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In s previous paper (paper I), we developed a method for finding the exact equations of structure

and motion of multipole test particles in Einstein s unified field theory —the theory of the nonsym-

metric field. In that paper we also applied the method and found in Einstein's unified field theory
the equations of structure and motion of neutral pole-dipole test particles possessing no electromag-

netic multipole moments. In a second paper (paper II), we applied the method and found in

Einstein's unified field theory the exact equations of structure and motion of charged test particles

possessing no magnetic monopole moments. In the present paper (paper III), we apply the method

and find in Einstein's unified field theory the exact equations of structure and motion of charged
test particles possessing magnetic monopole moments. It foQoms from the form of these equations

of structure and motion that in general in Einstein's unified field theory a test particle possessing a

magnetic monopole moment in a background electromagnetic field must also possess spin.

I. INTRODUCTION

In a previous paper' (paper I), we developed a method
for finding the exact equations of structure and motion of
multipole test particles in Einstein's unified field
theory —the theory of the nonsymmetric field. s In that
paper, we also applied the method and found in Einstein's
unified field theory the exact equations of structure and
motion of neutral pole-dipole test particles possessing no
electromagnetic multiple moments. In a second paper
(paper II), we used the method to find in Einstein's uni-

fied field theory the exact equations of structure and
motion of charged test particles possessing no magnetic
monopole moments. In the present paper (paper ID), we
shall use the method to find in Einstein's unified field
theory the exact equations of structure and motion of
charged test particles possessing magnetic monopole mo-
ments.

A knowledge of the exact equations of structure and
motion of test particles possessing magnetic monopole
moments is of interest for the following reasons. First,
under many circumstances a test particle can be con-
sidered a good model for a physical particle, and it is pos-
sible that particles which possess magnetic monopole mo-
ments may exist in nature. Until now, in Einstein s uni-
fied field theory only approximate equations of structure
and motion have been found for particles possessing mag-
netic monopole moments and these approximate equations
are only applicable to particles moving in weak back-
ground fields. Thus, a knowledge of the exact equations
of structure and motion of test particles possessing mag-
netic monopole moments will allow one for the first time
to investigate in Einstein's theory the motion of particles
possessing IQsgnetic monopole moments 1Q backgfoQQd
fields which are not necessarily weak. In addition to this
obvious reason for an interest in the cavu:t equations of
structure and motion of test particles possessing magnetic
monopole moments, there is an additional retLson for an

interest in such equations which is particular to Einstein's
theory.

In Einstein's unified field theory it has been shown that
if each particle in a set of particles possesses a magnetic
monopole moment proportional to its charge, and if the
masses, charges, and magnetic monopole moments of the
particles in the set are of the order of magnitude one ex-

pects to find associated with elementary particles, then in
a weak-field approximation which under these conditions
should be valid over macroscopic interaction distances
(laboratory and astronomical distances) the interaction
among these particles is found to be independent of their
magnetic monopole moments. In spite of the presence of
magnetic monopole moments on the particles and as long
as the field acting on each of the particles is not excessive-

ly strong, the particles interact over macroscopic distances
as if they had no magnetic monopole moments. In fact„ it
has been shown that in Einstein's unified field theory they
interact over laboratory and moderate astronomical dis-
tances through the conventional classical ele:tromagnetic
interaction as if they had no magnetic monopole mo-
ments.

The above results have important physical conse-
quences. They mean that if Einstein's unified field theory
is correct, one cannot at the present time rule out the pos-
sibility that the charged particles which have so far bM;n

observed in nature (which interacting over macroscopic
distances secnn to have no magnetic monopole moments)
actually possess magnetic monopole moments proportion-
al to their charge. Only through the study in Einstein's
theory of the interaction of such particles over microscop-
ic distances (that is, atomic and molecular distances or
smaller, interaction distances over which the weak-field
equations of structure and motion cannot be considered
reliable ) or through the study of the motion of such par-
ticles in strong macroscopic fields (again where the weak-
field equations of structure and motion carmot be con-
sidered reliable) can one determine whether the existence
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II. SIMPLE CHARGED TEST PARTICLES
POSSESSING MAGNETIC MONOPOLE MOMENTS

As mentioned in the Introduction, in this paper we
shall find in Einstein s unified field theory the exact equa-
tions of structure and motion of charged test particles
possessing magnetic monopole moments. By the condi-
tion that a particle possess a magnetic monopole moment
we mean that the electromagnetic moment e associated
with the particle does not vanish. In addition, we shall
confine our investigation in this paper to particles which
when isolated and possessing no spin can be represented
through a time-independent spherically symmetric solu-
tion to Einstein's field equations in which the symmetric
part of the fundamental field is flat at infinity. By the
above statement we do not mean that the particles cannot
possess spin. What we mean is that we shall restrict our
study to particles which when isolated possess only those
multipole moments consistent with spherical symmetry
with but one exception —and that exception is that the
particles may possess spin. We shall also restrict our
study in this paper to particles which under interaction
develop the minimum number of higher multipole mo-
ments consistent with Einstein's field equations. We shall
call the particles we shall be studying simple particles.
Simple charged particles possessing negligible spins have
been studied in considerable detail in two previous pa-
pers. '

From the investigations found in these two previous pa-
pers, ' and from earlier work, and using the definitions
of y('„„1and y{z„t given in paper I, it follows that in a har-
monic coordinate system and keeping only terms linear in
the multipole moments which characterize a particle, one
finds for the fields y~'&„) and y{„,t associated with an iso-
lated simple charged particle, '

ilt M
~f8&j ~fg&j+ ~f8&l '

eE E E hf Mo, p~b ~) ~e~po~

(2.1)

(2.2)

y„=1[qu„(rpuP) '+ ,
' (qil )r„]„,— (2.3)

(2.4)

of such particles allowed by Einstein*s theory is in agree-
ment or disagreement with experiment. Finding the exact
equations of structure and motion of charged test particles
possessing magnetic monopole moments is a first step in
such an investigation.

