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We study the mathematical structure of finite-dimensional parametrized systems. We find that
the systems must possess a so-called global time, if they are to be reducible. &e list all conditions on
the topology of the Hamiltonian vector field, which follow from the existence of a global time. The
topological obstructions to the existence of a global time are analogous to the Gribov effect. We
consider the canonical quantization and show that each known method of constructing a unitary
quantum theory is based on the use of a global time. Studying cosmological models we show how

choices of wrong candidates for time, as well as extensions of the configuration spaces, lead to viola-

tions of unitarity. %'e give simple examples of configuration spaces in which there is no global time.
The interpretation of these results is that we are quantizing in wrong coordinates. Indeed, there is a
class of global times for each parametrized system. These times cannot be functions of the internal
and external three-geometry and of the instantaneous states of all fields only. We give an example
of the transformation from geometrodynamical variables to variables containing a global time; its
inverse is a sort of covering map and the topology of the Hamiltonian vector field is changed.

I. INTRODUCTION

Recent proposals' that unitarity is to be abandoned, if
one is going to quantize gravity, as well as the subsequent
discussion, ' show that the problem of unitarity acquires
some new aspects in quantum gravity.

In the present paper, we will study this phenomenon for
finite-dimensional models. We will see that the construc-
tion of a unitary quantum theory can be very difficult
even for such simple systems —if only the time is mixed
under the other canonical variables (the so-called
parametrized systems) and the corresponding constraint is
quadratic in moments.

%'e will use the canonical quantization methods. First,
these methods are particularly suitable for the study of
unitarity. Second, in all cases we shall consider every oth-
er used method is equivalent to at least some part of some
canonical quantization procedure.

We will consider the canonical reduction, and the Dirac
method of quantization. Within the first, one chooses a
coordinate t, say, for time, and solves the constraint,
A =0 for the conjugated momentum p, :

p =H(t, e"pk)

H plays the role of the Hamiltonian. Thus, unitarity de-
pends on whether or not H is real and can be turned into
a self-adjoint operator (see, e.g., Ref. 5).

In the Dirac method, the constraint is turned into the
so-called ~eeler-DeVA'tt equation

,P 4=0,
for functions qt on the configuration space Ã. This equa-
tion is of the hyperbolic type and there can be families of
corresponding Cauchy hypersurfaces foliating Y. To ob-
tain a unitary quantum theory, one has to construct a con-
served and positive-definite bilinear form of initial data

along such Cauchy surfaces (see, e.g., Ref. 6). The Cau-
chy surfaces can be considered as levels of some function
on the configuration space—the time coordinate. Thus,
the choice of a time coordinate plays an important role in
both methods.

We find that —independently of which quantization
method is used —the quantum theory becomes nonunitary,
if either the configuration space V is chosen too large or
the time function on F is chosen in an improper way.

The configuration space K is too large if it contains
points through which no classical trajectory passes. The
time coordinate t on 4' is improperly chosen if the in-
equality

does not hold at any point q E C and for any tangent vec-
tor U& to some classical trajectory through q. These struc-
tures, defined by classical dynamical equations are
relevant to the question of unitarity.

The problem will remain open as to how these results
generalize to systems of infinite-dimension field theories,
with their necessary renormalization procedure. However,
an already existing analysis of a simplified model
(cylindrical waves) suggests strongly that we are on the
right track.

In any case, the results of the present paper throw new
light on the analysis of the Hawking effect as presented in
Refs. 7 and 8. There, the Berger-Chitre-Moncrief-Nutku
(BCMN) model of gravity has been studied, some
theorems about its classical solutions have been shown,
and claims about the relevance of these classical proper-
ties for the properties of the corresponding quantum
theory have been put forward. The attempts of Refs. 7
and 8 to justify these claims contain errors and gaps; the
fundamental ideas of the present paper provide a more re-
liable basis for such a justification.

