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%e formulate quantum field theory for a wide class of accelerated space-times in four dimensions
and describe its thermal properties in terms of analytic mappings. %e demonstrate that four-
dimensional Rindler space uniquely satisfies the condition of global thermal equilibrium, while

spaces which are asymptoticaBy Rindler have thermal equihbrium asymptotically. %'e discuss the
renormalization of the quantum energy-momentum tensor with application to situations in two,
four, and v dimensions and specifically refer to the general result for conformally flat two-
dimensional space-times. Covariant and noncovariant regularization schemes are presented and
compared, and we make an improvement to proposals for covariantly regularizing the stress tensor

by point separation.

I. INTRODUCTION

In previous publications, ' analytic mappings have
been used to define a wide class of accelerated space-times
preserving the light-cone structure of flat Minkowsk~
space-time. Two-dimensional quantum field theory
(Qf l) was then formulated in these accelerated spaces
and Bogoliubov coefficients, relating a positive-frequency
description for accelerated and inertial bases, were given
explicitly in terms of the mappings. In this paper we ex-
tend to four dimensions a series of results stemming from
this approach: four-dimensional QI 1' and its thermal
properties are analyzed in terms of analytic mappings re-
lating some manifold to its global analytic extension. Fol-
lowing a description of the relevant formalism (in Sec. II),
we give a specific demonstration (in Sec. III) that the
four-dimensional Rindler space (described by the exponen-
tial mapping) uniquely satisfies the condition of global
thermal equilibrium. Spaces which are asymptotically
Rindler have thermal equilibrium asymptotically. In Sec.
IV we give a general discussion of renormalization in a
curved space-time where there may be no unique state sin-
gled out as a ground state, and where (even for a free sca-
lar field) coupling to the curvature may force us to regard
gravity as interacting. We examine several properties of
some specific regularizing schemes which indicate how
the renormaHzation might be effected, noting of course,
that final results must be independent of any scheme we
use to obtain it. A refinement to proposals for covariantly
regularizing the stress tensor by point separation is given
in Sec. V.

Generalizations of this work including rotating ac-
celerated frames and even nonanalytic mappings are given
elsewhere. 3

A. Contextual background

Before presenting our work in the next sections, we
pause here to survey the context in which it has betxi
developed.

While a full quantum theory of gravity is still nonex-
istent, continuous effort over the last quarter of a century
has demonstrated the many difficulties encountered in re-
peated attempts to construct such a theory and have also
indicated some of the particular properties which an even-
tually complete theory will have to possess. Complemen-
tary to these approaches, there are investigations for prob-
lems in flat space-time which can throw light on both
classical and quantum results in curved space-time:
Quantum field theory developed for curvilinear (accelerat-
ed) coordinates in flat space in a way which can be direct-
ly generalized to curved space-time may be useful for a
physical and mathematical discussion of the full theory.

The genuine coordinate independence which is so fami-
liar in the classical theory of general relativity is not a
particular property of gravity but a fundamental principle
prevalent in all descriptions of physical laws. On the oth-
er hand, the apparent difference which results from the
treatment of a quantum field theory in a variety of coor-
dinate systems (in either curved or flat space-time) is not a
coordinate effect at all, but is a consequence of the fact
that physically different quantum states are correctly
described by the quantum thcery as being physically dis-
tinct. "Canonical" states for different coordinate systems
are physically different (each timelike vector field leads to
a separate indication of what constitutes a definition of
positive frequency).

It seems difficult to give sensible meaning to the follow-
ing question: how should we describe quantum field
theory for an (accelerated) observer following a particular
world line'? Even for a uniformly accelerated observer,
some subtle assumptions go into the handling of this ques-
tion. First, although one might use a coordinate system
giving the world lines for an infinite family of uniformly
accelerated observers, this system actually refers only to
accelerated frames, since there would need to be collusion
(spacelike correlations) between observers in order to have
and maintain them as uniformly accelerating. In addi-
tion, to use standard quantum-field-theory techniques, one
would IIllpose boUlldary colldltlolls silcll that, asyIIlptotl-
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cally, modes appear as free waves in these coordinates.
But for an arbitrary accelerating observer, both the coordi-
nate system of his connected region and the asymptotic
boun ary conditions we might assign for him can actually
be chosen in an infinite variety of ways. However, a per-
fectly well-posed problem is as follows: what description
is there for a quantum field theory in accelerated framey
We associate a physical meaning to this questian by
describing the boundary canditions of the quantum theory
in terms of the asymptotic behavior of those frames. This
automatically specifies the quantum state to be examined.
In addition it allows us to use appropriate coordinates in
examining physical consequences of the quantum theory
for the chceen state. Of course, these consequences are
completely independent of the coordinates used to evalu-
ate them.

Further considerations arise for curved space, in which
acceleration and gravitation are locally indistinguishable
but globally inequivalent. On the one hand, we have just
imposed a connection between the boundary conditions of
the space-time and a quantum state in which to discuss
physics. We have done it by using the asymptotic
behavior of the accelerated frames. On the other hand, in
curved space, we shall have to decide whether there may
be some link between the global properties of the gravita-
tional field and some specific state which may be regarded
(gravitationally) as a global ground state in our space-
time. The alternative to such a normalization is to regard
gravity as essentially interacting with (otherwise free)
fields propagating in a curved space-time. These ques-
tions become unavoidable when one tries to handle the in-
finities, inevitably arising in theories of field quantization.

The usual purpose for examining Qe t' in flat space is
to obtain an understanding about the particles which we
use the fields to represent. In curved space-time, this
same reason exists, with the added fact that we can look
at (linearized) curvature effects on the theory. But a more
intei'estliig i'easoil lil the context of gelleral relativity ls to
be able to determine some nonlinear effects of the cou-
pling between matter fields and geometry through the
stress energy af the quuitum fields. Of course, one
should include the quantum effects of gravitation itself
but technically this is rather difficult and it has often been
felt that dealing simply with a scalar-field source first
would give a guide to the treatment of same of the diffi-
culties. Even to consider the back reaction of the scalar
field, progress is not altogether straightforward, the prob-
lem being that the stress tensor for a quantum field is a
formally divergent operator, just as it is in flat space.
Whereas one has a clear idea of what the vacuum (i.e.,
zero-energy) state is in flat space, and therefore can give a
well-defined procaiure for rendering quiuitum operators
finite, in a curved space-time this is not the case, and
there has arisen some discussion over whether one should
use a narmalization procedure, equivalent to defining
some specific state as having zero energy or whether a re-
normalization of the theory is necessary, equivalent to re-
garding the curvature as introducing an interaction be-
tween the scalar field and the geometry. With regard to
normahxation, it is not at all c1ear how to determine
which state might naturally be regarded as having zero