The equations of structure and motion of a test particle
possessing a magnetic monopole moment in Einstein's
theory will be found to have an interesting property. It
will follow from the form of the equations of structure
and motion that in general in Einstein's unified field
theory a test particle possessing s magnetic monopole mo-
ment in a background electromagnetic field must also pos-
sess sp1n.

l '
p l .

p p —1y{pv)=4[(rrtupuv+ 2 sppu uv+ 2 s„pu pup)(rpup) ]g

+4[( , s—ppu,+ , s„—pu„)(rpup) ']„p .

In (2.3)—(2.5), we are using the notation

dPrp=xp —p, r„=perp, u"=
dT'

ds~y
Q~ ='g~pQ, $~~ =

df'

(2.5)

(2.6)

[f]A =aret[f]ret+aadv[f]adv ~

&ret+&adv = & ~

(2.7)

The points P form the world line of the particle and are
parametrized by a quantity ~ defined through the equa-
tion

dr =ri„ggdP. (2 8)

The quantities a„, and a,d„ in (2.7) are constants and can
be regarded as characterizing the structure of the particle.
The subscript ret indicates that in the expression in brack-
ets those quantities which are associated with the particle
are to be evaluated at the "retarded point, "

(rprP)=0, r &0,
while the subscript adv indicates that the expression in
brackets is to be multiplied by —1 snd then in the expres-
81on in brackets those quantities associated with the parti-
cle are to be evaluated at the "advanced point, "

(rprP)=0, r &0.
The quantities l, q, qrtr, and s„„in (2.3)—(2.5) characterize
the particle. The quantity l is a constant and a universal
length —the same for each particle. " The quantity q is a
constant and represents the charge of the particle, '~ the
quantity q~ is s constant snd represents the magnetic
monopole moment of the particle, 'i the quantity m
represents the mass of the particle, ' and the quantity s„„
represents the spin of the particle. 9

From their definitions given in Sec. V of paper I, we
find in a harmonic coordinate system for the quantities
i &'" snd s„'" associated with an isolated particle in
Einstein's theory'

(2.10)

=
6 roti.e y[ptr, tt] ~ (2.9)

klI1 ~2 +I
~[~a)

and for the quantity r„"'„"associated with the particle'

(2.11)

The fields y~&„) and y~&„~ appearing in (2.9)—(2.11) are
those parts of y~&„~ snd y[&„], respectively, which sre
linear in the multipole moments characterizing the parti-
cle.

Making use of Eqs. (2.1)—(2.5) in Eqs. (2.9)—(2.11), we
find associated with a simple charged particle'

i„"'"=4ml I q~u„5(x —g')d~, (2.12)
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s„"'"=(4n/1) I qu„5(x —g)dr

X5'" (x —g)d~ (2.13)

The notation used in (2.20)—(2.22) is the same as that used
in paper I. In particular, the world line of the particle has
been parametrized by a quantity s defined through the
equation

(2.23}

tp~ =1617f [mupu~+ ~ sppu u~+ p sou up]5(x g)—d1

2 s~g~+ 2 s~pgg~ P x (2.14)

e~=c'lqst,
eE=(c /l)q,

e[p.)» (c——/l)ql2(np»u. —9.»up),
E 2

m ~=4m'',

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

Making use of the relationship of i" to i~+', of s" to
sph", and of T""to tp~„' (these relationships are discussed in
Sec. V of paper I), we see that in the test-particle 1imit~ a
simple charged particle will be associated with an elec-
tromagnetic current density ip of the form

i"= 5" x x — s, (2.20)

an electromagnetic current density s" of the form

s"= s& x x — s+ s""x x — . s

s&~x x — .„g s, {2.21)

Comparing Eqs. (2.12)—(2.14) with Eqs. (5.12)—(5.14) of
paper I, we see that a simple charged particle is character-
ized by the electromagnetic monopole moments e~ and
e, an electromagnetic quadrupole moment e ( „1»,a mass
monopole moment I, and a spin S„where

and the displacement field in (2.20)—(2.22) is given
through the Christoffel symbol jpp„l, where

'= Ta (aalu, v+anv, p apv, a) s
p (2.24)

pv

vp gv
Cl pp~ ~p, ~ 6fpv

The background metric tensor fields a„„and a""are de-
fined in paper I.

We have retained dipole terms in (2.2) although such
terms are not present in (2.13). The reason we have re-
tained such terms is that we wish at this stage of our
analysis to leave open the possibility that through interac-
tion with the background field the test particle might
develop such terms. %e do know, however, that no multi-
pole terms higher than those present in (2.20)—(2.22) will
be generated through interaction with the background
field. This follows from the general form of Eqs.
(5.29)—(5.31) in paper I.

