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Generalized geodesic deviation equation

Ignazio Ciufolini
Center for Theoretical Physics, Center for Relatiuity and Center for Space Research, The University of Texas, Austin, Texas 78711

(Received 5 November 1984)

%e derive a generalized geodesic deviation equation valid for any two geodesics, vnth arbitrary

tangent vectors, not necessarily parallel. This equation is valid in any neighborhood in which the

change in the curvature is small.

In 1925, Levi-Civita published the equation for the
second covariant derivative of the distance between two
infinitesimally close geodesics, on an arbitrary n

dimensional Riemannian manifold:

D (5x ) =Rap „u@5x"u".
ds

Here, 5x is the infinitesimal connecting vector between
the geodesics, u"=dx&[s]/ds is the tangent vector to the
geodesics and R „„~ is the Riemann curvature tensor.
This equation, known as the geodesic deviation equation,
generalizes the classical Jacobi equation for the distance
between two geodesics on a two-dimensional surface:

do'
+Ky =0,

where y is the distance between the geodesics, o is the arc
of the base geodesic and K[tr] is the Gaussian curvature
of the surface. The hypotheses under which the geodesic
deviation equation (1) was derived are the following.

(1) The two curves are geodesics:

(5u

5u =u2[o] —ui[r].

(5) Equation (1) is derived neglecting terms higher than
the first order (e') in 5x and in 5u .

In this paper we derive a generalized geodesic deviation
equation dropping condition (4) and retaining only condi-
tions (1), (2), (3), and (5). In other words, we derive a geo-
desic deviation equation valid in any neighborhood U in
which the change in the curvature is small, but in which
the difference between the tangent vectors u, and u2 is
not necessarily infinitesimally small, i.e., u2 and u i are
completely arbitrary. For simplicity, we define the con-
necting vector 5x as connecting points of equal arc
lengths s on the two geodesics, that is, dr=der =ds and s
satisfies

dx2 [s]
u i [s]u i [s]= —1, where u i [s]—=

where r, cr are affine parameters.
(2) The law of correspondence between the points of the

two geodesics —that is, the definition of the conno:ting
vector 5x [r]—is such that, if dr is an infinitesimal arc
on geodesic 1 and der the arc on geodesic 2 corresponding
to the connecting vectors 5x [r] and 5x [v+dr], we have

do =1+A,, where =0 .dk,

d7 dv

dx, [s]
uz[s]uz [s]=—1, where u2[s]=-

ds

Physically, s is the proper time measured by two ob-
servers comoving with two test particles following geo-
desic motion.

The equation of geodesic 1 is

(3) The geodesics are infinitesimally close in a neighbor-
hood U:

x [o]=x,[r]+5x [r]
where the relative change in the curvature is small:

DQ ) dQ) +I «[x]u iu i =0
ds ds

and the geodesic equation (2) is

(2)

and A' is approximately the typical magnitude of the
components of the Riemann tensor.

(4) The difference between the tangent vectors to the
two geodesics is infinitesimally small in the neighborhood
U.

Du&

dS

cL 2 + I &„[xi +5x ]u 2u 2ds

(x i +5x )+I „„[x,+5x] (x~i+5x")
ds c&

X (xi+5x")=0.
ds

34 1014



34

Now, we have

(5x"[s]}—:— (x~2 [s]—x~i [s])
LIES ds

=u~g[s] —u~)[s] —=hu "[s]

and contrary to the classical case, condition (4), b,u "[s] is
not an infinitesimal quantity. With this notation Eq. (3)

can be rewritten, using a Taylor expansion to first order in
5x, as

d
i (x i ) + 2 (5x )+(I „„+I „„~5xl'}

ds 8s

(u~~+&u")(ui+b, u")=0. (4)

Taking the difference between Eqs. (4) and (2} we find, to
first order,

d (5x ) +1„„5xt'u",u ", +2I „~",hu "+1„„5xi'b u "du "+21 „„5xt'u",b, u "+I „Qu I'hu "=0

and using the definition (D/ds)u =(d/ds)u +I &~&u"
and the expression of the Riemann tensor in terms of the
Christoffel symbols and their derivatives, we have, to first
order,

D2(5x~) ~ p

S z
=R ~,~ i 5x"u; I'„„~—5xl'b, ui'hu"

2I q„p5x—~u"id, u" I „+u"—b,u" .