34 Qc1986 The American Physical Society



ORIGIN OF NONUNITARITY IN QUANTUM GRAVITY

II. GENERAL FORM OF REDUCIBLE SYSTEMS

For an adequate description of reducible systems, we
shall need the following notions: global phase time,
dynamical cone, and global time. They make sense only
for parametrized Hamiltonian systems.

Consider a system with the action

I= Jd7(p„q" aA—) . (1)

He«, @=0,. . . , lV, (q, . . . , q ) span the configuration
space V of the system, (q",p„) are coordinates on the co-
tangent bundle T'(V), the phase space, a is a Lagrange
multiplier, and

A =A (q",p„)
is a smooth function on T'(V ), the constraint.

For the sake of simplicity, we limit ourselves to (1) to-
pologically trivial configuration spaces, 4'=R +', and
(2) to systems with just one constraint. The topology
which will be relevant for our problem is that of the Ham-
iltonian vector field. A generalization to systems with
more constraints is in preparation.

We will use the abbreviation X" for the coordinates
(q,p„) on the phase space; so capital latin indices will

run through 2%+2 values. Tangent vectors to T'(V)
will be denoted by, e.g., H",I.", . . . , the gradient by 8„,
etc.

The constraint hypersurface I in T'( V ) is defined by

and the Hamiltonian vector field on T'(F') is given by

H"=u(Q ')" 8 A

where Q„s is the symplectic form,

The integral curves of the vector field H" on I will be
called classical trajectories. The field (Q ')" BsA gives
an orientation to each classical trajectory; this orientation
is important for the construction of the quantum theory
and we will, therefore, require its invariance with respect
to reparametrization. This can be achieved by the condi-
tion

apO.
Defi nl flon 1. Let''

be a smooth real function on I with the property

IT,~I —= (Q ')" B„TB A &0

everywhere on I . Then, T is called a globa/ phase time.
Clearly, the values of the function T along any classical

trajectory can be used as an allowed (properly oriented)
parametrization of the trajectory.

The property of being a global phase tixne is invariant
with respect to canonical transformations of the form

QP —QP(qP p }

because they do not change the function A on T'(V)
Qz~ is an invariant tensor.

Definition 2. Let a global phase time T have the fol-
lowing property: if ir(X) =m ( Y), then

T(X)=T(F) .

In this case, there is a smooth function

t'& —+R'

defined by

t(q}=T(X)

for any XEn '(q}AI and any q&V. t is caBed a glo-
bal time on V. [m is the projection map n:T'(4' )~C'.]

Definition 3. Let q 6 Ã and let

K(q) = Iu" E Tq(V }
~

u"=m, (H"(X))

for some X&@ '(q) AI" and for some a&OI .

K(q) is called a dynamicaI cone at q.
Each element of K(q) is a tangent vector to some classi-

cal trajectory through q as projected down to F'. As
T(X)=t(n(X)) must be a global phase time, we have im-
mediately the following theorem.

Theorem l. A smooth function t on F is a global time,
if and and only if

ui"d&t & 0

for any u" CK(q) and any q EV.
Example l. A free relativistic particle of mass m on

the Minkowski spacetime with coordinates xI',
p, =0, 1,2, 3, and the metric 7l""=diag( —1,1, 1, 1) has the
following action:

I= Jd7(p~x —QA ),

A =g""p„p„+m~ .

F is R spanned by x". The constraint hypersurface
I has two sheets I „e=+ 1, where on I „

po=e(m +pkpk)

k =1,2, 3.
In the coordinates (x",p&), the Hamiltonian vector

field H" has the components

+Pkpk ) i +P 1 i +P2 i +P 3 i 0i0i 0i 0)

An example of a global phase time is

The dynamical cone K(x) at any point x is the interior
of the light cone at x. K(x) has the following property:
if ul'&K(x), then —u" GK(x). This, and theorem 1, im-
ply together that there is no global time.