In summary, in the test-particle limit a simple charged
particle will be associated with an electromagnetic current
density i" of the form (2.20), an electromagnetic current
density s" of the form (2.21}, and an energy-momentum
tensor density Tp'" of the form (2.22). From the analysis
of Einstein"s field equations contained in paper I, we also
know that the current densities i" and sP and the energy-
momentum tensor density T"" are subject to the equa-
tions'

(2.26}

and an energy-momentum tensor density T""of the form

T""=J T'""'(x)5(x —g)ds TP& —fP

(2.27)

(2.28)

r'&"'"x x — . s. (2.22) where

f&=a~y;~,s"+( ,' a~aP»~ "~—»—,' a~a~Z~——,' a&"y{P»)W—"~—» ,
' a&"y{~)~—)—i„

+{ 'a""y' '—»-+ 'a"'a y' -'y'~'I'(» l)i . 'a""y—' -'i » (2.29)

i„=a~ip . (2.30)

The fields g"„„»,8„„,I'(»,), y(N„), y ", a„„,and a""
appearing in (2.29) and (2.30) are background fields in the
vicinity of the test particle. The fields 8'„„», R„„,and
I"~~,j are, respectively, the curvature tensor, contracted
curvature tensor, and the torsion tensor of spacetime in
Einstein's unified field theory and are defined in paper I.
The fields y('„„) and y(P'"), which are also defined in paper
I, are an oriented tensor and a tensor, respectively, and are

related through the equations

{2.31)

y(pv) { a }
—i ~2epvpay+ (2.32)

where a is the determinant of a„„. Where covariant dif-
ferentiation is indicated in (2.26)—{2.29), the displacernent
field is given through the Christoffel symbol Ig„J defined
in (2.24).' We shall use Eqs. (2.26)—(2.30), along with
Eqs. (2.20)—(2.22) and Eqs. (2.12)—(2.14), to find the
equations of structure and motion of simple charged test
particles in Einstein's unified field theory.
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A. Electromagnetic current densities

Wc first lllvcstlgatc thc constlRlllts that Eqs. (2.26) aild
(2.27) place on a test particle characterized by an elec-
tromagnetic current density i" of the form (2.20) and an
electromagnetic current density s" of the form (2.21). In
doing this, we obtain the quantities which characterize the
electromagnetic structure of the test particle, and we also
obtain the equations of structure satisfied by these quanti-
ties.

Making use of the same method of analysis described in
detail in Sec. III A of paper II, one fi'nds from (2.20) and
(2.26) that the electromagnetic current density i~ can al-
ways be written in the form

i"=f e~U"5(x —g')ds, (3.1)

(3.2)

and one finds from (2.21) and (2.27) that the electromag-
netic current density sP can always be written in the form

8=J eU&5(x —l)ds

(3.1) and (3.3) characterize the electromagnetic structure
of the test particle. ' The quantity e))r is a scalar, e is an
oriented scalar, and s t""~ and s"" are oriented tensors.
Both e~ and e are constants, but s t""j and s"" may be
functions of s. The notation

(3.6)

is being used in (3.1) and (3.3).

8. Energy-momentum tensor density

We shall next investigate the constraints that Eqs.
(2.28)—(2.30) place on a test particle associated with an
electromagnetic current density i" of the form (3.1}where
(3.2) is valid, an electromagnetic current density sp of the
form (3.3}—(3.5), and an energy-momentum tensor density
of the form (2.22). In the process of doing this we shall
find the quantities which characterize the gravitational
structure of the test particle, the equations of structure sa-
tisfied by these quantities, and the equations of motion sa-
tisfied by the particle.

If we make use of the definition of covariant differen-
tiation found in Sec. IV of paper I (and discussed in Sec.
II of the present paper) and also make use of the identities
(6.8) and (6.9) of paper I, Eqs. (2.22) can be put into the

+ s tycho]+s PPcr ~
p' —s "p ' ' 5„(x—g)dspo ' pg T»«= f [T'"'"]5 (x —g')ds

(3.3)

P

+f T(p«)+T(~p)~ V P
~ + T {vpjo ~

po' pO'

=0, (3.4)

s +s +s-{pucQ, -{g~)p, , -{+)g (3.5)

Thc quantltlcs c~, c, s &, aild s p which appear ill

(3.7)

where the quantities in the square brackets in (3.7) are
evaluated along the world line P of the test particle and
are functions of s. Making use of the definition of T~".„
given in paper I, one finds from (3.7) that

TP« f [T(P«)&]5 (x g)g&+ f T (p«)+ T (pp)cr ~ '+T "p' ' '+T'p "' ' 5 (x —g)ds
p p

po pO' po' yV

7 (Po') ~ T (Ptl )K +2T (P0')g, , 5(
p p p

pK 0'k (3.8)

where the quantities in square brackets in (3.8) are functions of s.
From (3 3)—(3 5) ag~n making use of the identltim (6.8) Rnd (6.9) of paper I, and also making use of the identity (3.1)

of paper II, one finds

y'[&,]s«—f [7"[P ]@~]5 (x g)ds+ f ],+[p ~ [p ] ~*[p + p «+~[p p~-
+~4 [p ~

pox, P' —y'[" f "' „' 5„(x—g)ds

+f c& «]U 'Y*
«],0 +7' "«],~i~ +'Y "«],0 " '

g
' —y'["„]~ " '

),
' 5(x —g}ds . (3.9)
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v] (3.10)

From (3.1) and (3.2), identities (6.8) and (6.9) of paper I, identity (3.1) of paper II, and the definition of covariant deriva-
tive found in Sec. IV of paper I, one also finds