energy, or even whether there is any such state. On the
other hand, renormalization of a theory is usually con-
sidered in the context of a perturbative expansion. How-
ever, in the case of gravitation, apart from the infinite
changes which will be introduced into the quantities origi-
nally appearing in the Lagrangian, new counterterms will
be required at each level of a loop expansion about some
classically valued geometry (say Minkowski space). Be-
cause of this the full quantum theory of gravity is often
described as being "unrenormalizable. " It has also been
argued that if only the matter fields are quantized, even
an expansion to one loop may not make sense since the
quantum fluctuations of the geometry should also be con-
sidered at exactly that level where back-reaction effects
for the matter fields become significant. Nevertheless
there is ample reason to believe that knowledge gained
from a treatment of the "semiclassical" Einstein equations
will be useful in any perturbative discussions of the "full"
theory. In this context, some form of the "absolute" re-
normalization would s~mn to be required, and we shall
refer to methods which have been used for carrying this
out. However, it simply is not clear that geometry will
respond to quantum matter in the same way as does an
observer in a laboratory which is accelerating. Thus, at
least in any discussion of quantum fields on a fixed
space-time background, some form of normalizatian may
be more in order. We will make further reference to the
choices which arise here in Secs. IV and V.

II. QUANTUM STATES AND VACUUM SPECTRA
IN ACCELERATED FRAMES

The extension of earlier results to four dimensions is
embodied in the following coordinate transformations:

x r=f(x' r'—}, x+t =g(x—'+r'),
I IZ=Z

so that the metric takes the form

ds =f'(x' r')g'(x'+ t'}—dx'i dt'i+dy~+—dzi,

where f(g) is a strictly monotonic function, unprimed
coordinates refer to all of inertial Minkowski space and
primed coordinates to an accelerated space-time. (Below,
we shall use u =x —t, u =x +t,u'=x' t', U'=x' t—', for-
convenience. ) Singularities of the inverse mapping
u'=F(u) [O'=G(U)] at u+ and u (U+ and U ) give
the (x', t'} boundaries of the accelerated space, thus

u+ f(+ oo ), u+ =g——(+ m& ) .

Here u+ (u+) can take finite or infinite values. Future
and past boundaries at u =u and U =U are defined by
different types of singularities of f and g, respectively,
and they can have (as we will see) different associated
temperatures. The definitions proceed analogously for fu-
ture and past boundaries at u =0+ and u =4M+. Boun-
dsiries can be harizons or infinites. For finite u+, U+ the
accelerated coordinates cover a bounded region (a paral-
lelogram)

u ( [x t [ (u+, U ( ~x+t
~

(U—+,
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of Minkowski space-time; u =u+ and U=u+ represent
two event horizons. (If f=g, the bounded region is a
rhombus. ) There can be horizons on u but no horizons on
U and, vice versa, in which case the coordinates cover an
infinite strip at 45' angle with the x axis. If u+ ——+ oo

and U+=+oo, there are no horizons. Conditions (2)
guarantee that the accelerated coordinates (x', t'} range
over all values from —oo to + oo (light rays take an infi-
nite time t' to reach the boundaries of the accelerated
space). For t'~+ oo the world lines of the accelerated ob-
servers defined by x'=const tend asymptotically to the
characteristic lines u =u+ (U =u+) where its velocity
given by

g'(u'} —f'(u')
g'(U')+ f'(u')

ylc1ds

1 i{A2y +A3z)
e ltl(X', t') —~ &A2, A.2&+ oo

2m

( —a, .'+a„'—AM')y(x', t') =0

M =A2 +hi +m

Conditions (3) mean that the effective mass AM is zero
on the horizon and infinite at infinity preventing particle
escape there. Thus we can choose as a complete set of in-
basis solutions, the functions P'" satisfying

IA, )Q
lim e

2+7th i
reaches the values +c. These conditions ensure that one
can formulate QEI in these accelerated spaces in a con-
sistent way. In accelerated spaces for which the mappings
f(g) do not satisfy conditions (2), self-adjointness of prop-
agation equations, completeness and orthogonahty of their
solutions cease to hold, unless additional assumptions on
the wave functions are imposed. This can be clearly illus-
trated by comparing the mappings

fi=, (a5—py+0) and f2 ——pe "au'+ p l

yu'+5

lim PP, =O, A|~0
Q ~+co

I

1 J ~ ~ g 1/2

where Jo stands for the Bessel function.
This can be also written as

and given completely for any mapping by2
' 1/2

Pill 2

(10)

(a,p, y, 5) being real constants. Both mappings describe
uniform accelerations (f2 gi~es the Rindler frame). How-
ever, fi does not satisfy conditions (2} and then solely
quantum effects of Casimir type can be described in terms
«fi.

In four dimensions as in the two-dimensional massive
case, knowledge of f'(+ oo) [g'(+ oo )] is also required to
proceed with a discussion of QFT. Different choices are
possible. For definiteness in our discussion here we will

take f=g,u =0 (then u'= —oo is a critical point) and

u+ =+ oo, so that the accelerated space covers the right-
hand wedge of Minkowski space-time. Then

iA, IF{u)

2+trAi,

+Mdiv

f drte

J& IM[u (rI —u)]'~ )x
V'rt —u

in terms of the inverse mapping F=f '. Near the hor-
izon, for uU~0, l}}~,behaves as

f'( —a) )=0 (3a) win 1 l e'~l" 2is(A)e ii.u'), —
2+1TA i

f'(+ ~ ) = + oo (3b)

—'( —5.'+5..2)+5„.2+5,.2 —~2 q =0

where A=f'(x' t')f'(x'+t'). —
T1M substitution

since the Rindler space is included by this as are also
nonuniformly accelerated space-times which are asymp-
totically Rindler. The cases with two or zero event hor-
izons can be easily solved from the discussion given
below.

In the accelerated space-time, the minimally coupled
scalar-field equation

(4)

where 5(A, ) is real. (Because of the infinite potential bar-
rier existing at uu~+ oo, the waves coming from the
past horizon leave out through the future horizon. }

The functions 'Wi" are orthonormal with respect to the
scalar product

( 'pi, , q'i. ) = i f q'g„qadi 1X",

(]p
v' g ap apv' g)

With two event horizons, conditions (3) are modified to

f'(+ oo )=0
and besides the solutions p '2":—$2", we would also need the
solutions g'2' satisfying

—Q IU
hm 8

ll ~+~ 2+1TA.i

lim lI} 'i ——0, A, i ~ 0
0 ~—ag
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to form a complete basis.
Alternatively, with no event horizons, one could choose

f'(+ 00) =finite constant C+&0,

i.e., asymptotically inertial frames, and then IP'i",P'i'I
would describe asymptotically massive plane waves (with
effective mass not neciesarily equal in the left and right
asymptotic regions}.

