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%e explicitly construct all sphericaHy symmetric vacuum solutions of the higher-dimensional Ein-
stein equation in which the size of Ricci-flat compact internal manifolds varies wth three-

dimensional distance, subject to an asymptotic condition, flat M4 times a compact manifold. Besides
the usual Schwarzschild and the trivial vacuum solutions, a variety of new solutions are found, all of
which contain a curvature singularity not hidden by an event horizon (naked singularity) unless the
extra compact space admits an isometry.

Considerable attention has been focused on theories in
more than four spacetime dimensions in which extra di-
mensions are compactified to a small size, apparently
beyond our present ability of experimental detection. The
basic idea is traced back to the old Kaluza-Klein theory, '

but recent interest in higher-dimensional theories has been
sparked by the discovery of anomaly-free superstring
theories. Spacetime structure in these theories is of a
special kind: it must asymptotically approach a direct-
product space of flat Minkowski space times a compact
manifold, away from any local lump of matter. The size
of the extra compact manifold may however differ from a
ground-state value in the vicinity of dense matter.

In this paper we ask what kind of metric, in these
theories, generahzes the Schwarzschild solution in ordi-
nary relativity, and find a complete answer in the special
case in which the compact manifold is Ricci flat and does
not admit an isometry. Examples of Ricci-flat compact
spaces are a torus that has an isometry, and Calabi-Yau
spaces in which the Riemann curvature tensor does not
vanish. Calabi-Yau spaces are of great interest in super-
string theories since in this case an unbroken supersym-
metry in four dimensions may solve the gauge-hierarchy
problem.

At the outset one should note a pecuhar feature of
Ricci-flat space. A spacetime-dependent size b(x) of ex-
tra manifolds can be viewed as a scalar field in four space-
time dimensions. When the manifold is Ricci flat, this
scalar field [-1nb(x)] is massless and a long-range force
may exist. This raises a serious question and casts a
doubt on the uniqueness of the Schwarzschild solution,
the Birkoff theorem in four spacetime dimensions.
Indeed, examples that violate this theorem were already
found. Here we advance a step further and explicitly
construct aH static vacuum solutions eath three-
dimensional spherical symmetry. In reahty, the extra
space may not be completely Ricci flat and the long-range
force may then be cut off at a distance scale of m

A variety of new solutions thus obtained are expected to
have a great impact on formations of black holes if the
hole's mass M obeys an intxluality for the gravitational ra-
dius, 26M ~m '. In superstring theories the inverse
curvature m may well coincide with the mass scale of su-
persymmetry breaking. Thus, if the hole's mass is smaller

than a valut; of 10" g(1 TeV/m), solutions presented here
are very important.

In all previous approaches to this problem the assump-
tion of a toroidal isometry for the extra space was crucial
in constructing explicit solutions. In this paper we shall
instead assume that there exists no isometry as occurs in
the case of Calabi-Yau spaces. This makes an important
difference in our final conclusions: our case allows no
regular wormhole solution in sharp contrast to the situa-
tion in the toroidal compactification. Another technical
advantage of our assumption is that we can construct all
solutions in any dimensions, while in the case of the
toroidal compactification only partial solutions are
known for more than five dimensions.

Consider now a general form of a three-dimensional
spherically symmetric metric:

ds = e dt e "dr r{d—8 +sin —Bdg )

The functions a, to, and b depend on three-dimensional
distance r. We shall assume throughout this paper that
the Ricci tensor 8 ti(y) formed out of gati alone vanishes.

The static, three-dimensional spherical symmetry actu-
ally allows, in addition to terms written in (1), mixed
terms of the form, A, (r)dy dt. This degree of freedom
corresponds to an "electric"-type gauge field. As shown
later, however, the Einstein equation demands that the
"electric" field should be absent unless the extra compact
manifold admits an isometry. For the time being we shall
hence ignore this degree of freedom.

The Einstein equation takes a convenient form if one
uses a quantity

u—:—,r{1—e ") .