As for the classical equation (1) we expect Eq. (6) to be
covariant, i.e., to have the same form in any coordinate
system. However, this equation does not appear to be co-
variant because the terms containing Fp„z and I $„on the
right side do not form a tensor. This apparent contradic-
tion is explained if we write the transformation law of the
infinitesimal quantity 5x induced by the coordinate
transformation x~=x [x ]:

5x =x2 x—
i
——x—[x ]~2—x [x ](,
=8„~,5x" + —,

' 8„~,5x"5x

+ —,&„~
~

5 "5 5 a+a[5 ].

where the integral is calculated along a line joining
correspondent points x i (s) and x2 (s) on geodesics 1 and
2. %ith a Taylor expansion

hu =Du I „~"qT5x"—

,
' (1 „~~pT) p—5x—~5x'+e3[5x]. (10)

because of the way in which uzT was constructed-
paraOel transported on line 1 from line 2 along 5x~—we
have

I

Here hu —=u2 —u i is clearly not a vector; nevertheless it
can be written to first order as

b, u =Du I „~—~q5x",

where Du =u2T —u i is the vector given by the differ-
ence of the vector u2 parallel transported on geodesic 1

and the vector u i. However in the quantity on which the
operator D/ds acts, hu must be written to second order
ill 5x

1

bu'=Du + f I „'~~qz5x"

=Du — I ~+ 2T x

5x is clearly a vector to first order; however, when we
act on it with the operator D /ds, D~5x /ds2 is no
longer a vector to first order because now d5x~/ds =Su
is not an infmitesimal quantity, and terms such as

(5x" )5x~

u~~T.~
——e'[5x], on geodesic 1,

u~pr p
—I "pu2T+e'[——5x] .

Replacing this expression in (10) we have

are now of the first order.
Using the transformation law (7}for 5x to third order

in 5x, after tedious calculations, it is possible to check
that Eq. (6) is really covariant. However the best way to
prove the covariance of Eq. (6) is to rewrite it in a mani-
festly covariant or tensor form. We have

hu =Du —I „~~pT5x ——,
'

1 „„pu~qT5x~5x"

+ ,' I'„„rl'~u,T5x1'5x—"+e'[5x]

u~2T ——u ~ +I "~u 25x~

D ~ D d
(5x )= (5x )+I ~~&5x"

gg ~ Its ds

D (4u +I „~~)5x").

so that to second order

hu =Du —1„~"5x"——,
' I „„u"5xI'5x"

——,
' I „„I'"~u2 5x5x "+e'[5x] .

(8)
Replacing this expression for hu in Eq. (8) we have
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(Du —I „+u"5x" ——,
' I „„I"u25x45x" —,

'
—I „„4u415x45x )

(Du ) —I „„4u4IDu
"5x" —I 41 „+u"5x "u4& —I„„5x"I—„+u4hu"

S 5

, I „—„I"4u I (Du45x "+5x4Du")—,
' I „—„4u41(Du45x "+5x4Du )

D
(Du ) —I „„4u4IDu

"5x" I „„—( 2I—'"4u IDu4 I —"~ Du4)5x" I —„+u45u'

,
' —I „—„I4,(u, +Du )(Du45x "+5x4Du") ,

' —I „—„,(u4+Du4)(Du45x "+5x4Du") r.—,r„~u45x "u4

=R p„~PI5x4u i
—I „„45x4Du "Du" 2I'„„—45x4u 4iDu" I „„b—u4bu"

and finally grouping the various terms, we have to first
order in 5x the tensor equation

(Du )=R p„~pI5x4ui+R p„+up5x4ui

+ , R p,+—up5x4Du "+ ,'R p4~ pi—5x4Du" .

(14)

Remembering that ui ——u I +du =u, +Du +c'[5x]
this equation can be rewritten in the form

(Du )=R p„~2p5x4uI+ ,'R p4„up15x—4Du" (15)

Of,

filially�„

(Du }=(Du ). ui
S

=
2 R p4~15x u i + p R p4+15x up

P p, v & ~ P p v

where Du —=uIT —u I,u2T=—[uz parallel transported on
geodesic 1]; and u2, ui are the tangent vectors to geo-
desics 2 and 1.

From the definition of Du and from Du I /ds =0, Eq.
(16) can also be written in the form

(uiT)=(Du ). ui

= I R p4+2T5x u i+ 2 R p4+2T5x

(17)

Equations (6), (16), and (17) are different versions of the
generalized geodesic deviation equation. In particular Eq.
(6) gives, in nontensorial form, the second covariant
derivative of the separation 5x between the two geo-
desics. The tensorial equation (16) gives the first covari-
ant derivative of the vector field Du and the tensorial
equation (17) gives the first covariant derivative, along
geodesic 1, of the vector field u zT(s), that is, the covariant
derivative of the vector field u 1 (s) after its parallel trans-
port on line 1 along 5x (s).