However, all physically interesting classical trajectories
lie on I . We can, therefore, supplement the constraint
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A =0 by the condition po ~0. VAth I as constraint hy-
persurface, we obtain, for any u" EK (x),

U =+2a(m +p«p«)

U =2&@k
k

where (p, ,p2,pi) is some point of R '. The dynamical
cone is, now, just the future half of the interior of the
light cone, and an example of the global time is t =x (in
fact, any boost of this function will also do).

We observe that the dynamical cones define a causal
structure on V: it is just that of the time-oriented Min-
kowski spacetime.

This analysis leads to the following proposal: let us call
the configuration space and the phase space of any
parametrized system configuration spacetime and phase
spacetime.

We say that the parametrized system (1) is reducible, if
its classical trajectories coincide with those of the follow-

1ng action:

I= t Pk —H ) (6)

where

H =H(Q",P«, t)

and k =1, . . . , ¹

The action I results from "parametrization" of I; the
parametrization consists of the foBowing steps.

(a) Transformation of t to an arbitrary parameter r
along each classical trajectory preserving the orientation

Then,

(b) Setting Q =t, Po= H, and @=0—, 1, . . . , N, the
action can be written in the form

subjected to the constraint

4 i =Po+H(Q, . . . , Q,P—i, . . . , P~) =0 .

Thus, a new action,

I= f1'(P„Q" aA ), —

has the same trajectories as I, if o. is a Lagrange multi-
plier and

A =ax@ (,
where W is an arbitrary smooth function on T'(Ã) satis-
fylllg

~
I ~,=0&0.

(One can allow for more general P, but this one will be
sufficient for our purposes. ) Now, the constraint hyper-
surface I defined by 4 =0 will, in general, contain I i de-
fined by

as a proper subset; only I
&

is physical.
(c) Performing a canonical transformation

QP —QP(qP p )

P„=P„(q",p„),
the action takes the form

I=fdr(p„q& a—P ),

(10)

M(q",p„)=~(Q"(q",p„),P (q",p„)) .

Thus, on I,,

{Qo,A I=X )0.
Q.E.D.

This lemma shows that only a global phase time can be
used as a time coordinate for reduction.

Theorem 2. Let the system (1) be reducible. Then,
there is a global phase time T(q",p„). Moreover, there is
a canonical transformation of the form (10) such that
there is a global time on the new configuration spacetime
spanned by Q".

This theorem follows from the above construction.
We observe that the reducibility of the system (1) is a

topological property of the Hamiltonian vector field H"
on I . We have the following.

Theorem 3. The existence of a global phase time on I
is equivalent to the existence of a manifold I and a dif-
feomorphism

hI I XR',
with the following property: every classical trajectory C
on I determines a unique point XEI such that

h({CI)=XxR ' .

Proof. Suppose that there is a global phase tiine T on
I . Then, H" has no critical points on I, and the gradient
B&M is nonzero on I . This implies that I is a smooth
hypersurface in T'(F). The set of points in I deter-
mined by the equation

T=0
forms a hypersurface I in I . I intersects each classical
trajectory exactly once. Thus, given an arbitrary point

Lemma I. Q is a global phase time.
Proof. The Poisson brackets {Q,A ) is invariant with

respect to any canonical transformation, so we can calcu-
late it in the coordinates Ql', P„using (7) and (8):

{Q',m) = =~+BA - BP
=aP, =
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XEI, the umque classical trajectory C through X inter-
sects I at a unique point, F(X). We define

h(X)=(F(X),T(X)) .

From the construction, it follows that h is a differentiable
map from I on I X R ', and that it is one to one. Thus,
we have the desired diffeomorphism.

Suppose that h with the above properties exists. %e
denote by m the natural projection:

~.rx IR'-R'
Then,

(the Robertson-Walker cosmology):

dt =a dH R—(r)dXk

P=P(r),
where

dr
dX = +r dB +r sin Bdqv

1 —kr

and k=+1 or O.

The dynamical equations for the remaining degrees of
freedom can be obtained from the new action (see, e.g. ,
Ref. 10)

T=goh .