( —,'al —aPR" „—'a—P"aP"R ,'—al —y(P"]R"„,'a—l —y(P"]R }i„

+( & gPiy[xv] + & aPkg y[avjy[Pr]1
& )i

& aPky(av]i

=fesr[ —,a" a~y( ]U„]5„q(x—g)ds

+ I e~ —-a"'a y'"jy"'I' U +-'a"'y'""U +-'a "y'"p'U. +-,'a&y(""]U„5„(x -g)ds
L

f e &

apnea y[vx]y[pv'] I & U + &

g pig y[vx]y(pr]I n U ~

g ai, [vg] [pr]1 n U

+PK+P~g v U +PK+Pvg U +PK~[PA, ]g v U & +PK~[Pv]g U2 PKA, V PK V PKA, v PK V

p 0 PgpKy[Yi ]U +gpKy[vi, ]U ~ ~ 5(x g)d2 v pV pA, Iccr
(3.11)

U„=aq„U", (3.12)

so that making use of (3.8), (2.29), and (3.11) one has

T"",„—f"=J[T'""'"+y'("]s p —,'e a""y—( ]U ]5„„(x—g)ds

Z (pv)+T(pp)n +T top)n +T(pn)» ~

v P
po po' PcT

+ye[p ~ (pv] ye[p +tv ye[p +pen+ye(p ~ pm ~

y
Q fP ~Vo'K s P

OX

& aPka y(av]y[P1']I n U
& a/liy[KP]U ~ &

g Yky[KP]U

——,'a "Py(""]U„'
~

' 5„(x—g)ds

T (Pe) ~

po'
p

T (PCr}K ~ +2T (Pe)K ~

P~
+~a [@, Uv ~e [y, + [VK]+~+[PC &

VKA,
p

PK v) v], v],KA

V K
+y4[p ~ KO'A ~ t 4 [p ~vo'A

v],K" ~g, Y v],]P

+esr ,' aP"aP~R "~iU—„+,' a""aP"R~—U„+,
' aP"y(P~]R—"~iU„

+,~I' ~~p~lg U, ~~~ ~[ ]~[

& gpss, g y[m]yfpr]pCr U' + & g gai, y[vK]y[pr]I a U

+ &

gpss[vk, ]U
V Ipgj,A,

aP'y(""]U„' —
&

' ' ' 5(x —g)ds .
Pj( KO' (3.13}
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Using the fact that (2.28)—(2.30) must be satisfied, one can show from (3.13} that there is no loss in generality in
choosing T '&"'" to be of the form 0

2 (Pvja' & SygUv+ & Sea'UP & ye[@ -Pva' & ye[v ~PPg & e[P -Pgv

& y+[v
p pwca+

& ye[» p~+ & ye[a p gpss & e apvy[yri. )U (3.14)

where S""is an antisymmetric second-rank tensor characterizing the test particle. Placing (3.14} in (3.13}and making
use of the identity

S""U" x — ds = 5,(x —g)ds, (3.15)

fP T ~F~) + +y& [P -[Pv) ye[P -Prrv e [P Pvcr-l DS""
2 D5

p]' p];

+ e pi y[ }y[c }1,U„6 „( —g)ds

+y+[p ~ vaA, y+[p -vxkg +p, + 2 y+[p -pN;k, g +v
V]ai, Vj 4cp 3 vj" (pa')A,

+esi( —,
' a""ap 8 "~iU„+ 2

a""ap"R~U„+ —,'a&"y[p~}R" &U„

(3.16)

The definition

DS"" dS"" V p
+SPPU ' +SP"U '

Ds ds po po"

is being used in (3.16). The absolute derivative DS""/Ds is a second-rank tensor. We are also using the notation

(3.17a)

p
Ao'

p }I,

pK 4c pa'
(3.17b)

The first integral on the right-hand side of (3.16) can be written in the form

y [X'""'+r["")]5„(x —g}ds, (3.18)

@~V» T ~W»+ ' &+[ .-[P ]+ ' &[V. -~] ' &[pl- T pf' 2 p]; T p];
& ye[[M, ~ ps@ & @+[V ~ pygmy+ grig y[erV]y[pr]per

g Vk,g y[XP,]y[Pr]pO' U

pv
y[p~) ' + ' y+[ s[p ) 'y+[~ ~ [m} 'y+[ &n «+ 'y+[» &p p 'y+[p &p

(3.19)

+ —,
' y'[" ].~ p& +—„'e a& a y[" ]~[p']I [,]U„——,'t. a" a y["»~[p']r~ ]U„.

It can be sholem that eath no 10ss in generality one can always write '

(3.20)
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X'""'= X'""'+X"U"+X"U&+MU"U"

y[pv] + y[pv]+ yp, Uv yvUp,

where

'X'&"'U„=O, X&U„=O,

'~[&"]U„=O, Z&U„=O.

