, for the sake of generality, the scalars
¢ are assumed to be real, the representation matrices L,
have to be antisymmetric and purely imaginary. The fer-
mion mass matrix m; as well as the Yukawa coupling
matrices hji are symmetric in the fermion indices. The
scalar potential ¥V (¢) is a fourth-order polynomial in the
scalar fields ¢,,,

V(¢)=am¢m + ';_bmn¢m¢n
1 1
+ Sg_c""‘l’¢m¢"¢!’ + Z!'dmnm¢m¢n¢p¢q ) (3.5)

with real and totally symmetric coefficients. Gauge in-
variance demands

for the fermion mass,

h]!lrlTjak +h1’;: T}; +hi’I’cL:m =0 (3.7

for the Yukawa couplings, and

a L%, =0, (3.8)
bonL i +bpm L =0, (3.9)
CqnpLgm +cycl. perm. of mnp =0, (3.10)
dmpg Lym +cycl. perm. of mnpg =0, (3.11)

for the parameters in the scalar potential.

At this point, a closer inspection reveals that the linear
term in the scalar potential can be dropped. For gauge
nonsinglet scalars, in order not to violate gauge invariance
explicitly, a,, has to vanish as a consequence of Eq. (3.8).
For gauge singlet scalars the linear term can be made to
disappear by an appropriate shift of singlet scalar fields
without destroying the manifest gauge invariance of the
Lagrangian. Hence a,, =0 in any case.

Furthermore, finiteness is, of course, only relevant for
the high-energy limit of the theory, i.e., in the unbroken
phase of the gauge symmetry, far above all spontaneous
symmetry-breaking thresholds, while at lower energies the
decoupling of the comparatively heavy degrees of freedom
will result in a nontrivial renormalization-group behavior
of the parameters of the theory. According to this spirit,
we focus our attention on a theory with an unbroken
gauge symmetry. Then the real and symmetric scalar-
boson mass-squared matrix p?,,, is given by u2,., =b.,.

The most convenient gauge for performing high-energy
investigations is the R, gauge, which yields a propagator
for massless vector bosons of the form

kuk,
D (k)yy=— Suv— | (3.12)

1 1
k? ! £
where the gauge parameter § is left arbitrary. This choice
determines the gauge-fixing terms and ghost terms in the
Lagrangian (3.1).

The renormalization constants required for the renor-
malization of a general gauge theory are defined in the

TABLE I. The gauge S8 function from N =0to N =4, B=u(d/dulg= —[g°/(47)*]b +0(g>).

Supersymmetry Supermultiplet Contribution to b
N=0 Vu~G 1Ley6)
Y~F —3T(F)
¢~S —+T(S)
LG -irP—-L1(8)
3 2 3 6
N=1 V=(V,)~G 3C,(G)
®=(4,X)~R —T(R)
3C,(G)—T(R)
N=2 Vy—2=(V,®)~G 2C,(G)
H=(®,,®})~Ry —2T(Ry)
2[Cy(G)—T(Ry)]
N=4 Vi—s=Vy-2,H ~G 0
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usual fashion:

for the fermion wave function

VE=Z,\2VE, Yo=Z, %, bo=Z4'%¢,  (3.13) 2
0=av Yo=24 Y ho=2y (Zy—Dg=——— |ET, T, + L0 |, (318)
mo=m —8m, I_L2O=__”2__8”2 , (3.14) (4m)°€ g ik
go=2.8 ho=Zuh (3.15) for the scalar wave function
Sy - 1] .
= = 1 1],
a0=80, CO’—ZcCy dO_’de ’ (3.16) (Z¢-——1)m,,= (47;‘)26 3—E 8 (LaLa )mn
where all group indices have been suppressed. The one-
loop contributions to these renormalization constants, cal- —ReTr(h™n"Y) |, (3.19)
culated by dimensional regularization in D =4-—2¢
space-time dimensions?! in the minimal subtraction for the fermi
scheme, read for the vector wave function or the lermion mass
1 2 t
1 L0113 1 (dm)y=——[3g’mT, T, —h"m h"
—1= —|1=2_2c 2
Zy m)e 2|3 ¢ 2(G) (47)%€
— 3" m - mh R, (3.20)
—3T(F)—<T(1S) |, (3.17)
for the scalar mass
|
(812)pn = = {3822 L,Ly)pn +4 Re Tr(mm Thmh ") 12 Re Tr(h™m Th*m 1)
— 3 (12 mpRe Tr(APh ™)+ 2, Re Tr(APA ™) - dppnpa g + CipaCoupg 1} » (3.21)
for the gauge coupling constant
_ 1 12 1l 2
Z,—1=— e 78 [$C(G) - 2T (F)—+T(9)], (3.22)
for the Yukawa coupling constants
1
[(Zy—DhlE=— e (38 (M T, T+ (h™T, Ty )]
—[2h "™ R S R SRR TR - R Re Te(h ™ h™ 14 ) (3.23)
for the parameter of the linear term in the scalar potential
(8a), = CJ:TZZ%“ Re Tr(m mm "h™) + oot ] (3.24)
for the three-scalar coupling constant
1
[(Ze = 1) pnp = — m% ([38LyLy)mg —Re Tr(h™h M) ]c,p
—8ReTr(m*h'"h"Thp)—dm +Cpar } +cCycl. perm. of mnp , (3.25)
ngr€pq

and for the four-scalar coupling constant

1

[(Zg—1 )d]mw = (4—17_)'2‘;—

—{[3g¥L,L, )m,—-ReTr(h'”h’T)]d,,pq,—f-cycl. perm. of mnpg}) .

Dimensional considerations show that quadratic diver-
gences can only arise in one- and two-point Green’s func-
tions of scalar fields as well as in two-point Green’s func-
tions of vector fields. More precisely, they can only ap-

2(138*(LasLy Jmn{LarLs } pg —8 Re Tr(h™h " hPh ") 4 dpppyrsdpgrs +cycl. perm. of npq]

(3.26)

[

pear in the renormalization of the parameter of the linear
term in the scalar potential and of the scalar and vector-
boson masses. The quadratically divergent one-loop con-
tributions to 8a and 8u?, evaluated by cutoff regulariza-
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tion,?? are
A2 | tpm
(8a)m=—(—47;2~7[4ReTr(m h™) 4 Cppn |
+0(InA?) (3.27)
and
2 A? 2 my, nt
(8 Y = (41T)2[3g (LaLg)mn—2ReTr(h™h"")
+ 5 mnpp 1+ 0 (InA?) (3.28)

where A denotes the momentum cutoff. On the other
hand, the quadratically divergent contribution to the
vector-boson mass—which turns out to be proportional to
C,(G)—T(F)+ 5T (S)—violates gauge invariance and is
merely an artifact of a bad regularization scheme. In or-
der to restore gauge invariance the renormalized vector-
boson mass must be required to vanish (which can be
achieved by an appropriate counterterm). The above com-
bination of group invariants vanishes, however, automati-
cally in a supersymmetric gauge theory.

Finally, we will also make use of the two-loop contribu-
tion B to the gauge B function:?’

5
Bﬁ”=—;f-)z B GG =[LCy(G)+2C,(F)]T(F)
T
—[+C2(G)+2C,(S)]T(S)

1
g%d(G)

+ Tk o T, T,) |, (3.29)

where in the terms C,(R)T(R), R =F,S, summation over
irreducible representations is implicitly understood.

IV. GENERAL CONSIDERATIONS

The point in the discussion of finite quantum field
theories which deserves most care and attention is the def-
inition of what is meant by the term “finiteness.” In a
more technical sense, the crucial point is the formulation
of the finiteness conditions, i.e., the circumstances under
which the theory will be regarded as finite. The funda-
mental problem, which entails a lot of ambiguity, is
represented by the gauge dependence of the wave-function
renormalizations. The renormalization of fields depends
on the chosen gauge, whereas the renormalization of the
parameters entering in the Lagrangian, i.e., masses and
coupling constants, is gauge independent (in the minimal
subtraction scheme).