The solutions pk are described for frequencies A, i which
are positive with respect to the accelerated t™~r A~ ~~

well known a complete set of solutions describing positive
frequencies ai with respect to the inertial time t is given
by

i (k&x +kg +k3s —E&t)

4 Q~E,
with —ao &ki, kz, ki g+ 00,

lim P'"'= e
2+%A,

lim pk
——0 .

V ~+co

They satisfy pi."'(u', U') =pk"'(U', u'). Analogously, we
could define Ci,

"' and ~0""') such that Ci,
"' ~0""')=0.

Note that ~0""')&~0""). (Only in the Rindler frame
~

0""')=
~

0"") up to a phase factor. ) As we always deal
with the in formulation we omit in what follows the su-
perscript "in."

Before proceixhng further it will be useful, as in the
two-dimensional case, to introduce the functions

E(A,,A, ') =—(0 (
Ckckt

) 0) = f d'k Bg(k)B/ (k),

R (A,,A, '}=(0
~
CkCk

~
0) = f d~k Ak(k}Bk (k) .

E =+(k '+k +k +m )' &0 (13)

We recall that in the formulation of Qt' I in accelerated
spaces, the dynamical operators are defined in terins of
the accelerated creation and annihilation operators Ck, Cj
associated with the accelerated modes pk. The vac™
state of the theory (

~
0) ) is defined by the inertial opera-

tors ak associated with the inertial modes yk, i.e.,

ak ~0)=0, Vk .
The state

~

"0') such that Ck
~

"0')=0, VA, , is an excited
state with respect to the true vacuum 0). A Bogoliubov
transformation relates C'k to ak and ak,

CI,"= ' W„ak +a, I k~ (14)

where

~k(k) = ~ 0'l", Pk ) Bk(k) = ~4'k yk ) .

Alternatively to the solutions {()k, one can define solutions

pk
' by fixing the positive-frequency boundary condition

at the future rather than at the past, thus

N(A„A, ') and R(A, , A, ') describe interferences between the
created modes with different frequencies A,, A, '. N(A, ,A, ') is
the production function. For A, =A, ' it gives the number
N {A,}of A, quanta in the vacuum

~
0) on the total volume.

The number N„(A, ) of A, quanta per unit volume is ob-
tained by introducing wave packets; i.e.,

Ny(A)= lim f f diUdA, "W((A,,A,')Wf (g', g")

xN(A, ', A,")

W~ is such that

f dA,
( Wg(X, A, ')

~

2=1 .

For instance

Wg(A, &') =&2/, ln exp[ —g(A, —A, ')2] .

From Eqs. (10), (13), and (15), we find

Bk(k) =Bk (ki,M)5(k2+&2)$(ki+g3),

where

(19a)

(ki +Ek) l
Bk,(ki,M) =- du exp —iA, iF(u) ——(k, +Ek)u

4~&X,Ek 2

Then, me get

R(A, „A,j)= f dk, Ak, (k, )B,(ki)

m exp[ikiF{u +if) ikjF(ui —lE')]-=+ dQ dM) ego4+ QX, ie, (u —u &+it')

R(Ai, ki)= f dkiAk, (ki)Bk, (ki)

(19b)

(20b)

1 1 " exp[iAiF(u+ie) —ikjF(ui ie)]-=+ du dui 2, @~0.
(u —u i+ le)

The Bk(k) coefficient factorizes in the product of a two-dimensional massive coefficient of effective mass M and two $
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functions. N(A, ,A, ') and 8 (A, ,A.') also factorize in this way but, because of boundary conditions (3), they are independent
of the mass of the field. Conversely, given N(A, , A, ') we reconstruct the mapping, i.e.,

f(u')=f(uo)exp —4~i Re e' " [v'AXE(A, , A. '}]i o, y'=y, z'=z, (21)

where f{uo) is an integration constant (scale factor of the
transformation).

From Eq. (21) we get the relation

[Cii i&C i'i i]= f d k Bi (k}8i'(k)

=X„(Z,)5"&(X—X'), (25b)

, lnf(u )=Re f dAe [+Ah N(A&A )]it,'=o
4n du'

(22)

[Ci(+),Ci, i )]= f d3kAi(k)8i {k)

=0=[CD(+i Ci;(-)] . (25c)

m. UNIQUENESS OF THE EXPONENTIAI. MAPPING
AND THERMAL PROPERTIES

OF THE ACCELERATED FRAMES

From the above results, we prove the following
theorem: each one of the following statements implies the
two others.

(i) The functions N(A, ,A, ') and 8 (A, ,A, ') have the form

N(A, ,A, ') =N„(A, i)5(A, i —A, 'i)5(A, 2
—A,2)5(A,3

—A, g),

R (}{„A,') =0 .

(ii) The Bogoliubov transformation can be decomposed
as s two-term one:

CA. [1+m~1)] CA(+) P (~1}] CX( —)

(iii) The accelerated space is

2 T' 1f(u')=e ", i.e. , F{ii)= inn,
2mT

~=[~0'(~i)h, =o .

The equivalence of statements (i} and (iii} follows from
Eq. (16).

The equivalence of statements (i) and (ii) follows from
the relation

1+%„(A,i)
Ai, (k)= Bi (k)

which is necessary and sufficient condition for the Bogo-
liubov transformation being decomposable. This condi-
tion allows us to define a basis

Ai(k)
Cg[+) —— d k

[1++„(X,)]'" ' 'Qk,

Bi (k)
C~[ )= d k Qk

pr„(~,)]'"

[Ci(+),C j(~)]=f d k Ai (k)Ai (k)

=[1+N, (ki}]5' '(AA', ), ,—,

We see that Eqs. (25a) and (25b) give statement (i). It
should be noted that the theorem defines f(u') as given
by Eq. (21}up to a bilinear transformation such that

T

=e, u &u&u+ . (26)

N„(A, )=
(e —1}

but the converse is not true.
We see that the parameter T as defined by Eq. (24)

plays the role of a temperature. For any of the statements
(i}, {ii), (iii), Eq. (22) is equal to a constant of value 2n T.
The theorem characterizes a situation of global thermal
equilibrium over the whole accelerated space. This situa-
tion implies the presence of events horizons. The Rindler
frame has one event horizon [Eq. (23)] or two event hor-
izons at the same temperature [Eq. (26)]. Note that the
presence of event horizons is a neceisary (but not a suffi-
cient) condition for global thermal equilibrium.