This meiins that the first integral on the right-hand side of (3.16) can always be written in the form

'X~~"'+'X[~"]+X"U~—~"U~ .~ — s+ (MU" +X"+ Y") 5(x —g)ds,

so that if we make use of (3.25} in (3.16}we find

T&". f~—=f ['X'~"'+'Y(~")+X"U~ Y—"U~]S (x —g)ds

+ (MU"+X"+Y")+T'I '' ' —'Sl U"—8'" +ey'(" U"—y'(" .~(d p
ds po' 2 Kpo' v] v];

+[p -[m] ~ ~ + e[p, -mi. +[p -mk.R e p,
p
pX v];eA, v 4fp

+ ~ yig [p, -pN.'AR +v y+[p + vox 4 [p -mo ~
p p

3 v (pÃ)A v]; po v]; pg

+e~ —,'a""ap R" ~U„+—,'a""apvR Uv+ 2aI y[p ]Rv ~U„

+—'a""y Pv]R U ——,'a" apoy y P'. r[g ]Uv ——,'a" apoy y P']r [g,].gUv

"y(")y(~)r; U gx —g)ds .

Since (2.28) must be satisfied, we see from (3.26) that one must have

'X'""'+' Yb'")+X"U"—Y"U"=0

which is equivalent to the requirement

'X&~"&=0 'r[~"]=O r~=x~.

Making use of (3.28) in (3.26), we find

fP —j (~UF+2XP} ~ g~U+g+8 +ey+(8 U» y+(8 ~ (~)+y+(P p
(~) '

+ye[Pc &
mA, y+[P ~ vsekR +P, + & y+[P, &

Pa%,R +v y+[P + vtox,
v] +A, vj 3 v] {pN;}A, v];

+T'~' (MU~+ZX~) —U'P — P p
pa' po' pO

+e —'a a "Rv U+ —a a R U +—'a y R" U+ —' "y pvR U

y[~]y[w] I o[~ ]U
' a~~a yl ]y[~]~ U

+-,'u u "y( )y(~)r;„,U„„S(x—g)ds,

where in (3.29) we have used the definition
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DC dC CpU~
Ds ds po'

of the absolute derivative DC"/Ds of a vector C" defined along the world line P.
Making use of (3.21), (3.22), and (3.28) in (3.19) and (3.20), we find

T(I v)=MU"U'+X"U +X U"—l y'[I ~ [p j ——'y~[v ~ [ppj+ —'y~[I .~ p~v+ —'y'[v .~ p I
pj 2 pl 2 pl

ra[P ~Pva'+ & ra[» ~ PPcr+e (
& gPAu r[av]r[Prjf tr U &

uviol r[aP]r[Pr]1 tr U )

DS~" r«—[p ] [~]+r [
j [~]+r

gh P p pl

[p ~ pvcr r [v ~ ppn+e ( upAu r[av]r[pr]pu U + oval.u r[ap]r[prjf Ir~ U )

and from (3.32) and (3.23) one has

PP
U + ' ra[ ~ [pv]U ' r*[v ~ [pp]U ' ra[ & p~»U + ' ra[» & p~pU ' ra[

& ra[» ~PPnU +e (
& uvku r[aP]r[Pr]f tr U U )

Making use of (3.33) in (3.31), we find

T'~p» J[rlUpU»+— U U»+ U Up ' a[p -[p»j ' a[» -[pe]+ ' a[p -W]U U»1 BS"P 1 DSP
P 2 D, P

—Tr Pj' Tr —Pj' i r Pj

+ ' r l p[ ]U U ' r [ p[ ]U U ' r [ p[ ]U U + ' r [

ye[@ ~ pvn+ & y+[v ppn & y+[p ~ pcrxU Uv & yigw[v pexU Up & ye [@ ~ pxcrU Uv

& ye[v ~ p[mU Up+ & y+[p ~ crea'U Uv+ & yefp ~ +AU Up+ & yigifp ~ alcpU Uv

+ ,'r'[p.
],~-U, U"+e~( .'u""n~—r—[ jr[~j~~i,]U. .'~""o~r[""jr[~jf'~i,]U.

r[""jr[~]r~[„]U„UU"——,'u "a~r[ jr[~]r;„]U„U.U"),

while making use of (3.33) in (3.32) gives as the equations of structure satisfied by S"",

DS&" DS~
U

U„DS"p
U U„

Dg Dg P Dg P

». y [&;[~~+y [-,-[p~i+y [~;[~~« - y*[-.—.[~~U U~ y [p .—.[-&j«
pl p] p] cr pj" cr cr j p

+y'"[p g f&vlU Up+y+fp ~ Mv y fv ~ MR+ y [p ~~ y fv ~ pe& y lp ~ pc]'&U

+y'f"„.~~"U„U&—y'f&„.~~ U„U"+y'f"„.~~ U„U&

~ npucU Uv ys[ fp ~ g~U Up+ye fp ~ crxpU Uv yefp ~ cwvU Up,

+e ( —-'a&'a r[-jr[~jr~ U +-'a""a r["&]r[~]r„U —-'a~a r["p]r[~]r; U U U"

+ & uak+ r[xvjr[pr ]Zn U U Up)

Making use of (3.31}and (3.33) in (3.29) one finds
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T» fp — ~Up+ U +y«[ ]s [p ]U y [pD D+PP

g S
L

~~+ [P + O'KIl U ~4 [Il —PKO U + 4 [P —OIlKU

VA, [KP,] [PT]PO U U ~

VAPO UKg ][), Q [p, U g [p [ ]

[][l A. *[P Ag 4p Q [p, @gag
V]~K%, V] 4CP 3 VP (PK)A,

+ebs( ,'a""aP—"R"~i„U„+, a""a-P"R~U„+ , a&"y—[P ]R "~i U„

+ —,
' a~y™R U„—,'a""—a y[ ]y[p']. I U ——,a""a y "']y[p' I ]. U ) 5(x —g)ds .