In ordinary relativity this quantity coincides with half the
gravitational radius of the vacuum Schwarzschild solu-
tion. The vacuum Einstein equation in d +4 dimensions
is then equivalent to
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The prime means the derivative d /dr.
The simplest solution is obtained by assuming that

u =uo (constant). The first equation (3) is then solved
with b'/b =C[r(r —2uo)) . This is consistent with (4)
only if the constant C=0 or C=(d+1) '2uo. The
former case yields the usual Schwarzschild solution„while
the latter gives

» the special case of c =0 these relations read as

ro
= (w —1)

Gf +2
2(d +1)

b =const)&
i
(w —wi)(w —wq)

e"=c(w —wi)(w —wp),

e =const+
~
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'2 1/2
2(d+1) 4+

etc c

(14)

(16)

It is straightforward to express all metric components
in terms of w with the help of (2) and (7)—(9):

A more systematic way to integrate the Einstein equa-
tion completely, (3)—(5), is to use a variable w given by

6f
N —1+—r—

2 b

From (3) the quantity u can be expressed in terms of w as

(r —2u) '=w'(1 —w)

Inserting this into (4), one finds after a little algebra that
r

w '(1 —w) = 2w '(1 —w)
dx dx

dw d+1 d+2
dx d

The constants in (14) and (16) are readily determined by
the asymptotic condition, bubo and cr~O as r~00. In
the case of c =0 it can be shown that the metric coincides
with the previous one (6).

The asymptotic value of w as r +oo must b—e 1 and
cannot be w;, irrespective of the parameter p in the ex-
ponent of (10), because at w; the metric (15) vanishes and
does not yield a sensible spacetime. As r decreases, the
parameter w monotonically changes according to one of
the following patterns:

c~O,

m =1 to + (x) as r = ao to ro,
w=1tou2 asr=~ toO,

8+2+
2

with x =lnr. This differential equation can be integrated
with two integration constants, c&0, ro ~ 0, as

6fl8r = —c(w —1)(w —wi)(w —wi),
t&

1)—2( )(P —1)/P( )(P+ I)/P
~

(10)

m=1 to u)2 as r =~ too,
m =1 to m1 as r = ao to 0 .

Note that [(d +2)(d + 1) '/2l'/ &p & 1 for c ~ 0 and
p & —1 for c &0. It will be shown later how the metric
can be extended beyond the end point at ro.

The nature of the solutions is characterized by the pres-
ence and type of singularities. Curvature singularities are
determined by direct computation of invariant Riemann
curvatures squared:

~~acD~ = e (cr + &
o' , o'~') +2r e —(o')+2r e "(co') +4r (1—e ")

+4de "(b 'b" , b 'b'~') +de ~—(b—'b'~')i+sdr ie i"(b

+2d(d 1). (b-—'b )'+—b 'FY,FY.~-'. (17)
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—e ~= —E. (18)

The constant E =0 for massless particles and E &0 for
massive particles. At large distances far away from the
center, a Newtonian potential for a massive nonrelativistic
particle,

The r derivative here is readily converted to the w deriva-
tive by (9}. Straightforward computations demonstrate
that curvature singularities appear at w;, typically behav-

ing like
~

w —u,
~

"-2(1'~)/(1'(, and that w=1 and ~ are
regular points.

Solutions thus explicitly constructed are classified ac-
cording to type of singularities present in these solutions.
We shall discuss these in sequence. When we count the
number of parameters in the solution, N, we shall exclude
the asymptotic value bo of the scale factor, which is not
fixed in the case of Ricci flat compactification. Hence the
maximum number of integration constants is equal to
N =2.

(1) Schwarzschild solution. The size of the extra space
is constant everywhere. The curvature singularity at r =0
is shielded by the event horizon at r =26M; N =1. This
solution is unique among all solutions, in the sense that
only this has an event horizon.

(2) Singular solution. A naked singularity, not covered
by event horizon, appears at r =0 (that is, at w =w; },or
at a finite positive r„2uo in (6). N =2 when c&0, and
N =1 when c =0.