Q.E.D.
Theorem 3 implies that the critical points and cycles of

the Hamiltonian vector field form obstructions to the ex-
istence of a global phase time. The absence of critical
points and cycles is, however, not sufficient for the ex-
istence. Consider I" of the form I —IOI, with the Ham-
iltonian vector field

01 ~2 ~2 ~1

I= d my+ Qmg —o.A

where

&

e
—3Q(~ 2 2)+m2e3Qy2 keQ+Ae3Q

and where

(12)

where x',x are coord. inates on 8 . There are no cycles
and no critical points. The classical trajectories on I,
however, do not even form a fibering (if I' with the classi-
cal trajectories were a fiber bundle with a typical fiber
8 ', then the existence of a global phase time is

guaranteed, see, e.g., Ref. 9).
For the parametrized systems, the existence of a global

phase time is an analogue of the existence of a global
gauge for gauge fields. The possible obstructions are of
topological nature in both cases; for the gauge fields, the
phenomenon is called the "Gribov effect."

III. RELATION TO UNITARITY

In the previous section, we studied some aspects of the
behavior of classical trajectories. In the present one, we
want to understand the implications of this behavior for
the canonical quantization of the classical theory.

For this purpose, we will study a simple model which
was dealt with many times in the literature: the so-called
"quantum cosmology. " %'e mill use this system just as an
abstract model of parametrized systems (so we are not go-
ing to make any claims about the creation, the Universe,
etc.).

A. The classical model

Consider general relativity with a cosmological con-
stant, and a massive scalar field coupled minimally to
gravity. The action is

' 1/2
4m 6

3
m=

' 1/2
4mG

3

mP —m.Q ——V(Q, P),
where

V(n, y) =4ke4" 4m 2e'Q—y2 4Ae'"—.

(13)

(14)

I is (for general values of k, m, and A) a topologically
nontrivial, three-dimensional algebraic surface with cusps
and bifurcations.

By variation of the action (11), and using the constraint
(13), we obtain the Hamiltonian vector field H" on I:

e —30

The action (11) represents a typical parametrized sys-
tem with a constraint 4 and a Lagrange multiplier o;.
The range of the coordinates P and 0 is

|x) g Q (x)

—co (p( oo

so our configuration spacetime F is &
The constraint hypersurface I is given in T'(F') by

4I = de g —2Z

Jd x&
~ g ~

(g""d„pB++m P ) .

We limit ourselves to spatially isotropic metrics and fields

H "=a(4ke 6m e P 6Ae )—, —

H ~=a( —2m e P) .
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The dynamical cone E(Q,{{)) depends on the sign of
V(Q, Q). E{Q,$) consists of all vectors U" whose com-
ponents, u and U~, satisfy the following relations: if
V(Q, Q) &0, then (U ) —(U~) &0, if V(Q, Q)~0, then
(U") —(U~) &0, if V(Q, Q)=0, then un=+U&.

8. The probiem with noninvertibility of time

We come to our first problem, which, as far as I know,
has not yet been noticed in the literature.

E{Q,Q) has the property that if U" EE(Q,{t), then
—U" CIC(Q, {{)).This seems to be analogous to the situa-
tion encountered in example 1, but it is not. %e illustrate
this claim by another example.

Exam@/e 2. Let us set, in (12),

The constraint takes the form

mp —mo +4e =0;2 2 40

the hypersurface I has two sheets, I „c= +1, and, on I „

spaces, each of which is equipped with its own
Schrodinger equation, will reproduce the whole classical
theory. A possible state of the system will be a pair of
wave functions, one of the first Hilbert space, the second
of the other one. The Hamiltonian operator will be a ma-
trix

2

+4e 4Q
2

1/2

(b) Dirac ruethod. The Wheeler-DeWitt equation reads

BV 8%'

BP M
+4e'~% =0 .

