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How to measure the curvature of space-time

15 AUGUST 1986

Ignazio Ciufolini
Center for Theoretical Physics, Center for Relativity and Center for Space Research,

The University of Texas at Austin, Austin, Texas 78712

Marek Demianski
Department of Physics and Astronomy, Williams College, Williamstotvn, Massachusetts Ol267

(Received 5 November 1984)

%'e propose a new method of measuring the curvature of space-time using test particles. %e
shoe that to determine the curvature of space-time in vacuum it is necessary to use at least four test

particles and in general at least six.

The Riemann curvature tensor plays an important role
in relativistic theories of gravitation. The Riemann tensor
8 pys is defined by the commutative relation of covariant
derivatives. Let us denote by V the covariant derivative
and by A an arbitrary (at least twice differentiable) co-
variant vector field. Then

(VyVs —VsVy)Ap=AaR pys .

%'hen the metric tensor is covariantly constant, i,e., when

V~py ——0, then the Riemann tensor has the following

symmetry properties:

JR p|y$) Op R I' py$ j—0

and +~py@
=8y~p, where R ~pyg =g ~~A pyg.

In a four-dimensional space-time the Riemann tensor
has 20 independent components. When the metric of
space-time is subject to the Einstein equations in vacuum,
R p

——R p ——0, the number of independent components
of the Riemann tensor is reduced to 10 and they form the
Weyl tensor, which is defined by

Capy5 +apy5+ga(5~y]p+gpfy~5ja+ 3 ~gGffyg5]p

The relative acceleration of two test particles moving
on infinitesimally close geodesics is given by

D 5x 5

ds2
=R p su 5xytt

where 5xa is the relative displacement vector of the two
test particles and u is the tangent vector to the geodesics.
Using a sufficiently large number of test particles and
measuring relative accelerations one should be able to
determine ail 20 independent components of the Riemann
tensor. It is interesting to ask what is the minimal num-

ber of test particles necessary to determine all the indepen-
dent components of the Riemann tensor. In order to in-
vestigate this problem we have to generalize the geodesic
deviation equation to include test particles moving with
different four-velocities. The geodesic deviation equation
describing the relative acceleration of two test particles
moving with arbitrary four-velocities on neighboring geo-
desics was recently derived by Ciufolini.

If by Du we denote the difference Du =—u zT —u i
(where uzT is the parallel transported four-velocity of the
second particle to the instantaneous position of the first
particle), then

where R =R~pg P.

Synge' in his classic book on the general theory of rela-
tivity describes a method of measuring independent com-
ponents of the Riemann tensor. Synge calls his device a
five-point curvature detector. The five-point curvature
detector consists of a light source and four mirrors. By
performing measurements of the distance between the
source and the mirrors, and between mirrors one can
determine the curvature of space-time.

However, in order to measure all the independent com-
ponents of the Riemann tensor with Synge's inethod, the
experiment must be repeated several times with different
orientations of the detector; equivalently —and when the
space-time is not stationary —it is necessary to use several
curvature detectors at the same time.

Here we would like to propose a different method of
determining the curvature of a general space-time by
measuring the relative acceleration of test particles.

GfS
(Du )= 2R pysuP25xyu51+ 2R pysuP25xyusz. (5)

This generalized geodesic deviation equation when written
down in terms of ordinary derivatives and the Christoffel
symbols assumes the form

6f
(5x )+I p„~5xt'(u~&uui+2uPibu "+huPhu")

+ I p„bu "(2u p+ du p) =0,

where hu =u2 —u &. %e will assume that the coordinate
system is comoving with the first test particle and in the
neighborhood of this geodesic ' we will use the Fermi
normal-coordinate system. In this coordinate system we
have
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(5x )+II„~5x~(u~&u ~
+2u~&bu"+bu~bu")=0.