(3) Pseudoregular solution. When c' & 0 and w increases
from 1 (r = Do), there is no curvature singularity at
w = oo ( r =ro), yet the extended metric hits a singularity
at m equal to ur~. N =2 in general. To uncover the glo-
bal structure of this metric, it is convenient to use a new
coordinate u equal to N '. The region around r =ro cor-
responds to that around u =0;

f —fo~ECPOQ ~
I{I( p 0 .2

The space defined by 1&u & w,
' has a curvature singu-

larity at wi
' corresponding to another infinity in the r

coordinate. This metric has a wormholelike structure in
the sense that the r space is doubly covered, but it actually
contains naked singularities.

How do particles move in the metric thus obtained'
For simplicity we shall restrict ourselves to radial trajec-
tories for which coordinates (tt, 8, and y remain constant.
Standard methods yield a once-integrated equation for the

geodesic:
*2

w —1=+ —{d+1)d —1

2
( 1+r2) —1/2

From (7), (8), and (5) one obtains, after some calculation,

[(1+r—2)1/2 r —1]—v 2/d(d+1) {19a)

era {1+r—2)—1

en [(1+r—2)1/2 r —1]2v 2d/(d+1)

(19b)

{19c)

This adds, besides (6}, to a list of new solutions for which
metric components are explicitly written in terms of the
original coordinate r

Finally, let us discuss whether the electric gauge field
term of 2A, (r)dy dt is permissible or not. Viewed as an
effective four-dimensional field theory, the gauge poten-
tial A, is only allowed to be a function of the three-
dimensional distance. In the presence of this mixed term
the inverse of metric components, g", contains nontrivial
dependence on the internal coordinate yl. For example,

g
tt

&
—cry g

ta b -2& -aug aPg

g ~+b e Xg rgb, ky

Near singularities particles dynamically behave in
bizarre fashions. Let us study in detail geodesics near
m —u

&
in the pseudoregular solution. In this case

0 &p & 1 and from (10)

u —u r -'&~"-&'N) —l8 tx r

From (14)—(16) one then determines leading behaviors of
metric components. Combined with the geodesic equation
(18), it is not difficult to show that infinitely strong
forces, attractive or repulsive, act depending on the fol-
lowing cases: oo attraction for E =0 (massless), or E & 0
(massive) and c &2(d —1)/d, ao repulsion for E&0 and
0 &c & 2(d —1)/d. The fact that massive particles always
experience strong repulsion near singularities is very in-
triguing and invites novel physical applications. Similar
pecuhar behaviors are observed near r =0 for c & D.

Our solution involves a complicated relation (10) be-
tween r and w, which is difficult to invert. In the special
limit case of

~ p ~

~ ao, however, one can explicitly invert
this relation. From (11)and (12),

w;=1+[d(d+1) '/2]'/

and the relation (10) yields, with ra= 1,
1/2

ra~i —w)
~

~

(@+1)/2p

follows by expanding ct) aild 0' al'olllld zelo 111 the asynlp-
totic region. Note that at large distances the force can be
either attractive or repulsive, depending on the sign of k.

where g (y) is the inverse of gap(y). Additional contri-
butions to the Einstein equation caused by k terms intro-
duce nontrivial y dependence which is in general impossi-
ble to be obeyed. This means that one has A, =0 as the
only consistent solution of Einstein equations. The situa-
tion, however, changes if the internal metric g ii is some-
what trivial and the space admits an isometry. For in-
stance, when the compact space is a torus, g p(y)
=5~}rXconst and extra electric contributions yield a sensi-
ble equation for the electric field A,~. Indeed, in previous
approaches it was demonstrated that in the case of this
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toroidal corn pactification one can construct regular
wormhole solutions in the presence of mixed electric
terms. It appears that the loss of an isometry deprives the
electric degree of freedom and renders a regular solution

singular.
In summary, we have constructed and classified all stat-

ic vacuum solutions with three-dimensional spherical

symmetry when the extra compact manifold is Ricci fiat
and does not admit an isometry. The Schwarzschild solu-
tion is the only solution that possesses the event horizon.
A more general class of solutions has naked singularities.
These solutions are expected to have a great impact on
formation of primordial black holes in the early Universe
if the hole's mass is small enough.
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