We can choose either only positive frequencies (with
respect to Q) or only negative frequencies to span the
"physical space"

mQ ——e(m~'+4e4Q) I" . (15) i —&0, i —~0.
If we want to reduce the theory in the configuration

space V spanned by Q and P, we must select one of the
sheets I ~and I" as "physical, "or else there is no global
time on 4' (theorem 1). If we select I"„then —cQ can be
chosen as time. However, such a step means that we al-
low only those classical trajectories along which —cQ is
increasing. This, clearly, is only a half of all allowed clas-
sical trajectories, unlike the situation in example I. The
origin of the difficulty is that, by choosing some variable
Rs R tlInc cool'dlllatc, onc dcfilllltcly Illakcs tllls variable
noninvertible. Indeed, the time-inversion transformation
in classical mechanics does not mean inversion of the time
flow, but rather the inversion of the dependence of all oth-
er coordinates on time. It is, therefore, the following
transformation:

q"(t)~q ( t), t~t . —

(This is what represents "letting the film go backwards. ")
In our case,

P(Q)~P( —Q), Q~Q .

The construction of a unitary quantum theory confirms
this judgment.

(a) Reduction method (see Ref. 5). Within the choice
I „one obtains the Schrodinger equation

1 /2

+4e 4Q

BQ

(the square root is defined with the help of the spectral
theorem). The time inversion

Q(Q, P)~g'( —Q, (t )

does not change the sign of the Hamiltonian: —cQ is al-
ways increasing.

A. provisional mending of this defect is enabled by the
possibility to construct both quantum mechanics: one for
I' and another for I +. The resulting pair of Hilbert

The conserved scalar product, defined by

is positive definite on the first, and negative definite on
the second subspace. The quantum-mechanical time in-
version

%(Q,Q)-++'( —Q, P)

does not change the sign of the probability current (4,+)
through Q=const hypersurfaces. Again, one can take
both subspaces together.

C. The reduction method

In example 2, we were able to construct a unitary quan-
tum theory. The reason was that (1) there was a global
time (Q or —Q, after restricting the constraint hypersur-
face to I' or I +) and (2) we chose the global time as the
time coordinate.

What happens if we choose a variable which is not a
global time, as, for example, P7 The solution of the con-
straint with respect to the conjugated momentum, m~,
reads

+( I 4 4Q)li2

The expression on the right-hand side differs, now, from
that of (15) in the following property: it is not real for all
allowed values of ~o and Q. Hence, the Hamiltonian
operator will not be self-adjoint (it can be made normal, so
that the spectral theorem is, again, applicable). This
behavior is typical for all known examples (see Ref. 5 for
various choices of time and the resulting self-adjoint or
not self-adjoint Hamiltonians).

There is one more "possibility" of how one can make
the Hamiltonian imaginary. This is shown in the next ex-
ample.
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2
ln &Q~ co,

A
(16)

nn is real. If we extend F beyond this boundary, then the
Hamiltonian becomes imaginary. Relation (16) gives the
so-called natural size of the configuration spacetime in the
sense that there is at least one classical trajectory through
each point.

An example of an analogous effect is given in Ref. 11.
The system in Ref. 11 is not parametrized —it is just a
gauge system with a quadratic constraint. The momen-
tum which becomes imaginary is, therefore, not the Ham-
iltonian, but just some momentum (pe).

We can conclude that the classical dynamical equations
of a given parametrized system determine the natural size
of its configuration spacetime S. Every point of F
within this size defines a nonempty dynamical cone. The
system of dynamical cones determines what is a global
time on 4. If we choose V larger than its natural size, or
if we choose, as a time coordinate, a function on 4 which
is not a global time, we will obtain a nonunitary quantum
theory.

If this is true, then the following question naturally
arises: does a global time always exist'7 The next example
gives a negative answer.

Examp/e 4. %e choose k =1, m gO, A=O. The con-
straint has the form

m4,
—mn +4m P e —4e =0.2 2 2 2 60 40

The properties of the constraint hypersurface can be sum-
marized as follows.

(a) I is a smooth three-dimensional hypersurface in
T'(F)=R . This is true because H" has no critical
points on I .