A local (or asymptotic) thermal equilibrium situation is
described by the class of mappings f(u'} such that

2 T
lim f(u') =e

Q ~+ce

or equivalently by

lim N (A.,A, ') =N„{Ai }5'"(A.—A, '),
A, -+V

lim R(A, ,X')=0.
A, ~A, '

The accelerated spaces corresponding to Eqs. {28a} or
(28b) have nonuniform acceleration but for u'~+ ao the
acceleration becomes uniform, i.e, the systems become of
Rindler type. For all these spaces X,{A,) is given by Eq.
(27), or more generally by

y' and z' are defined up to a linear transformation on t',
namely,

y =y'+at', z =z'+yt',
i.e., up to a drifting (or uniform rotation) in y and z; cr

and y are constants.
A corollary of the theorem is the following: If N(A„A, ')

satisfies the statement (i), then N„(A, ) is given by
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1 1 1
2.n' +

(e —1) (e + —1)
(29)

IV. THE ENERGY-MOMENTUM TENSOR
AND ITS RENORMAI. IZATION

The asymptotic temperature T+ are given by

T+ = lim f dl, cosku'[v'lA, 'N(A, ,A, ')]2 0 (30)
Q ~+co

OI eqlllvaleiltly by

T+=,[lnf(u')]„+ = (V'goo&),
1 d

21r u 2m
(31)

a=, 8 lnA(x', t')
[A(x', t')]'

is the acceleration. A typical nontherm»»tuatio»s
described by mappings f ( u') such that

lim f(u')=, +Pu'
u'-++ eo Q

or equivalently by

lim N(A, ,A, ')=N(Ai)5(&2 —&2)5(A2 —Ai),

lim R(A, , A, ')=R(ki}5(A2+A2)5(A3+A3),

(32)

(33)

where E(A, i) and R (A, i ), are nonvanishing finite functions
of A, i. For these spaces, the acceleration is nonuniform
and particle production takes place in a nonthermal situa-
tion and is confined within a finite voluine of the space
(the total vacuum energy is finite). All the spaces of this
class Rl,ave

When normalization with respect to some particular
state which has been defined to be empty is not appropri-
ate, it has become a practice in this field to introduce a
complete renormalization of the theory, essentially by ex-
tending techniques developed for empty Minkowski space.
Whatever the problems implied by that approach, we will
look, for the present, at the properties of some of the
schemes adopted to carry out the combined regularization
and renormalization of the theory, with an emphasis on
the point-separation scheme. This has the advantage for
the task at hand that not only is it defined entirely in and
on the original manifold (as is also g function regulariza-
tion) but the divergences can actually be obtained from
the divergent terms of the effective action given by the
vacuum-to-vacuum amphtude. Thus, in a sense, the re-
normalization is immediate, with both infinite and finite
subtractions being given by those terms in the effective ac-
tion which lead to divergences. Dimensional regulariza-
tion involves an extension of the space-time with extra flat
dimensions and may not be very appropriate in curved
spaces where differences from other schemes have oc-
curred for some higher spin fields. Our explicit represen-
tation of the fields means that point separation is an ap-
propriate regularization scheme to discuss here.

We first consider the Green's function 6(P„P2) and
the renormalization of (014' 10). Inertial and accelerat-
ed observers define the same Green's function

6 (Pi,P2) = (01[+(P$), P(P )] 10)
T+ ——0

N„(Ai)=0 .
(34)

for the free fields. Inertial observers express 6 in terms
of the modes yk, accelerated observers express 6 in terms
of the modes $2..

6(Pi&P2) = f d'k
V k(Pi)ee(P2)

gP) gP2+2Re 'N, ' gP) g Pp +8, ' gP] g Pg (36)

6'(Pi, P2) = (0'1 [0'(Pi ),%'(P2)]+ 10')

x P2 (37)

P =2Re f f d A, d A, '[N(A, , A, ')$2/2

+~(~ ~')0242. ]

(01'"
I
o) = f d'~142, 1' ~

(39a}

is the "false" Green's function defined with respect to the
accelerated state 10'). 6' is not translationally invariant.
As is well known, when one attempts to calculate
(01'0 10), divergences appear:

(01+'10)= f d'k1q, 1' (38)

=~+(0'1e'1o ),

The left-hand side (LHS) of (38) is divergent. In the RHS
the first term (u ) is finite whereas the second also has a
divergent part. In fact, in the accelerated state, the diver-
gences of (0'14 10') are exactly those which appear in
(01%' 10); that is, they are independent of the particular
state chosen. This divergent behavior is general for the
expectation value of any composite operator. With
respect to the eigenmodes of the accelerated state,
(014 10) separates into a finite term plus a term which
can be recast as the expectation value on the state 10').
This term contains the infinite part. The problem is then
to separate the divergent and finite parts of the term given
by Eq. (39b) and to justify discarding the divergences. Al-
though usually thought of as resulting from the short-
distance behavior, the divergences in Eq. (38) or in the in-
tegr» (39b) are actually governed by the properties of the
mode functions in the asymptotic regions of the space-
time. The apparent divergence dependence on the asymp-
totic region comes precisely from the fact that, whatever
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the asymptotic region, we always choose fields which,
asymptotically, are "free" fields in that region. Thus we
will always have the divergence appearing exactly in the
way that it occurs for the vacuum in Minkowski space.
This allows us to subtract the divergences in the accelerat-
ed frame by following a similar procedure to that in the
inertial frames. In the inertial frame, with some regulator
c, we would have

& o
I

P'«)
I
o & = & o

I
P'«}

I
0 &iF+ & 0

I
P'(c}

I
o &iD

where

»m &Ol ~'(c) IO&„&

lim (Ol 4' (e) IO&ID=
e~O

ID and IF stand for the inertial divergent and finite parts,
respectively. By subtracting (Ol 4 (c')

I &ID and letting
c~O, one obtains the (inertial) renormalized quantity

&0
I
+'I 0&1«„—lim [(0 I

e'(c)
I

0& —&0
I
e'(c)

I
0&»]=0.

e-+0

(40a)

In the accelerated frame we follow a similar procedure,
but the inertial (e) and accelerated (c') regulators need not
nimessarily be identical:

(0 I
e'(c')

I
0& =P + (O'

I
q '(c')

I
0'

&

with

&O''P'«'}
I
o'& =&o'

I

P'«'}
I
o'&AF+ &o'

I

P'«'}
I
o'&AD

m(0
I
+I(e'} IO &AF= &+ lim (0 I

q"(c'}10

Whence, we subtract (0'
I
VI(c')

I
0'&AD to obtain the (ac-

celerated) renormalized quantity

(40b)

since in the Minkowski vacuum (0
I
+

I 0&l«„——0. Here
AF and AD stand for the accelerated finite and divergent
parts, respectively; Aren stands for the renormalized value
in the accelerated state. Clearly, renormalization in flat
(Minkowski) space can be made easier than it would be in

general, since vacuum expectation values of + (and T&„}
are zero in the inertial vacuum, and our observations here
are also sufficient for a discussion of the renormalization
in the interacting case.