(3.37)

Since (2.28) must be satisfied, we see from (3.37) that the test partic1e wi]1 obey the equations of structure and motion

DI'+ gK'U"R—~P PP-
KaP (3.38)

PP ~UP~ U ~y [ ~[ ]U y [P s[mP]U y [ &P U
DS~~

+y4[P ~ O'KJtl U' y4[][l ~ PKO'U +yiti[P + OPKU &
VA,

& ~[Kg]~[Pr]pO U (3.39)

PP &~+[@ UV~~[P + [VK] ~+[P & mA+~+[P ~ VKkg eP 2 ~+[@ ~ ~kg +V
V] vl; v];KA, Vj 4CP 3 Vj (pa 9,

+esr( —, a""ap R "~i—U„,a""ap"R „——U„,a""y[p"—]R—"„zU„,' a p"y[p"]—R —U„

y[vx]y[pr] 1 n U + & pk [vx] [p»]1 ~ (3.40)

H' we p]ace (3.14) and (3.34) in (3.7), we find that the energy-momentum tensor density T" associated with the test parti-
cle is given by

TPV f +PKUV ~ 5'VKUIl „~4[][l ~ PVK „~4[V PPK „,4 [P, PKV 1 „,+ [V PKP, , 1 + [K ~PKP,

,
' y'"p]s—»" ,

'
eMa&—y—["'U,]6 „(x g)ds—

j. DS"1' 1 DS"~
y I MU&U»~ U U»~ U UP 'y+[P ~[ ] 'y+[» ~[PP]~ 'y+[ ~[ ]U U»

2 Ds ~ 2 Ds

g ' y+[V q[~]U UIl ' y+[I q [OP]U UV 'y+[P q[OV]U UIlg 'y+[W ~P V
Y P] O Y O'] P Y O] P Y P];

V
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+e ——„'a&~~ y[""]y[ ]I"[,U„——,'a" a y["~]y[~]I,U„

I ~ 0'~g y [&@]y[~)pO' U U Uv ~

+ CA, y[KY] [pf']+& U U Up

V
& gPPy[eA, ]U 'u —"~y( )Ui ' ' 5(x —g)ds . (3.41)

We see that the gravitational structure of the test particle
is characterized by the quantities M and S&". The quanti-

ty M is constrained by the equations of structure and
motion (3.38)—(3.40), and the quantity S"" obeys the
equations of structure (3.35) and (3.36). The form of the
equations of motion and the form of the equations of
structure allow us to identify M with the mass of the par-
ticle and S&"with its spin.

e~=(c'/l)q,

eE(„„p=(ci/l)ql (iraqi„u„ri„i,uq), —

m 6=4mc',
6 2Sp„—4s~„e

(3.43)

(3.44)

(3.45)

(3.46)

There are no additional multipole moments associated
with the particle. %e thus have associated with the parti-
cle

i~' ——
2 I e uq5(x —g)dr,4g

(3.47)

C. Simple charged test particles

In Sec. II we found that if one neglects its interaction
with other particles, a simple charged particle is charac-
terized by the electromagnetic monopole moments e and
e, an electromagnetic quadrupole moment e~„]~,a mass
monopole moment m, and a spin S„,where

e =(c 1)/sr, (3.42)

an electromagnetic quadrupole moment s"",a mass M,
and a spin Sj'", where

e~ ——4mlq~,

e =(2irll)q,

&
Pvib. (2 /i) i2(ugly. Uv &

vi, UP)

M =8m(m +6m),
S&"=8~s"

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

The particle will possess no additional multipole moments
in the external field. In (3.50)—(3.52) the length l is a
universal constant, and the quantities q and q represent,
respectively, the magnetic monopole moment and the
charge of the particle. The quantities m and s""in (3.53)
and (3.54) represent, respectively, the mass and the spin of
the particle. The quantity hm is at this point of our study
arbitrary and represents a certain freedom one always has
in defining the mass of a particle in the presence of an
external field.

In arriving at (3.52) as the exact expression for s "" we
have assumed that in a locally inertial coordinate system
one finds

s"""=(2m/l)ql (ri" u" ri" u");— (3.55)

that is, s """takes its flat-space value. We are here defin-
ing a locally inertial coordinate system at point x" as a
coordinate system such that at xi'

&p. nI~ &Iv~ (3.56)

+ e[ p* x
C

(3.48)

+ i I f ,
' S„pu„+ ,

' S—„pu„]6'~(x—g)d—~,

where the quantltl~ eM eE eE[p-l~ mG md SRG- 1n

(3.47)—(3.49) are given by (3.42)—(3.46). Making use of
Eqs. (3.1), (3.3), and (3.41) and the relationship of i& to
i„"'", of s" to s„",and of T"" to t„"'„" (those relationships
are discussed in Sec. V of paper I), we see that in an exter-
nal Acid a simple charged test particle will be character-
ized by the electromagnetic monopole moments e~ and e,

It is always possible to introduce a locally inertial coordi-
nate system at any given point x". At that point and in
such a coordinate system the acceleration of a neutral pole
test particle possessing no electromagnetic multipole mo-
ments will vanish2i —this is, of course, the reason for the
name locally inertial coordinate system. That in a locally
inertial coordinate system s """takes its flat-space value is
a natural condition to place on the structure of a charged
test particle, and we shall restrict our study from now on
to charged test particles satisfying this condition.