As far as the renormalization behavior of supersym-
metric theories is concerned, the simple state of affairs
sketched in Sec. II relies heavily on the maintenance of
manifest supersymmetry by adopting supergraph tech-
niques throughout the whole computation of Green’s
functions. On the other hand, taking into account, in a
component formulation of the theory, only the physical
degrees of freedom of the (N =1) vector supermultiplet
(2.2) corresponds to the employment of the Wess-Zumino
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gauge which breaks supersymmetry by eliminating all the
gauge degrees of freedom that would otherwise show up
in the vector supermultiplet (and contribute to the Green’s
functions). In that case the renormalizations of the com-
ponent fields belonging to one and the same supermulti-
plet are no longer identical.?* In fact, in the nonsuper-
symmetric Wess-Zumino R gauge the wave-function re-
normalization constants read, for the vector supermultip-
let (2.2),

1 1 1
Zy—1= 2= 13—=|C,(G)=T(R) | , 4.1
1 1
Z,—1=———92|=Cy(G)+T(R 4.2
’ amed | OTTR) @

and for the chiral supermultiplet (2.3)

(Zy—1);j=— (4 g’ 1+é (TaTa)ij+20i7cICjk1l )
4.3)

(ZA—I),-j=(—4;T1—)3; g’ l_é](TaTa)ij"zcizlcjkl} .
(4.4)

Even in a finite theory these wave-function renormaliza-
tions will not vanish. In contrast to that, the evaluation
of the renormalization constants (3.20)—(3.26) for the su-
persymmetric values of the parameters shows that in an
(N=1) SUSY gauge theory all renormalizations of
masses and coupling constants vanish at the one-loop lev-
el, provided the gauge group, matter representation R,
and super-Yukawa couplings c;; are related by the finite-
ness conditions (2.19) and (2.20).

In view of the above, an infinity encountered in the
computation of Green’s functions has to be regarded as an
essential divergence with respect to finiteness only if it
cannot be absorbed into some wave-function renormaliza-
tions. Consequently, we find our finiteness conditions by
the requirement of the absence of all divergent contribu-
tions to the renormalizations of the physical parameters,
i.e.,, masses and coupling constants, of the quantum field
theory. (For coupling constants this requirement is
equivalent to demanding finiteness of the S-matrix ele-
ments without divergent renormalizations of coupling con-
stants.) Accordingly, finiteness means that the bare pa-
rameters of the Lagrangian are related to the renormal-
ized ones by a finite amount of renormalization and thus
are finite themselves.

In order to construct a nontrivial finite gauge theory,
let us start with the requirement of a vanishing one-loop B
function [cf. Eq. (3.22)]

11C,(G)—2T(F)—5T(S)=0, 4.5

which implies that, in addition to the vector bosons, fer-
mions or scalars must be present in the theory.

To begin with, let us try to find a model without sca-
lars, i.e., a model which contains only gauge bosons and
fermions. In this case one has only two one-loop finite-
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ness conditions, viz., from the gauge coupling renormal-
ization (3.22)

11C,(G)=2T (F) (4.6)
and from the fermion mass renormalization (3.20)
mT,T,=0, 4.7)

which simply states that gauge nonsinglet fermions must
be massless. It is not hard to find groups and representa-
tions in accordance with Eq. (4.6) which thus constitute a
large set of one-loop finite gauge models. However, fi-
niteness is destroyed already at the two-loop level. Insert-
ing (4.6) into the two-loop contribution (3.29) to the 8
function yields

{7[C(G) > +2C,(F)T(F)} ,

5
Bl*=1 £ (4.8)

47)*

which shows that B, will not vanish except in the trivial
case C,(G)=T(F)=0. Consequently, we can make the
following observations: (i) The occurrence of scalar parti-
cles is inevitable in a finite gauge theory. (ii) Contribu-
tions from beyond the one-loop level have to be taken into
account in order to obtain a definite answer in the search
for a finite quantum field theory.

As our next step, we attempt to banish all fermions
from the theory. In this case, by inserting the relation
which results from (3.28) when one demands a vanishing
quadratic mass renormalization of the scalar bosons into
[(Z4—1)d)mmnn =0 derived from (3.26), one obtains

384(2[Tr(LaLb )]2+ {La’Lb }mn {Lme }mn

A 18(LyLe)mn Ly Ly ) )+ rmnpg Bmnpg =0 - (4.9)
The left-hand side of this condition is a sum of squares of
real quantities which implies g =dpmppg =0, 8u®,, from
Eq. (3.21) then gives c,,, =0 for the same reason. Thus
fermions are elevated to an unavoidable ingredient in a fi-
nite gauge theory.