From Eqs. (40a) and (40b) we see that whereas field
quantization lead to indentical divergences, renormaliza-
tion has assigned different finite values to the same opera-
tor in different quantum states. This is irrespective of the
adopted regularization scheme. Thus (T&„&„sneed not
be covariant (e.g., the introduction of a cutoff in the high
momenta, or ordinary "point splitting" are not) but
(T&„&„„should be. We refer to Ref. 4 for a critical dis-
cussion of various proposals of regularization. For later
use we note the possibihty of evaluating (0

I
4

I
0& as the

limp, I,G(PI,PI) in a space-time representation rather

than in a mode sum. However, for arbitrary mappings we
will need to use the modes Px in calculating the divergent
part [Eq. (39b)] in order to obtain a finite (0'

I

VI
I
0'&~.

It is only the convenient representation of quantized fields
asymptotically in some particular coordinate system
which has sometimes lead to the incorrect notion that the
states associated with those fields are coordinate depen-
dent: of course they are not.

We now consider the energy-momentum operator (for a
minimally coupled field) given by

T„,=d„gd„g ,'g„,(d Pd —P—+m PI) .

With respect to eigenmodes for the accelerated state, the
vacuum expectation value (0

I T„„I
0& can be expressed as

(0 I T~„ I
0&=2Re f f d A, d A, '[N(A, , A, ')Tq„(pl, pl')+R (A., A, ')Tq„(pl, pl )]+(O'

I Tq„ I
0'&,

where

&o'I TI. I
o'&= f d'ATI. (41.41'.)

(41)

(42}

TP.(0 t)= di 4'dW I g~.(g 'dA dPm—+~'4W) .

Derivatives and indices generally will refer to primed (accelerated) coordinates. In our coordinates defined by Eq. (1),
T~ and To; components can be concisely expressed as

T (y,~)=a, ya, ~+a„a„ya.~+Ay„(a„.ya„.++a„a,.ya, .++&„~'y+}, T„(y,&}=a,.ya, ,&,

re= Po= 1'o

IXI 131 ) I =1.-~I= PI= }"I-
-~I=-A= )'I

The vacuum energy and momentum densities are given by (O'
I T~ I

0'& and (O'
I
—Toi I

0'&, respectively. By using Eqs.
(19c) slid (19d) slid performing thc lfltcgl's'tloIls ln A,j slid A, s wc scc that tllc dlsgo1181 00 slid Ol colllpollcli'ts csn bc wrlt-
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ten directly in terms of their two-dimensional counterparts with the modified M and the 22 and 33 in terms of a modi-
fied operator which we can write for all cases as

T„'~(P,qr;Mq ) =d;$d;p+ apd„pd„y+ AMq $y

M„=P„(A,i +a„A,i +y„m ) (Mo —=M ) .

&oI T,'",'(x' t'm) Io&= f f dAzdAi&OI T~~(x' t'M, ) I»

&0
I
T„'„'(x',t', M„) I

0) =2Re f f dAidA'i[%(Ai, AI)Tqq(gi, ,P~„M„)+R(A Aiii)T„'„'(Pi, ,P~, ,Mq)]

+ f, di. , T~'„'(4i.
, 0,", Mt ')

The equation is written analogously for &0
I To; I 0); & Too(2) ) is just the two-dimensional energy density with M in-

stead of m .
For the purpose of computation, it is useful to introduce the quantity

6„„=&OIB„Ila„lltIO)=2R f f d Ad A, '[le(A, A')a„yta„i/lt', +8( A, A')a„tp ia„l/Jg] +f d Aa„tj(tie„yi . (43)

SQd glvc cxpllt 1tip

H = &o
I

Tm I
0)= —,

' [6 +6„+A(6„+6„+m'6)],
s;=&OI T„Io&=—6„,
&0

I
Ti, I 0) = —,

'
[Goo+Gii —A(6 2+i6$3+ mG)],

2&o
I
Tu I o& = [Goo —6»+A«u —6»™6)]

2A

2
&OI T» Io) = [Goo —Gii —A(Gi2 —6)3+m 6)],

2A

where 6 = & 0
I

4' ~
I
0) is given by Eq. (36).

According to the renormalization prescription given by Eq. (40), we have

o
I T„„Io&„„„=&oI T„„Io& —&o'I T„, I

o'&„D
T

=2Re f f d Ad A.'[N(A, A, ')T~„(gi,gi )+R(AA')T~„(gi, gi )]+ f d ATq„(pi, ,gt;)

It is implied here that a regulator (e') is introduced and the e'~0 limit is taken after subtraction.

(44)

A. Applications

By way of application, we consider the explicit evaluation of our formalism for the example of Rindler space, which,
as we have shown, has unique thermal properties globally. The mapping which gives rise to Rindler space is given by

f(x'+t')=le '
(l and a ' are unrelated length scales) so that

A = I f'(x '+ t ')f'(x' t ') =1ta e~ . —
The explicit solution of (8) satisfying boundary conditions (9) can be found by evaluating (10), or in this case, directly:

t ~ ij+'+ i 3i'
~y2~' 1

(iMy2)
' ' e

' '

y, (x', t')= ' Z ... (iMe '),
mA, il'( —iA, i ja)

where Er(z) is a modified Bassel function. Then, from Eqs. (19) and (20) [or equivalently (19) and (18)] we find

(45b)
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s A, )/cki+E
e

A 2

' l/2
1

Bi (kM)= I
2mo, E

Ai (k,M)=e~ Bi,(k,M),
8"'(~—) )

N(A, ,A, ') = ~, R (A,,A, ') =0 .

(47a)

(47b)

Since the full field is given by (45a) we have immediately 8, gi —— i—kigt, „B„gi,—— i A—gbi, , 8;Pt„iA——,3'„T.hus, for ex-
ample, in G02 we have

8"' X-Z
2 Re f f d'A. d'A, '

„~„(Q(pt)(;AgrN )'
CO CO ( —iLik, 2)

2

00 {—~i~z) -~i, , ia=2Re dpi f dA2dki 4 e ' Egg~(Me )E tt g~(Me )=0.

This last result follows since the A, i and A,3 integrals are
finite and the A,2 integral is odd; recall from {8)that M de-
pends on A,2 and A,3. Similarily, we find that the corre-
sponding term in the expressions for G03 and G23 also
vanish. And, since E„=E „we have in Goi

2Re f f dkdA
~ ~q (iA, ,gf)(B, pg)
5(A, —A, '}

ic temperature a/2n, but there is an asymptotic (rather
than global) thermal equilibrium situation in this case.

It is useful at this point to consider the case of two di-
mensions, for which the solutions to the wave equation
and Bogoliubov coefficients are given directly by Eqs.
(45b) and (46) with M =m; N and R are given by Eqs.
(47) with A. =—A, ~. Thus, we have for G

=2Rc 2~~~ „' g g ——0, G = f dA, icoth
AF

r+t =e~'" +-' ', p=tfp', 8=8' (48)

( r, y, 8, being spherical type coordinates) yields to

dsz=aie~ (dr' dt't)+e 'cosh at—'dQ (8„p) .