(b) The topology of I is )I )&S', i.e., I is connected,
but not simply connected. This can be seen as follows.
From the constraint, we have

2+4m 2 6ny2 2+4e 4n

If we fix the values of Q and mn in the range
—(X) QKgQ 0O

then the possible values of P and m.
~ are given by

( 2+4 40)1/2
since,

2fPl8

~4, =(~„2+4e )'4" ~co,

for any coE[0,2m]. Thus, we have I = R )&5'.
(c) 0" has cycles on I; each of the well-known cycles

is incontractible on I'. This is well known (the results on

Example 3. k= 1, AyO, /=0. This corresponds to
the "minisuperspace model" of Ref. 2. The constraint
reads

mo +4e —Ae =0,2 4Q 60

and the "Hamiltonian" is given by

=+e (A —4e )'

The configuration spacetime Ã is spanned by Q in the
present case. For

classical trajectories for the present case are summarized
in Ref. 12).

Conclusion: There is an obstruction to the existence of
a global phase time (the Hamiltonian vector field has cy-
cles). The system is not reducible; no continuous canoni-
cal transformation can help.

D. The Dirac method

The Dirac method for parametrized systems is based on
the Wheeler-DeWitt equation, which reads, for our
model, as

8%' B%'
+ —4e "(m p —ke n+A)4=0 . (17)

BQ BP

It has the form of a two-dimensional Klein-Gordon equa-
tion in an external potential. It is a hyperbolic equation.
The Cauchy hypersurfaces in F are either Q=const or
(() =const (this is a curiosity of two dimensions), or defor-
mations of each of these two which preserve the signature.

Construction of a unitary quantum theory makes use of
the conserved-current-valued bilinear form

j"=—g""&
I g I(~i~Ã2-q2~Ãi),

2

where g&„ is the DeVA'tt metric:

gQA l s gpss
—l ~ gQQ —O ~

We must integrate the current j" over a Cauchy surface
and require (i) j"—+0 at the boundary of the Cauchy hy-
persurface (otherwise the integral need not be conserved),
and (ii) the integral is a positive-definite bilinear form on
some subspace of all solutions to Eq. (17). It must be a
proper subspace, because the equation is real.

In general, we will have two difficulties: (1) the
boundary properties of the semiclassical wave packets
(which follow roughly the classical trajectories) can be in
conflict with (i); (2) a division of the solutions to Eq. (17)
into some positive- and negative-frequency functions re-
quired by (ii) can lead to wrong properties of the corre-
sponding semiclassical wave packets.

Example 5. We choose m =A =0, k = 1. This case has
been studied in Ref. 13; we will use those results.

The %heeler-DHVitt equation-'+' -4. ~=0a'q a'I
BQ B(()

is separable, and we have

'P =A ($)8(Q),
g (y)

& «)=&I
~

n~(ze'")+d
i

n~(ze'").
Here, v is the separation constant,

and I;„(x) is the modified Bessel function of imaginary
order.

The boundary conditions mentioned in (i) require that
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This leads to e = —d. It follows immediately that
Q=const is not a good Cauchy surface. In Ref. 13, it is
sho~n that

i
y d~ +s, B%'

0=const BQ BQ

for all 4 of the form +=A ((t )8,(Q). However, the in-
tegral

ae ~a
P =const

is positive if b =0, and negative if a =0. This leads to
the division of all solutions into the following subspaces:
Ho+, defined by the basis 4+ =e '+8„(Q), Ho, defined
by the basis %„=e'+8„(Q),where v&0.

Conclusion: With 0 as a time coordinate, no unitary
quantum theory can result. With ((} as a time coordinate,
we can construct a unitary theory, if we restrict ourselves
either just to positive or just to negative frequencies with
respect to P. In these cases, ((} or —P are global times (Q
can never be a global time}.

%e have studied several examples with a separable
Wheeler-DeWitt equation, and we have always found
similar results. If there is a global time t, then the choice
of t =const as Cauchy hypersurfaee does not violate any
boundary conditions, and a unitary quantum theory can
be constructed. If we choose a time coordinate which is
not a global time, or if there is no global time, the con-
struction is in trouble.