Summarizing, we arrive at the conclusion that in a
(nontrivial) gauge invariant quantum field theory vector
bosons, fermions, and scalars must be present in order to
solve the finiteness conditions—the occurrence of one par-
ticle species calls for both of the others.

J

38°Cy(G)AG + 38X A Ty Ty )ik — 4T,y T im A — [Tt T

and for I",-, ik

%g2ri,jk(Ta Ta )jl_4rj,kmA?rr‘: 71 _ri.km[r}:mn I-‘j,nl +(AaTAa)ml]— ";'rj,kl[rzmn I‘i,»m =+ 2( AGAHT)ji]‘f'(k‘_’I):O ’

from the four-scalar coupling renormalization (3.26)
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V. SOME SIMPLE MODELS

Unfortunately, the finiteness conditions for a general
gauge theory are, already at the one-loop level, extremely
complicated. Consequently, we will concentrate our dis-
cussion on the investigation of several somewhat simpli-
fied models.

The simplest class of gauge theories one can imagine in
this respect is characterized by consisting of the particle
content of the (N =1) supersymmetric Yang-Mills theory
of Sec. II but allowing for arbitrary, i.e., nonsupersym-
metric, values of the coupling constants. The Lagrangian
defining these models is then, in the notation of Sec. II,
given by

L= —FFL 4 ik DAy +iX DX +(D,A)'D*4
+ QAR ALY + Ty AX R X i +H.c.)
—d,;,-,k,A,-AjA,IA,T%» mass terms . (5.1

Apart from the obvious symmetry requirements

(5.2)

(5.3)

Cip=TLi»
diju=djiu=dij i

the couplings Ajj, T; %, and d;;; are completely arbi-
trary. (N =1) supersymmetry would specify their values
to

i5_8&
Afj=e' —‘7_2—T,‘j , (5.4)
[ jx = —cij (totally symmetric) , (5.5)
2
Ayt =CyjmCiim + S TET+ THTH) . (5.6)

4

Since masses and three-scalar couplings are of no rele-
vance for the present discussion, only finiteness conditions
relating solely dimensionless coupling constants have to be
taken into account. At the one-loop level, as our finite-
ness conditions for the model (5.1) from the gauge-

coupling renormalization (3.22), we obtain
3C,(G)=T(R) (5.7

[which coincides, of course, with Eq. (2.19)], from the Yu-
kawa coupling renormalization (3.23) for Aj;

+(ATAR), L 1A2,

—A5[T; i T im +2(A%A%T), ] — A Tr(A%A) =0

18T Ty pm { Tas T} gn— 1685 A T 5 T i —8(A%ALT), (APA%T), — 4T, T8 4Ty Doy

+ dmn,kldkl,pq +4dmk,pldnl,qk - %gz[dmn,pj( Ta Ta )qj +dmj,pq( Ta Ta )jn ]
+ Ao i [T Tt +20A%AY) 14 A p [ T3t Do i +2(8%4%7)jy 1 4 (msn) + (pe>g) =0, (5.10)
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and from the quadratic mass renormalization (3.28) of the scalar bosons

2eUT,T,);—2(AAY) —T T +dje i =0 .

(5.11)

Beside these one-loop finiteness conditions, the vanishing of the two-loop contribution (3.29) to the gauge B function will

also be an essential criterion

3[C2(G)]2—2C2(G)T(R)—3C2(R)T(R)+gz—dz(—c—;)—{CZ(G)Tr(A“A‘”)HTa T[T T +(ASTA), ]} =0 .

One solution of the above finiteness conditions is cer-
tainly provided by the two-loop finite (N =1) supersym-
metric gauge theory of Sec. II. It is easy to check that the
supersymmetric values (5.4)—(5.6) of the dimensionless
coupling constants, when restricted by the constraints
(2.19) and (2.20), satisfy Eqgs. (5.8)—(5.12). Soft supersym-
metry breaking of the form mentioned in Sec. II is, of
course, always possible. However, as can be explicitly
seen already from Egs. (3.22), (3.23), (3.26), (3.28), and
(3.29), the corresponding mass terms and three-scalar cou-
plings do not affect the finiteness conditions for dimen-
sionless couplings.