The vacuum spectrum N, {A,}is Planckian with asymptot-

where the integrals are all finite but the integration result
is purely imaginary. The same result follows for this term
in Gi2 and Gi3. Thus we have shown in particular that
each ( Tot ) (component of the Poynting vector} is zero, in
accor ance with the global thermal equilibrium properties
enjoyed by Rindler space-time. The same is true for the
vacuum expectation value of angular momentum operator

L pv
U +py ~ +vyoIM,

X

This cannot be considered, however, as characterizing an
isotropic thermal radiation for the Rindler vacuum.
Rindler observers have a preferred direction, namely, their
spatial direction of acceleration. In Rindler space, ( Teo)
is a constant up to a dependence in x' through +goo
=ae . One could regard the gradient B„(TOO)e, as
defining a preferred direction of the thermal vacuum. On
the other hand, the response of a uniformly accelerated
detector model with a directional discrimination has been
found to be nonisotropic. It is not possible to con-
struct an accelerated Aat space-time for which the
vacuum is spherically symmetric and in global thermal

equilibrium. The mapping

dpi trli
cosh E;i ~ (me )I i CK

XE;t, & (me )—j ) C AF
(49}

The point of reconsidering the massive two-dimensional
case is the following: we find that a naive regularization
scheme suggests a renormalization which (surprisingly)
leads to a sensible physical result. We can examine this
outcome rigorously only in the two-dimensional massless
case but particular computations for four dimensions
show that a class of mappings exists for which a similar
result might be proved. The special features we have used
in two dimensions apparently need only be partially

present in four dimensions. A simple evaluation of ( Too)
for any f(g) in the massless case can be obtained from a
space-tine representation rather than from a mode sum
for G. Point separation is a natural choice of regulariza-
tion in that case. For the purpose of this section, we will
use ordinary point splitting; a fully covariant regulariza-
tion is given in the next section.

The same kind of separation in Eq. (38}between finite
and infinite terms occurring in the accelerated frame
can be observed if we consider (0

~

%~
~
0) as

limp, r,G(Pi, P2) in a space-time representation. The
sq~~~e length
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o' =(xi —xl } —(ti —tl) =—b,uhu2= 2 2=

(aa=u, —a, , au=u, —u, )

is expressed in terms of the mapping f,g as

o'=lf(ai) —f(u'1)][g(vi) —g(u'1)] .

calculation shows how a purely divergent quantity ac-
qlllres a different finite ternl dependlllg 011 the "rauormal-
ization" scheme chosen (here expressed in curvilinear
coordinates}. Particularly illustrative of this is the evalua-

tion of &0
I T„„I

0& in the massless case. In two dimen-
sions we have

In the inertial frame, when b,u~O, Su~0, o diverges
as (btthu) '. In the accelerated frame, when bu'~0,

Ibu'~0 (bu'=—lt 1
—ul, bu'=—u'1 —ul ),

t2f(it '1 )=f(it 1)+f'(lt 1 )&it '+f"(el )—
2I

1
G (Pi,&2)=— in[(tt 1

—tt 1 )(u 1
—ut )—ie]

1 in[(f i —f2)(gi —gl }—is] (50)

+f'"
)

+
!2

g(u 1 ) =g(ut )+g'(ul )&v'+g"(u'1 )
2f

l3
rpr Eu

g

and then

u„G=(a„,a„, +a„,a„, )G

1 fif' giga,
2+ 2(fi -ft} (51)

Here ft~f(tt/), gi=g(u/}, i =1,2. In the limit tt'1-+ttt,
we have

o = . . . , (1—afhu'+bfbu' )

1 f" 1
Qf= q &f=

2 f'' 2

1 g
Qg 2 t

r

fII

2 f'

1 g"
2 g

X(1—ashu'+ bshe u'1),

'2
fir

~

3 f'
gtki

3 g

Thell

1 1 1&izG=- hu'1 b u'1
r

1 g'" 3+ ~ ~ rrrrrrrr

6 g' 2

+O(bu')+O(bu') .

fl ~ I

6 f'
~ 2 ~

fII

2 f'

~ 2 r

(52)

In the limit b,u' —+0, hu' —W, o 1 separates in a finite plus
all lllfllllfe term aa

z 1 1 af ag
f'g' bu'bu' hu' hu'

1 b,u' hu'bf, +bg, +afas

Even to have a well-determined finite part here, one must
be careful to specify how the limits litt'=(du' —lt'}~0,
lLu'=(M'+Et')~0 should be taken. But this simple

On the other hand,

Gi (
Nks'+ tl kv'}=

4r o 1{,

1 1 1+
b,u'1 h,v'1

r

(53)

and we see that the divergent part appearing above is the
whole of the operator for the accelerated state. Thus a
subtraction of the divergent part is equivalent to a nor-
malization with respect to the accelerated state. So we
have

&o
I Too IO&~=&o I Too IO& —&o'Too

I
o'&

flrl 3 fr ~

f' 2 f' +
g 2

g 3 g
g

(54)

In the Rindler case f=e~", g =e ",each f(g) tarn gives—ex /2, so
corresponding to the energy density of a Planckian gas at
temperature T =al2n. . We can also show how this result
emerges from a mode sum representation. If we take
point separation in the time direction for simplicity, we

tain
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i cxe 7r

m a26 2

(olTml»= — f d&«'"" ~t x
2m' m'

I I
t'

a 1—g 2, —
2m m 2

le~ds to

, (4V'f'ifz+~f g'igz)
2

Qy 2+~2
462

i a,'8'

y 1

o (n ia—e'/2n )2

Now

2,2+/(2) .

&QIr IQ&=— & Too & =A lim & i2G .
1-+2

~T'
&o

I ~oo I 0&~F=

The same calculation in four dimensions starting from

G(&i,&2)= 1 1 1 1

4n' (a2+Qy2+~2) 4' 5
h=bfhg+by +M

Taking the limit by'~0, M'~0 first:

f'0'2 g'a&2

26 ~f4&
A 1

4e (hfhg)2

~f4'=(f i —f2)(gi —g2»
and then u i-+uz (u'&~uz), straightforward but lengthy
calculations [expansions to the fourth and fifth derivatives
off(g) must be now included), give

&OI Too
I
0&AD ——— [1+(a—8—3 )bu' (b+aA+C——A8)hu' ]+(same term in bu'),

2m b, u'4

& o
I

T'm
I
0&~= j. Ca+ —8+ b ——A+(c —D)

2 2

I

flit 3 fit
Q f' 2 f'

ftV fltfll ~ fit
(12)2 f' f12 f'

2ftll fItt

f' f'

A =A, 8 =(A —8), C =2A8 —C, D =(8 —2AC —D),

t

g' f'
t

ftlt 3 fItgt ~

1 giv frv fIt lit Itf ttl

g' f' 2 f'g' '
24 g' f' f'g'

g +f" 5 f g
f' 2 f' g'

ftt glt 1Q flttgt ~ I

f' g' 3 f'g'
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In the Rindler case, these equations give

77 =a /12, b =a /3, c =a /32,

A =0, 8=a /12, C=o, D= 4'a

A=0, 8= —a /12, C=O, D= ~a

state, and that we have therefore normalized the Min-
kowski vacuum with respect to this state. In the four-
dimensional case we stumble upon a similar result for the
exponential mapping without being able to find the gen-
eral class for which it is true.