These equations are valid for any two geodesics with ar-

bitrary tangent vectors, in any neighborhood U in which
the relative change in the curvature is small compared to
one:

~

9P 5x /A'
~

&&1, and they are valid for any ~alue
of s within the neighborhood U.

Under the hypothesis

i
b, u

we get the classical geodesic deviation equation (1) im-
mediately. Equations (16) and (17) are generalized in the
following sense. The classical equation (1) is valid in any
neighborhood in which 5x is small and conditions (1),
(2), (4), and (5) are satisfied.

The generalized equations (16) and (17) are however
valid in any neighborhood in which 5x is small and con-
ditions (1), (2), and (5) only are satisfied. Of course this
neighborhood is not necessarily a tubular neighborhood as
it was in the case of Eq. (1), but is any neighborhood in
which 5x is small, in particular, a tubular neighborhood
when 5u is small. Equation (16) is a generalized version
of Eq. (1). In fact from Eq. (16) we can get immediately
Eq. (1) just by imposing the particular case in which b,u

is small, so that Eq. (1) is a particular ease of Eq. (16).
On the contrary from Eq. (1) we cannot get Eq. (16).

In other words, Eq. (16) is valid either when the two
geodesics are "parallel" [in which case the neighborhood
of condition (3) is a tubular neighborhood], or in the case
in which the two geodesics are not "parallel" [in which
case the neighborhood of condition (3) is not tubular]. On
the contrary, Eq. (1) is valid only in the case in which the
geodesics are *'parallel, " in which case the neighborhood
is tubular.

Physically, Eqs. (6), (16), and (17} give the relative ac-
celeration of two observers comoving with two test parti-
cles with arbitrary four-velocities (their difference hu
need not necessarily be small) in an arbitrary gravitational
field (in an arbitrary four-dimensional Lorentz manifold).
The space-time need not necessarily satisfy the Einstein
field equations as long as the test particles follow geodesic
motion.

Equations (6), (16), and (17) were successfully applied
to tllc problem of fllldlllg tllc 111111111111111number of test
particles necessary to determine the Riernann curvature
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tensor measuring the relative acceleration between the
particles in a gravitational field. It turns out that the
minimum number of test particles can be drastically re-
duced by using Eq. (16) instead of the classical equation
(1)

This number is reduced either (a) under the hypothesis
of an arbitrary four-dimensional Lorentz manifold or (b)
when we have an empty region of the space-time satisfy-
ing the Einstein equations: R tt

——0 (the calculation of the
Riemann tensor reduces then to the calculation of the
Weyl tensor C ~,s). For the solution of this problem and
for a discussion on the possibility of measuring the
Riemann curvature tensor measuring the relative accelera-
tion of artificial satellites with "laser ranging" techniques,
see Refs. 3 and 4.
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FIG. 1. Two geodesics on S and the vector field Duo of
which Eq. (16) gives the first covariant derivative.
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and using g» r——=—1 and g&2
——r sin 8=sin 8,—2= —2'2 —= '2

R 212———sin 8.1 2

The tangent vectors to the two geodesics are

ui ——(0, 1) and uii ——(1,0) .

Therefore from Eq. (16}we have, immediately,

In this section we give a simple geometrical application
and a numerical test of the generalized geodesic deviation
equation. Let us consider a two-dimensional sphere S
with unit radius and the two geodesics on S:

1 I 1 2 1(Du }=—,R iizun5x ui
S

+ 2 R iyiuii5x un=02 2 (Al)

/=const and 8=const

(see Fig. 1). Consider then, in a neighborhood of the in-
tersection point 0, the connecting vector 5xa with com-
ponents 5x =e, 5x = —e.1 2

Let us now solve the problem of finding the value of
the second-covariant derivative of 5x': D 5x /ds or the
values of the components of the vector D(Du )/ds (see
Fig. 1). In order to calculate D(Du )/ds we first observe
that the only independent component of the Riemann cur-
vature tensor is, in polar coordinates,

8 121=—12

2 1 1 2(Du )= t R ii2uii5x ui
S

+ TR i2iu n5x u n =e2 1 2 1

D 5x /dsi can be obtained similarly.
Equivalently the same result was obtained after a

lengthier calculation: parallel transporting to geodesic I
the vector uii from the two points x (s) and xa(s+ds}
on geodesic II, evaluating the vector Du —=uii —ui and

T

finally calculating the ratio [Du (s+ds) Du (s)]/ds in-
the limit of ds very small.
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