Now the following question arises: Is the supersym-
metric theory defined by (5.4)—(5.6) and (2.19), (2.20) the
unique solution of the finiteness conditions (5.8)—(5.12) or
do other, nonsupersymmetric solutions exist? To investi-
gate this problem we consider several special cases which
we obtain from the class of models (5.1) by imposing some
group-theoretically motivated constraints in order to sim-
plify the analysis.

A. Model I

This model is defined by the Lagrangian (5.1) and the
following additional constraints.

(i) R is an irreducible representation r of the gauge
group, R =r.

(ii) The adjoint representation occurs only once in the
Kronecker product » X7.

(iii) The singlet occurs at most once in the cubic
Kronecker product » Xr Xr.

The smallest possible (anomaly-free) group and repre-
sentation which solve 3C,(G)=T(r), i.e., the requirement
(5.7) of a vanishing one-loop gauge B function, and satisfy
constraints (i)—(iii) is SO(9) with r =84 (Ref. 25). Here
the adjoint representation is G =36 and 84X84
=15+36, +445+84, + higher representations.

Constraint (ii) implies that Aj; is proportional to the
generator t;; in the irreducible representation r,

Afj =Tt , (5.13)

where the parameter 7 can be made real by an appropriate
phase transformation on the fermions A,. Constraint (iii)
leaves the two possibilities open that either there exists no
invariant tensor of the form y,; at all, 1&ZrXrXr, or
Yijk is uniquely determined up to an arbitrary factor,
1CrXrXr. In the latter case we normalize ;5 accord-
ing to ¥}i¥ jiu=25;;. Then the Yukawa coupling I'; j will
have the form

Ly jk =KV ijke = —Cijic » (5.14)

(5.12)

where y;; must be completely symmetric in order to meet
the symmetry requirement (5.2). Inserting (5.7), (5.13),
and (5.14) into (5.8), (5.9), and (5.12) yields

T =0,

2
_&
T 2

k[ | k| 2—g2Cy(r)]=0, (5.15)

;22—[ i |24+ P[Co(G)+C»(P]} —C(G)—3C,(r) =0 ,

which has the unique solution
2
£
. S

(5.16)
|k |2=g2Cy(r) ,

corresponding just to the supersymmetric form (5.4) of
the Yukawa coupling Aj; and to the finiteness condition
(2.20).

Our last task is to satisfy Egs. (5.10) and (5.11). The
form of the four-scalar coupling dj; , i.e., the number of
different types of vertex structures as well as their explicit
expressions, will, in general, depend on the gauge group
and on the representation R according to which the scalar
fields 4; transform. Here we assume that d;;;; contains
only those interaction terms which one encounters also in
a supersymmetric theory. Hence we make the ansatz

dij ki =Cijmhm + BTG T+ TG TH) (5.17)
where a, 3 are two parameters to be determined. Equa-
tion (5.11) then implies a +B= %, while inserting this an-
satz into (5.10) gives a=1, = %, i.e., the supersymmetric
form (5.6) of dj; 4, as the only possible solution.

B. Model II

In addition to the Lagrangian (5.1) the group-theoretic
constraints defining this model are (i) R is the direct sum
of two identical irreducible representations r, R =r +r,
where again (ii) the adjoint representation occurs only
once in the Kronecker product r X7, and (iii) the singlet
occurs at most once in the cubic Kronecker product
rXxXrXxr.

Here the smallest possible (anomaly-free) group and
representation satisfying 3C,(G)=2T(r) is SO(10) with
r =54 (Ref. 25). The adjoint representation is G =45 and
54X54=15+45,+545 + higher representations.