(OI Too Io}xp—— (7'8 +c D)—
2

1 a4

2' 240

corresponding to a Planckian density energy at tempera-
ture T =a/2ir in four dimensions.

In the two-dimensional case, the finite part of D)2 6 is
~ 2 ~ 2If" 1 g'"

2 f' 24m g' 2 g'
flit

24n f'
where each factor is related to a Schwarzian derivative
which, hke the measure in Eq. (20} is invariant under
homographic transformations: f v(af +b)(cf +d)
But, from Davies and Fulling, or our covariant point-
splitting result later in this paper, this is just the negative

&O'
I rm IO'&„=&O'

I rm IO'}—(o
I
rm Io& .

Thus we know that the subtracted divergence is exactly an
expectation value with respect to some state, which hap-
pens to be (homographically equivalent to} the accelerated

8. v 6HDenslQns

For massive fields, calculation by dimensional regulari-
zation is often very instructive. We shall first calculate

( T 2 ) in generic space-time dimensions and then consid-

er dimensionalities of interest. We analyze now ( T„2,) as
a function of the space-time dimension.

The Green's function in v dimensions is given by

G(x) d k 8

(2n)" k +m +i@
m~v/' —' K(v/2) )[m(x +2ie)' /]2

(58)(27/)v/2[(X2+

is�)i

/2](v/2) —)

where

x'= —xo'+x, '+ +x„,'
and

-A{z)+ 2lz)I I
1(ix z =—

2 sinirA, Re}(,&0

By using

1 z
I'(A+1) 2

~ «4'2
1 z 1 z

(A, +1) 2 2(A, +1)(A,+2) 2

we have

v m X m'x' m4x'
2(4—v) 8(4—v)(6 —v)

(59)

By computing

I ——1
V

2
a a„G(x)= I 1 ——" "'+

(4 )v/2 2 & 4 v/2

r

X (2—v)g 2
—v(2 —v) + [X g 2+(2—v)x Xi]+ +X X X2

m2 m
X2 8 (4—v)

(X2)i —v/2

2

we obtain

(Tpi, (X)}=hm a/ax — (a a —m ) G(X)=(r x(X=0))+(r x(X)) .
x-+0 2
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(61)

X~Xg
gpss

m2 3 m'X' m'X'
4 " " 4 (4—v} " S(4—v)(6 —v)

Now let v~d =2,4. We have

X-" p-" 1 v ~Xv= d +(v—d), /
——

/2 q 1 —(v—d)ln — +0(v—d)

1)1—d/2

2
2 —c +0(v—d),

d —v
——1 = ——d —1+—(v —d}+0(v—d)1 1 1 2

v d d

P" ~m 2 ma
& T„,(x=o)&„,=

L

r

& T~(x =0)&„4—— g„i

e(1/2)(1+v)

—1/12b =8 (63b)

V

p"-' m' X g~i, X~xi i X~xi
4 +mX2 X4 X2 (64a)

2
gPA 4 PXX
X2 X4

2 XqXg

X

6

Z. X P m 6
1

~~x P " 8 2m' 32 4m' m~

)' " ' — p
ls I

Now, if v is used as a regulator, we take v negative and X=0. Thus, in dimensional regularizatjon & T„g & is given by
Eq. (61) and its expressions for v-+2,4 are Eqs. (63a) and (63b). If we use X as a regulator, then & T„(x)& is giv~ by
Eq. (60) and its expressions for v~2, 4 ate

(65a)

gpz 32',Xg 2m g~g 2 X~Xg m4 X„X~—8 +4m 2

X4 + Xb X2 + X4 + X2 X2
(65b)

The poles at v=2,4 appearing in the X=O and X+0
tern. s (63) and (64}mutually cancel.

It can be noted that Eq. (61) is only valid for m&0.
& T„i„& as given by dimensional regularization does not in-
clude the m =0 limit. This is so because for X=0, the
only term contributing to G(X) comes from I„/2, (X).
The m =0 contribution is contained in the I~„/2~ ~(x)
term which vanishes at X=O. To include the m =0
term, & T„i & must be defined for X&0 and point splitting
18 requ11 ed.

V. COVARIANT POINT-SPLITTING
REGULARI&ATION

There is a very natural form of the regularized operator
which suggests itself here. In keeping with the efforts of
other authors, it embodies nmuerous pmperties expected

from the clmsicd defiation. It cm b ~ily built up
piece by piece to reflect the symmetry, conservation, and
conformal tracelessness of the classical expression and by
construction has the property of being parallelly trans-
portable between the separated points which give rise to
its definition. Somewhat surprisingly, in one way or
another, it differs from the corresponding quantity used
by other authors in the field, but only by terms which are
odd in the separation, i.e., whose sign changes under
parallel transport. Whatever the value of using it for a re-
normalization may be, it would seem worthwhile to
record our regularized tensor here and to give some argu-
ments for its adoption.

A. Constructing the tensor

From the point-splitting point of view, just as the
Green's function is the fundamental object from which to
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construct quantities such as (g ), we seek some analo-

gous object for ( T„„)which preserves the Lorentz covari-
ance and, where applicable, the conformal invariance:
also, we seek an object which is formally conserved in the
coincidence limit, the final result automatically being con-
served, sInce renormahzatson takes place In the I.agrang-
ian. However, it is a little difficult to implement conser-
vation for our regularized tensor unless the tensor itself is
regular in the coincidence limit.

The classical expression for the stress-energy tensor of a
scalar field has terms such as a„„f(X)g(X),P,„(X)g,„(X),
and f,„„(X)g(X)occurring in it, where the (regular) a„„
may be g„„,R„„,Rg„„(contractions of these terms also
appear). In the quantum theory, since these terms
represent products of field operators (or their derivatives}
at a point, they are divergent (ill defined). However,
terms such as p(X)f(X'), p.„(X)f.„(X'), p.„(X')1((X},
P,„„(X)P(X'),f„~(X')g(X) are clearly well defined and
will be suitable for use in building up a regularized quan-
tity. In addition, there is an (essentially) umque object,
the geodetic bivector of parallel displacement, g„~, which
allows the indices expressing dependence at one point to
be translated to the other, so that a properly tensorial
quantity can be defined. Whatever other properties the
stress energy may have, since this parallel transport is
needed for the definition of our regularized tensor, it
would seem most useful to have a definition which is in-
variant under such transport between the separated points:
j..e.,

Pq„(X,X')=g„"g„Pq p(X,X') .