(7)

In vacuum space-time (R p
——0), in order to measure the

Weyl tensor let us take a test particle moving along a geo-
desic with a four-velocity ui ——(1,0,0,0). In the frame
comoving with this particle we can freely choose orienta-
tion of spatial axes. In order to determine the ten in-
dependent components of the Riemann tensor in vacuum
space-time let us introduce three other test particles. To
simplify our considerations we arrange the relative posi-
tions of these three test particles so that initially u, , 5x „
5x 2, and 5x 3 form an orthonormal basis.

Using the coordinate freedom and the freedom to speci-
fy the initial velocities, we assume that

5x ( i )
=(0,0, 1,0), 5x (2)

——(0,0,0, 1 ),
5x(3) ——(0, 1,0,0), hu, =(0, 1,0,0),
b, ui ——(0,0, 1,0), b,g3 =(0,0,0, 1) .

In the Fermi normal-coordinate system, along the chosen
geOdes1c %'e have

I p~P Op I pQ ~—R p~

90 ~ 2 45 ~ ~ Q 15 ~ ~ 1R (Q)Q —(9 5x (2) (9 5x (2)+ (9 5x (3)

+ i9 5x (3) )9 5x (3)+ i9 5x (i) .

In the general case to determine the 20 independent com-
ponents of the Riemann tensor we have to add two more
test particles, which vrithout losing generality, we assume
move in such a way that their relative velocities and rela-
tive positions are given by

5x q
——(0, 1,1,0), 5x 3

——(0,0, 1,1),

b.u =(a, 1, 1,0), hu =(a,0, 1,1) .

The corresponding relative accelerations are

d2
5xg =(1+2a+a )(R pp)+R 002)

S

+(2+2a)(R,Q, +R ip2+R 2Q)+R 2p2),

(14)

d2
5x3 =(1+2a+a2)(R (I2+R 003)

s

+(2+2a)(R 202+R 203+R 302+R 303} ~

and

I "J,k =
3
(R"~k+R "I-k) .

2

5x(i) —R 002+ 2R 102+ TR )12 ts2
(10)

2 ~+(2) R 003+~R 203+ 3 R 223 ~

2

5x(3) ——R ooi+2R 30)+ —,

ds
(12)

Equations (10)—(12) lead to 10 independent equations. In
fact the system (10)—(12) can be inverted to give explicitly
the Riemann tensor components in terms of relative ac-
celerations

The generalized geodesic deviation equation for the sys-
tem of four test particles can be written down explicitly.
%e have

Now it is even more cumbersome to show that Eqs. (10),
(11), (12), (14), and (15} give 20 independent relations,
which determine all 20 independent components of the
Riemann tensor.

We have shown that to measure the curvature of
space-time in vacuum it is sufficient to use four test parti-
cles and in general space-times it is sufficient to use six
test particles. It is easy to show that in vacuum, to deter-
mine the curvature, it is also necessary to use at least four
test particles. With four test particles we have three in-
dependent geodesic deviation equations leading to 12 rela-
tions between the ten independent components of the
Riemann tensor and the relative accelerations. In general
space-times it is necessary to use at least six test particles.

Let us point out that it is possible to determine the cur-
vature of space-time using the standard geodesic deviation
equation. It turns out however that the minimal number
of test particles which is required increases to 13 in gen-
eral space-times and to six in vacuum.

~ ~ ~ ][ ~ ~ 2R 1020=OX ( 1)& R 2030 =OX (2)
e ~ 1 3 e ~ Q 1~ 2 3 ~ ~ Q

~2101 —3~& (1) z ~& (1)~ +3202 3~+ (2) z (2) &

~ I ~ ~ 3 3 ~ I QR 1030 ~+ (3) R1303 3~+ (3) z ~+ (3)

(13}
5 ~ ~ 2 I "3 5 ~ . 3 I ~ ~ 1

R203( 6 5x (2)+ Y5x (1)~ R30)2 6 5x (3)+Y5x (2) ~

36 ~ e2 18 ~ oQ 6 ~ e

R2020 —
&e ~+ (2)+ &e ~+ (2)

~ ~ 3 z7 ~ ~ Q 9 ~ ~+ I9~+ (3) 19~+ (3) 19~+ (1) ~
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