For our further discussion we replace the index i by
(I,a), where I =1,2 is a multiplicity index corresponding
to R =r +r while «a is related to the irreducible represen-
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tation r with generators z55. With this convention

T;=38,1a8 (5.18)
Afi=Titap (5.19)
Fi,jk=K1,Jx?’aﬁy , (5.20)

where | =(I,a), j =(J,8), k =(K,y). By an appropriate
rotation of the fields 4;, and X, ,, 7;; can be transformed
]

3 |82Co(G)+8°C(r) —2Cy(rp* = 3T (N pr* |prbix
L

* * *
+2 3 (26 kmKT,LMPL — KL MKKL, MIPT — KK, LMKT.LMPk)=0 (no sum over I,K) ,

LM

into a real, positive-semidefinite diagonal matrix:

Z17=p181, pr>0 (nosum overI). (5.21)

The normalization of ¥ g, again reads ¥ z,s5¥ gys="4p-

Remembering the relation 3C,(G)=2T(r) which
guarantees the one-loop finiteness of the gauge coupling
constant, the finiteness conditions (5.8), (5.9), and (5.12)
now take the form

(3g%—2p,2 —pr? —pLH)Co(r)kp ki +2C, ()KL 1kprPL +KK 1LPIPK )

* * *
— X (KLKNKM,NPKM,LP + KM, KNKM, NPRI, LP +Kp, kLK, npK L xp) =0 (no sum over I,K,L) ,

M,N,P

2T (r)
2?2

3[C1(G)P+9C,(G)Cy(r)—

The invariant tensor y,g, is either totally symmetric or
totally antisymmetric. Let us look at these two cases in
more detail.

If ¥ 4p, is totally antisymmetric, k; jx must be antisym-
metric in J,K in order to preserve the symmetry of (5.2).
In this case a supersymmetric solution of our finiteness
conditions cannot exist because in two dimensions a total-
ly antisymmetric object k;;x vanishes identically so that
the finiteness condition (2.20) cannot be satisfied. Requir-
ing, however, only antisymmetry of k; jx in J,K, our in-
dependent variables are p,, p,, K12, and k;,1,. A straight-
forward calculation then shows that Egs. (5.22)—(5.24)
have no solution at all.

If yqp, is totally symmetric, k; jx must be symmetric in
the last two indices and our independent variables are p,,
P25 K1,115 K112, K1,22, Ka,115 K2,12, and K 5;. In this case a
tedious calculation gives as the only solution of Egs.
(5.22)—(5.24)

P12=P22=

b

2
g
2

(5.25)
K, 12=Ky,11, K1,22=K3 12,

corresponding to the supersymmetric form (5.4), (5.5) of
the Yukawa couplings, and
|

T{[787C2(G)— | 7| ’T(R)ITG +3(58%— | 7| T T* T ) =0,
{Cikm[(387— | 7| NT T )y — Kt 1+ (kD)) + g2 | 7| HTT®); —K3]1=0

%gdl( TaTb)pm { Ta’ Tb}qn -8 l r I 4( TaTb)pm(TbTa)q,, —4 ‘ TI Z(TaTa)

[C(G)+Cy(N]Z pr*+
1

(5.22)
(5.23)
S lkpke|?|=0. (5.24)
LK, L
[
(5.26)

* 2
> KLkrKskL =8°Ca(r)dy; ,
KL

which is just the finiteness condition (2.20). Again, ansatz
(5.17), when inserted into Egs. (5.10) and (5.11), leads to
the supersymmetric form (5.6) of the quartic scalar self-
coupling.

C. Model III

This model is characterized by the following two basic
assumptions regarding the Yukawa couplings in the La-
grangian (5.1).26

(i) The coupling Aj; is proportional to the group genera-
tor T} in the (arbitrary) representation R,

Af=7Tj . (5.27)
(ii) The coupling T'; j is totally symmetric,
[ jx = —ciyx (totally symmetric) . (5.28)

In this case, introducing for convenience the abbreviation

K;; Ecx';clcjkl , (5.29)

the finiteness conditions (5.8)—(5.12) read
(5.30)
(5.31)

*
Ji Cpqi Cmn j

_4cmijcprikcnklcq';i +dmn,k1dk1,pq +4‘dmk,p1dn1,qk +dmn,pj[(2 l T I 2— %82)( T°T* )qj +qu]

+ dmjpgl (2| 72— 38 NTT®)jy +Kjp 1+ (men)+(p>g) =0,

(%gZ—Z I T' 2)(T“T“)ij—K,‘j +djk,ik =0 ,

(5.32)

(5.33)
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2 2
GG +2 | 1 |ceTR)+ 2ig12l—_3
g

2
2 CROT (R )+ —5—

Tr(T°T°K)=0 . (5.34)

g°d(G)