We can think of this as a "symmetry" under X~X';
terms lacking this symmetry would vanish in the classical
expression obtained from the coincidence limit. Thus

„(X).g „(X).~ ,
'

[gq—"Q „(X.')f „(X).

+g„"f q(X).Q „(X.')],
f.,„„(X)g(X)~—,

'
[g,„„(X)P(X')

+g„"g„f,„p(X'}g(X)],

a&„(X)g(X)f(X)~,
'

[a&„(X—)+g&"g,"a„„(X')]P(X)g(X').

In the first two cases, the symmetry under p~v is
preserved; in the third case no syminetry whatever is used
in the construction. The contraction terms in the regular-
ized tensor follow unambiguously from these definitions,
which lead to an explicit preservation of the vanishing of
the trace in the conformally invariant theory. Thus, in a
curved space-time, with

8""=R"" ,
' g""R, —G—=[it (Xi ),p(X2)]+

and conformal coupling g, we will consider

~""=(i C)(g"~G'" —+g"i G'"" )+2(C '}g""gp G—'~— 0G'""+g"—,g "~G'" }

+gg""(Gzl'+ Gz I' )+ , g(S""+g"&—g"~S"~)G ,' m 2g—"—"G. (66)

In the expression given by Brown and Ottewill, the
operators occurring in the first and third terms of Eq. (66)
are not distinguished. In Ref. 10, Wald does not apply
point splitting to the Einstein tensor. Dowker and Critch-
ley" split the Ricci curvature and VI'V", but not the scalar
curvature and V&V . Christensen' uses the conformally
coupled field equations

P X}.&&=[gR (X}+rn ]f(X),

itI(X'}.„"=[(R(X')+m i]p(X),

to partially remove these second-order operators (so that
tracelessness in the conformally invariant case bo:omes
independent of the field equations), but he makes no dis-
tinction between the scalar curvature at the two points.
Candelas'3 fully removes the OG (and O'G) terms.
Davies and Fulling in fact remark that some asymmetry
between X and X' may be introduced into the regularized
tensor by use of the field equations. In his examination of
the scheDM proposed by Adler, Lieberman, aiid Ng, '

Wald shows that a certain regular, boundary-dependent
Green's function used in their analysis, is not symmetric
and does not satisfy the wave equation in both X and X'.
Using his proposal for the regularized energy-momentum
tensor, he finds that their renormalized tensor is not con-
served and suggests a modification to correct this fault at
the expense of introducing an anomalous trace. Although
our proposal alters a number of the features used by Wald
in his analysis, it will not spoil his results concerning con-
servation since he applies his regularized operator only to
a nondivergent quantity, and it turns out that, the differ-
ence we would introduce vanishes identically in the coin-
cidence limit. However, our proposal introduces addition-
al direction-dependent finite terms which would in general
lead to additional OR terms in the trace (even with respect
to Wald's work, but not that of Christensen) and would
spoil conservation if there is anyone who has genuinely es-
tablished conservation for his renormalized result. Ulti-
mately, the residual effect of our proposal partly depends
on one's handling of direction dependent terms.

In flat space-time, with /=0, from Eq. (66) we have
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P'»Y 1 (gv 6;»v +g» Gi» &

—g»"g~ 6'» —m 2g""G) .

In the coordinate system defmed by Eq. (1), we have

g»„——( —A, A, 1,1),

&= 2(f1g2+g'1f'z) A1f"'1g'1 f =f(u'»
s = 2(f1g2 glf2» A2=f2gz

i=1,2.

—r s
0—S

~00= [r(600'+611')+&«01'+610')
2A2

+A1A2(G22 +633 +m 6)] .

—5
g"~=

A)
0

0

Of course, we could take the expectation of this with
respect to any state. If we choose, say, the Minkowski
vacuum

~
0), the operator 6 would become just the Min-

kowski Green's function. If we choose an accelerated
state

~

0'), 6 would become the Green's function for that
state.

As an example, me consider the two-dinmnsional mass-
less case referred to earlier (as then, we will for conveni-
ence use the Feymann Green's function rather than the
symmetric one). For the accelerated state we have

6'= — ln(hu'EU') (hu'= u1 —u 2, b O'=U1 —U2)

T S

S P

g p,
=

A2
0

0
and then

h

1 f1 1 g1 1

~ 2+4~ f'2 (hu') g2 (AU')

Using 8/Bu =(1 /f')(8 /8 u'), we expand

and

to obtain

1 (f2-f1)
hu hu' fI ftt hu fttt (flu )

hu 2! ' 3!

fIt

=1— hu+ft 2

fi fi' 1 fi"
2fl2 6 ft3

fttt ftt2

f 3 Ift4

1 f1'
f 4I

& f'1 4 f1
+ —,+1gi 1 g

6 g) 4 gI

From our previous expression

o =(f2 —f1)(g2 —g1»
8, cr = f1hv, 8„,cr =—gi hu, —

Q)

the divergent part can be written as

(a, H)2+(a, ~2)2
1

4n

which can be subtracted by a renormalization of the
cosmological constant to give

+ —— ',
18&
6gi

f I ~

f'1
h

g&+—1
4

As mentioned earlier, this is the negative of the result of
our naive subtraction scheme for the Minkowski vacuum.
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Using this covariant method instead, for the Minkow»
vacuum, and expressing the result with respect to ac-
celerated coordinates me would have

1 fi
4n'Qg 2 QU2

and obtain

We have extended, from two to four dimensions, a pre-
vious description of accelerated frames using analytic
mappings. For a treatment of the divergent operator
products arising in quantum field theory, we show that in

a normahzation with respect to a natural ground state
specified in tcums of these accelerated frames, the coordi-
nate mapping (and its inverse) relating the accelerated
frames to global inertial coordinates, plays a distinguished
role. As in two dimensions, the exponential mapping is
uniquely singled out as giving rise to a situation indicating
global thermal equilibrium, and asymptotic properties of
mappings are directly related to thermal properties in the
asymptotic regions. %e do not attempt to settle the ques-
tion whether normalization may be more appropriate in
curved spaces, but as a unique way of indicating which
state to use for a normalization has not yet been
developed, it seems that to discuss the back-reaction prob-
lem a renormalization may be essential. In this context
vie propose a new regularized energy-momentum tensor
using covariant point splitting, and discuss its properties
and relation to previous proposals.
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