At this point, we therefore place an additional restric-
tion on what we mean by a simple charged test particle in
Einstein's unified field theory. In addition to such a par-
ticle being the test-particle limit of what we have called a
simple charged test particle, we also require that the elec-
tromagnetic multipole moments e~, e, s [" ], and s "" as-
sociated with the particle take their flat-space value in a
locally inertial coordinate system.
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We first investigate the equations of spin satisfied by
such a test particle. Making use of (3.2) and (3.4), we see
from (3.50) and (3.51) that both qadi and q are constant
even in the presence of an external field. Placing (3.52) in
(3.36), and making use of (3.50}, and the fact that
s ["")=0,and that associated with the background field

r~&„)=0, we find from (3.36)

XP"=2~lq„[ (aP—" VP-V')a~y[-)y[~)r;„, V„

+(a@i, vvvk)a y[yyc]y[pr)rn

DSI'" DS~ „DS'P
Bs Ds ~ Ds

(3.58)

where X""is given by (3.57).
We next investigate the equations of mass and motion

satisfied by the particle. Placing (3.50)—(3.54) in
(3.30)—(3.40) and making use of the fact that s["")=0, we
find as the equations of mass and motion of a simple
charged test particle in Einstein's unified field theory

(3.57)

This means that the equations of spin (3.35) satisfied by a
simple charged test particle in Einstein's unified field

DPI 1 gPg UKg yP PP,
S

KOP

where

(3.59)

Ds&~ 1P"=Sm (m+6m}v&+ U + —ql (y' p . U U" y' " —).
Ds ~ 41

;O' P;cF
+ —q~l'( ""-„y'""'y'"'r[.,lv. v,}, (3.60)

F"=(2nll)[qy' "p)U„+ql (a" y'["") U —y' " . U" y' )R—'" „U" a""y* p —)R* U )

+qsilt( a~"ap"R"—i U„a""ap"R—U„a&"y[p )R—" i„v„a""y[p")R—U„

)y[m) r~ V +apia y[ lylp lr V )] (3.61)

We have made use of the definitions

(3.62)

Equations (3.59)—(3.61) take a simpler form if we choose

b m =——ql2y'™.U
4l

(3.63)

and introduce the notation

Pp+ l «[yp) + l t vk, y[ap]y[pr]ra V
1 1 2 ~ 1

8rr 4l 'P 41 fit') K V (3.64)

FP+ ql2y «[PP) U«1

S~ al ™
+ —q l' a y["p). y[~)r[„,,V.V'V"+a y["p)y[~).„r;„)V„V'V"

+a y~"&~y~~~r U U'U"+a y~"&~y~~~r U + "U'DUA, DU

S S

Using (3.63)—(3.65), we find the equations of mass and motion (3.59)—(3.61) can be written in the form

D P
+ , sP U"R*"„p f",———

S
(3.66)

(3.67)
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qye[~]U +q12ye[Pvj, rU +q12( ye[Pa]g +P UN ye[PP]g e Ux ye P ePPUn)

+q~k —a ~a~ 8 "~gU„—a~a~R~ U„—a""y~~ ]E."~gU„—a""y~~]A~U„

gyle f m)y[Pr] Pcr U +g

gyes,

y f vx]y[Pr]yg U

y[~] y[Prjl e U UXUv+a y[aPjy'[Prj ~n U UiLUv

yf&p]y[m]I ~[ ] U U~ U~+a y[&pjy[m]l ~ U +a y[&pjy[m]I ~„"Uig)Uk DU„
f A,~] a D Py [A, ] D

In (3.68) we are using the definition

One finds from (3.68) that

(3.68)

(3.69)

AU q~ 1 aR gP ~ aug ~ y&jgp ~ y[PP]g ~+a yfP ]yl&j P[
1

BU„
y[ jy[w]I „+a y[~P]y[m]I ~ ' U&U

S
(3.70)

DUp D (sPPU }+fPU
ds Ds Ds

Ds&" Ds&~
U U„Ds "~

U
g)s Ds ~ Ds

where f"U& is given in (3.70), and

{3.71)

(3.72}

nP"= —q„l'[ (aP" UP—U")a —y[""jy[~]r[„]U„

Although the universal length 1, the charge q, and the
magnetic monopole moment q~ associated with a simple
test particle are constant, we see from (3.66)—(3.68},mak-
ing use of (3.70), and from (3.54), (3.57), and (3.58) that
the mass m and spin s"" associated with the particle are
in general not constant. They obey the equations of struc-

turee

We see from (3.72) and (3.73) that in general when in a
background field possessing torsion a test particle possess-
ing a magnetic monopole moment must also possess spin.

IV. EI.ECTROMAGNETIC CURRENT DENSITIES
AND ENERGY-MOMENTUM TENSOR DENSITY

We have found that in Einstein's unified field theory a
simple charged test particle is characterized by a mass m,
a spin s~, a charge q, a magnetic monopole moment qM,
and a universal length 1. In this section we wish to give
the electromagnetic current densities i& and aP and the
energy-momentum tensor Tp" associated with these parti-
cles.