As far as I am aware, there is no general theory of
Klein-Gordon equations of the above form. In the review
paper by Seiler, ' only test-function-like potentials are
studied. In Ref. 15, potentials with Coulomb-type singu-
larity and falloff are considered.

IV. A UNIVERSAL CLASS OF TIME COORDINATES

The results of the previous section can be interpreted in
different ways. The most "revolutionary" view is that we
are to abandon choices of time and unitarity altogether.
The corresponding philosophy is described in Ref. 2.

Another possibility is that there are other methods lead-
ing to a unitary quantum theory which work without glo-
bal time. Such methods are not known. Indeed, the co-
variant path-integral method (Lorentzian or Euclidean)
does not yield a unitary theory. This has been sho~n in
Ref. 16 for simple (finite-dimensional) models. The idea
is as follows. The path integral formulation is based on
integration over all four-geometries which interpolate be-
tween two fixed thrm-geometries, gi and g2, say. The
path integral yields a functional J( gi, g2) of the two
three-geometries.

The result of Ref. 16 is that J is not a propagator of
any unitary dynamics; rather, J is the kernel of the projec-
tor from the space of all functionals, 4( g), to the sub-
space of all solutions to Wheeler-DeWitt equation. Thus,
from the knowledge of J, there is a long way to a Hilbert
space of states and to a unitary evolution.

The third interpretation simply is that we are quantiz-
ing in wrong coordinates. Indeed, our coordinates 0 and

P are some invariants of the three-geometry (Q), and state
of the scalar field (P). If there is a classical solution
which oscillates periodically, Q and P will both be period-
ical functions of time, and the same holds for the corre-
sponding momenta. Thus, even if the spacetime itself is
not a causal loop, the classical trajectory in the coordi-
nates (Q,g, nn, m~) is a cycle on I'. Similarly, if there is a
static classical solution there will be a critical point on I".
Finally, the difficulty with the invertibility is clearly also
due to the choice of some unworthy candidate for time: a
true time cannot be invertible.

This interpretation sounds quite natural, but it has one
striking consequence: a global time cannot be a function
of internal or external three-geometry and of the instan-
taneous state of all fields only. Hence, the theories which
use exclusively these kinds of quantities to describe
parametrized systems (for example, the "supers pace"
geometrodynamics) need not lead, at least by well-known
methods, to a unitary quantum theory.

If the variables used so far are not suitable for quanti-
zation, which variables, then, are to be chosen? Do they
exist at all? How can a transformation of variables
change the topology of the Hamiltonian vector field? We
can answer all these questions, at least for the simple
model considered in this paper.

First, only one variable is to be changed: the time coor-
dinate. There is a very general class of times which will
work and which is, moreover, quite obvious and a self-
suggesting choice. The construction of such times works
as follows.

Consider an arbitrary parametrized system. Any classi-
cal trajectory of it determines uniquely a spacetime in
which the system is moving. This spacetime can be the
same for all trajectories (as in example 1) or different
from trajectory to trajectory (as in cosmology). Let us call
this spacetime trajectory sparetime.

Each trajectory spacetime is globally hyperbolic by
choice or by being a maximal solution corresponding to
some initial data (see, e.g., Ref. 17). Each globally hyper-
bolic spacetime allows a foliation by a family of Cauchy
hypersurfaces, and there is a smooth function t with a
nonzero gradient which is constant along each hypersur-
face of the family. ' There are many such families for
each trajectory spacetime and many such functions for
each family. Each such function will be called trajectory
time.

Any trajectory time defines a parameter along the cor-
responding classical trajectory. Parametrize each classical
trajectory on I by its trajectory time. If this can be done
in a smooth way from trajectory to trajectory, we obtain a
function t on I which is a global time.

To clarify these ideas, and to answer the rest of the
questions, we describe a method giving an explicit
transformation from the geometrodynamical variables to
a global time. This method works only if the Hamilton-
Jacobi equation of the considered. system is separable.