Now, first of all, for representations satisfying the finiteness condition for the gauge coupling constant,
3C,(G)=T(R), Eq. (5.30) allows for the two solutions 7=0 and |7 |?=+g% When, however, inserted into Egs. (5.31)
and (5.34), 7=0 results in a trivial theory, leaving thus the supersymmetric value

|7]*=78"

(5.35)

as the only possible solution of Eq. (5.30). For this value of 7 the remaining finiteness conditions are given by

Citom [ X T°T )y — Ky 1 +cycl. perm. of ikl =0,

(5.36)

T8 T T ) (T, T} g — 28" (T Ty (TPT) g — 28*(T*T) i Conns — 4kt + kit pg

+4dmk,p1dnl,qk +dmn,pj[qu - %gZ( r're )qj ] +dmj,pq [Kj"

djkik — 87 T’T%); —K;;=0,

Tr[T°T4K —g*T°T®)]=0.

Once again we adopt the ansatz

dyj,kl =QCijm Ciim +B(Tg; Tij+ Ty T) (5.40)
for the quartic scalar coupling d;;j entering in Egs.
(5.37) and (5.38), the latter of which then reads
(@—1DK;;+(B— 58 T°T);=0. (5.41)
At this point one has to distinguish the following two pos-
sibilities.
Case A. The parameters a and 3 take the supersym-
metric values

g’ (5.42)

ENES

a=1, B=

which solve Eq. (5.41). Defining for brevity the Hermi-
tian matrix

Q,;=K,;—gAT°T%;, Q'=q, (5.43)
one is left with the finiteness conditions
Cikm Qmi +cycl. perm. of ikl=0, (5.44)
pikCmnkc Qg + Cpak Emik Ljn ~+CpaheCmnj Lk
+(men)+(p—>gq)=0, (545)
Tr(T*T*Q)=0. (5.46)

By making use of the gauge invariance of the Yukawa

— 78X Ty 1+ (m<sn)+(p<>q)=0, (5.37)

(5.38)

(5.39)

coupling c;%, Eq. (5.45) can be reduced to Eq. (5.44).
Equations (5.44) and (5.46) can be combined to
Tr(Q?) =0, which implies =0 due to the Hermiticity of
Q, i.e., the finiteness condition (2.20),

Ky =gXT°T?); . (5.47)
Case B. If a1, B+#+g> Eq. (5.41) shows that K;; has

to be proportional to (T°T);; the factor of proportionali-
ty may be read off from Eq. (5.39):

K;;=gX(T°T*%); (5.48)

satisfies Egs. (5.36) and (5.39). By a careful analysis one
can then convince oneself that in case relation (5.48) holds
the remaining finiteness conditions, (5.37) and (5.38), have
no solution except the supersymmetric one,

2, (5.49)

I
al—-
oQ

a=1, B

Thus, in any case one ends up with the supersymmetric
four-scalar interaction (5.6) and the finiteness condition
(2.20).

VI. SUMMARY

In the present work we have discussed the conditions
for the finiteness of the most general renormalizable
quantum field theory. This finiteness criterion yields, or-
der by order in the loop expansion, a set of relations be-



tween the parameters of the theory. A large class of solu-
tions of these finiteness conditions, provided by the super-
symmetric theories described in Sec. II, has already been
known for some time. We were thus particularly interest-
ed in the question whether or not nonsupersymmetric fi-
nite quantum field theories exist.

General considerations showed that within a nontrivial
gauge theory, in addition to the gauge bosons, fermions as
well as scalar bosons have to be present in order to be able
to solve the finiteness conditions at all. The most general
case being, already at the one-loop level, rather involved,
we focused our attention to a somewhat simplified class of
theories. In all models studied we were unambiguously
led to supersymmetric relations between the dimensionless
coupling constants. Supersymmetry together with the fi-
niteness conditions (2.19) and (2.20) proved to be the
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unique solution of the finiteness requirement for these
models. Consequently, all our finite models belong to the
class of constrained supersymmetric theories of Sec. II.
Thus the analysis of Ref. 12 applies. Although we did not
need the full two-loop divergence structure for our investi-
gation, the models discussed will nevertheless be finite up
to the two-loop level.
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