Making use of (3.50), we find from (3.1) that

+ (a%'i UvUi )a y[KP]y[P1]' i"=4nl f q~U"5(x —g)ds . (4.1)

xl [i, ]U ) . (3.73)
Making use of (3.51}, (3.52), and the fact that s [~"j van-
ishes, we find from (3.3} that

T

sp=(2n jl)f qUp5(x g)ds+(2m/1}f—ql ap U"' 2a"pU ' —ap U" ' ' —' l„(x g)ds—
PcT P~ P~

+(2~/1) f ql'[ a"'U ]1'i„„—(x g)ds . —

Making use of (3.50)—{3.54), (3.63), and the fact that s [""]vanishes, we find from (3.41) that

(4.2)



34 TEST-PARTICLE MOTION IN EINSTEIN'8. . . . III. 1037

Ti'"=8~ mUpU"+ — U U"+ — U U&+ —qI ( any'[ ] U
l as» „ l Ds~ 1

Z aS P 2 DS

+ —,'S PU ' '+ —,'S PU '+ —q/ aP y l~]U„' '+aP y l ]U„'
p~ ' p~ 4 po' po

]ylm]I „U 'a a y[ P]y[P ]I.

~l H]~[~]p U U U a ~l ]~[~]1 U U Up

—a»yt ]U~ '

po' a "Py[' —"]Ui ' ' 5lx —g)dspo'

+8~ —spÃUv+ —s vKUp + qI 2(a pKy 0 [vp] U +a YKy + [pp] U y
+ [/lK] Uv y

+ [vK] Up
2 2 4l P P

—a" y"["P]U ) — —qll a""y[""]Ui 5 (x —g)ds . (4.3)

V. COMPARISON WITH THE RESULTS
OF THE APPROXIMATION PROCEDURE

If we make use of the power-series expansion in a.,

k
gpv B'av+ ~ + (kgyy ~

k=1
(5.])

The fields y'[""] and y [""]appearing in (5.2) are back-
ground fields. The field g[""] in (5.3) and (5.4) is defined
in paper I. Equations of motion (5.2) are in agreement
with the equations of motion to second order of a simple
charged test particle obtained using the author's approxi-
mation procedure discussed in papers RI—RVIII of Ref.

25

and regard y~&„], yI&„], q, and q~ as possessing only terms
of odd order in (r, and az„and m as possessing only terms
of even order in a where m itself is of order two in a (that
there is no loss in generality in making such assumptions
is shown in paper RVIII of Ref. 9), and treat the spin s""
as of order four in ir [this is easily seen to be compatible
with the equations of spin (3.72) and (3.73)], we find from
the equations of mass and motion (3.66)—(3.68)

m u "= —[q y '[pp']u —qliG~ y '[p"]u
P P

APPENDIX A: s"""

We shall show that there is no loss in generality in
choosing the oriented tensor s ~", appearing in (3.3},to be
of the form

(A l)

As has been discussed in Sec. III A, s "" can always be
written in the form

S =S +S-PKA, -~tPK]A, -~{@Kg,

(5.2) where

S +S +S-~{PK}A, -~{KA,}P, —~{Ay}K

(A2)

(A3)

y [pv] I[pv] (5.4}

where in (5.2) all indices are raised and lowered with the
Minkowski metric q„=q""and

V tp, v] 7 [p.v] 2 +pep%
f.~P] (5.3)

S
~(ping, ) I &(Kp)i. &(KA, )p &(pK)1 I(pi. )K)—S +S —S (A4)

or in the form

Making use of (A3), we see that we can always write
s'&"' in the form

dP .„du"
d'r dT

(5.5)

&{JLCK}A, ~ &(PL]K+~ &[KA]P

where we have defined M '[""]~through the equations

~ -i[ygP. ( i-~(Ap)z -t(ka)p)mS —S (A6)
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s =s-PKA, —[PK]A, ~ [Pi,]K, ~™[Kk]I~I

Placing (A7) in (3.3), one finds

s"=I eU"5(x —g)ds

(A7)

Thus, we see from (A2) and (A5) that we can always write
s"""in the form

where C"""can be written in the form

CP»v T(Pv)»+ & y«[y, pPva+ & y«[v

HAPP»

+ l «[p —p»v+ & y«[v p—»p & y«[a'
~ pvp

& y«[a ~PPv &

e gPvy[i»)U

T t{Pv3K (82)

where

K

+ s [P.K] +s [PP]0 ~

po'

)&5 „(x —g)ds

s [""]~
kg x — s,

po'

(AS)
T &{Pv)K 1 gPKUv+ 1 gvKUP

2 2 (83)

where S&" is an antisymmetric second-rank tensor charac-
terizing the particle and

Using arguments similar to those applied to T'""'"in Ap-
pendix 8 of paper I, but here applied to T'""'",we find
that one can with no loss in generality always write
T'""'"in the form

[PK]k &[jMK]A, +~ &[PKP, (A9) (84)

%e see that there is no loss in generality in choosing the
oriented tensor s""",which appears in (3.3), to be of the
form (A 1).

APPENDIX 8: T '""'"

%e shall show that there is no loss in generality in
choosing the tensor T 'p"'", which appears in (3.7), to be of
the form (3.14).

From (3.13), since (2.2S) must be satisfied, we have

C&" „„x— s+ C&" „x— s

+I C"5(x —g)ds =0, (81)

From (82) and (83) we then find

T {pv3K 1 gpKUV+ 1 gvKUp 1 e[p, -pVK

y[ p
—pp» y[p p

—p»v y[ S p»ta—

~ y«[» ~ pvta+ & y«[a' ptav

g P Vy [KA ]U (85)

We see that there is no loss in generality in choosing the
tensor T'~"'", which appears in (3.7), to be of the form
(3.14).
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