Let the action of our system be (1). We define an auxi-
hary action for a system on the whole of T'( 4 ):

I~ ——Jdt(p&q" 4) . —

The corresponding Haloilton- Jacobi equation reads
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as „ as

So
q", —

Bq~
(18)

A complete solution of the classical dynamical equations
is given by

S —QP
Pp

where (Qi', P&) are canonically conjugated pairs of in-
tegrals of motion which span the whole T'(K). The
motion is physical only if the constraint is satisfied, or
Po 0, acco——rding to (18). The above equations take the
orm

0 p 0
(q",P„)= t +Q, (q",P„)=Qap, '" ' ap„

(19)

In the transformation equations, which consist of (19) and

So —pp ~

the variable Q appears only in the combination t+Q, so

t and Q are dependent: Q is the integral of motion
which specifies the origin of time t. We can write Q for
g + t (or set i =0).

Thus, the new canomcal variables, Q",P„, contain a
global time, namely, Q . The generating function of the
transformation from (q",p„) to (P„,—Q") is So(q",P„)
(Ref 19). .Transforming further to (Q",P„) and using
(18), we obtain, for the action,

dt P~ "—uPo
If the Hamilton-Jacobi equation separates, then we have

a solution of the form

S(t,q&) =S&(q",Pk)+Sp(q, Pp) [E(PI —)+Poli '

we can calculate So and use it to transform just the pair
(q,po) to (Q,Po) as follows. The equations

~~0

0

i350

Bg0
=Po

imply
BSo BSo BSo

Pod/ = dq +- dPo — dPo
aqo aPp aPp

=iso (r+Q )dPp—
=d(S, Q'P, rPo)+P, d(t—+Q') .—

Setting t =0, we obtain

Let a complete integral of this equation (depend on X+ 1

constants P„)be of the form

S( t,q")=Sp(q",P„) Pp—t .

This gives the following transformation of the pair Q, mn.

Q=( —2Po)'~ sing, mn ——( —2Pp)' cosg (20)

Thus, Qo is not a continuous function on the submaiu
fold /=const, ~&——const of I: each of these submam-
folds is either a circle, for /&0 or n&&0, or just a point,
for P=m.

&
——0. Rather, (20) is a differentiable map from

R spanned by (Q,Pp) to R spanned by (Q, mz), which
maps the "straight lines" Po ——const to circles or points
0 +~~ ——const, and which has no inverse.

The new action is

2 2

I= dr mp +Po —o. Po+
2

and the global time is Q; observe that the constraint be-
comes linear in Po.
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podq'=d(so O—'Po)+PodQ'.

A canonical transformation of this class was performed
in Ref. 13 for the cosmological model with k =1, m =0,
and A=O. The procedure was slightly modified (instead
of Pp, Po was used), it was performed for a different
reason, and the authors of Ref. 13 did not explicitly men-
tion that the defect of irreversibility of Q and P was cured
by the transformation without any additional construc-
tion. No critical points or cycles were to be removed,
however, so we would like to give still another example, in
which the toplogy of the Hamiltonian vector field will be
changed by the transformation.

Example 6. The simplest constraint which leads to a
separable Hamilton-Jacobi equation on one hand, and to
critical points and cycles on the other, is given by

P = , (np —mn +—P Q)—
(this is not a cosmology).

A complete solution to the classical dynamical equa-
tions is

Q=A sin(t —to),

(() =A cos(t t, ), —
where 3 &0, and to and tj are arbitrary constants. All
classical trajectories are cycles with the exception of
A =0, which is a critical point with coordinates
Q=g=mn np 0—— ——

The topology of I with the critical point removed is
(R ' —{OI)XS', and all cycles are incontractible within
this part of I'.

The Hamilton-Jacobi equation separates; we set

S=Si(Q,Pi )+Sp(Q, Po) —E(Pp, Pi )r

and obtain

Sp = —Poarcsln
i ~2 + ( —2Pp —Q )

0 0 2 1/2

2P )
i /2
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