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The Brans-Dicke theory in the general space-time endowed with torsion is investigated. Since the
gradient of the scalar field as well as the intrinsic spin generate the torsion field, the interaction term
of the spin-scalar field appears in the wave equation. The equations of motion are satisfied with the

conservation laws.

As a modified theory of Einstein’s theory of general
relativity (GR), the Brans-Dicke (BD) theory1 is based on
the viewpoint of the scalar-tensor theory, say, that gravi-
tation may be produced by a scalar field as well as the
metric tensor field.> It is well known that the BD theory,
which assumes that the reciprocal value of the gravita-
tional “constant” G is the varying scalar field ¢, is more
relevant to Mach’s principle than the absolute property of
space.>

When the gravitational field is strong, for example, for
a neutron star or in the phenomenon of gravitational col-
lapse, the scalar field ¢ may have some effect on stellar
configurations through a local modification of the gravi-
tational constant by the matter-energy distribution of the
star.* Moreover, most matter composing the stellar ob-
jects may have intrinsic spins which may play a dynami-
cal role in influencing the geometry of the space-time.’ It
may be less practical to maintain the Riemannian mani-
fold as the background space-time for those cases. The
space-time should rather be a general space-time endowed
with the torsion field which is taken to geometrize the in-
trinsic spin density of matter,® i.e., the Einstein-Cartan
(EC) or Riemann-Cartan (RC) manifold. Allowing the
space-time to carry the torsion field, it successfully in-
corporates the intrinsic spin. Thus if we want to investi-
gate the problem of a strong gravitational field with spin,
the background space-time of the scalar field ¢ should be
extended to the EC manifold.

To investigate the BD theory in general space-time with
torsion, we introduce the scalar field in a rather ad hoc
manner into the EC manifold, like the usual BD theory
on a Riemannian manifold. While Dunn’ geometrized the
scalar field on equal terms with the metric tensor field, it
is in contrast with BD theory. He introduced the scalar
field by defining a linear connection with nonvanishing
torsion. However, we assume that the torsion field is gen-
erated by the intrinsic spin and the scalar field on equal
footing. Thus we now introduce the scalar field ¢ as the
fundamental field variable with tetrad field e,* and spin
connection field w,,* independently in the gravitational
action®

Ig= [d*xV =g (—¢R+yR*+wd*$,/$), (1)

where w and y are arbitrary dimensionless parameters.
The scalar curvature R is a function of e¢,* and wg,* and,
just as in the EC theory,’ is given by

vpab
R =e,"e,"R?,,
=ea#eb V(wab#‘v_wabv,#_i_wacvwcb” _wac,‘wcbv) . (2)

The metric is given by g, =mnm,e%e’ with
Na =diag(—1,1,1,1), the Minkowski metric, and
g =det(g,,). The torsion field is defined by

a __,a a a _c a c
F yv—e p,v—e v,y+m e u_w C/.l,e v (3)

where the comma means partial differentiation. The third
term is added in order to bring about a simple wave equa-
tion for ¢. It is also invariant under the Poincaré gauge
transformation, since any covariant derivative of a scalar
field is identical with its partial derivative.

The mass action is given by

Iy=16m [ d*xV —gLyl(e*,0"X;) . @)

Here L), is a matter Lagrangian density which is a func-
tion of e,*, w,,*, and source fields X;. The total action
then becomes Ir=1I5+1y.

The field equations for each variable can be obtained by
varying the total action independently with respect to ¢,
e,”, and w,*. The field equation for ¢ is

R—wd*d /' +20Ad /¢ —20F*,6*/6=0,  (5)
where the d’Alembertian A in the EC manifold is defined
by

A¢:¢’I“;#*—:¢’“,#+F“M‘¢A . (6)

Here I'#),, denotes the linear affine connection which is
written as

F“)»V:{fv} —K"}w » (7)

where the quantity {f,}, the Christoffel symbol computed
from the metric tensor g,,, is familiar and established by
GR, and the contortion tensor K#,,, is given by

Kty =5(—FFy+F3#,+F ") 8)
relating F¥,, with
Fykv:Fulv“‘ FFVA:ea#FaAv . 9)

The extra fourth term of Eq. (5) is added to the case of
the usual BD theory as the interaction of the scalar field
with torsion, since the d’Alembertian is defined by Eq. (6).
If, however, the d’Alembertian is defined as the covarient
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derivative with the Christoffel symbol as in GR, then the
fourth term is canceled for the wave equation to be the
same form as that of the usual BD theory. The parameter
@ couples the scalar field with torsion in the same range
of the coupling with the metric.

The field equation for e,* is

(—¢+2yR)G ,+ TYShR = —87T%,
+o(36,478,~0,6M) /0,
(10)

where the Einstein tensor G ",,:Rl,,—— —;-SzR is asym-
metric generally and the canonical energy-momentum ten-
sor T"" is defined by

L 2.8 =
n ‘/_:Eea 580‘“( gLy) . (11)

The canonical energy-momentum tensor T, is also asym-
metric, while the metric energy-momentum tensor that is
obtained by varying the matter Lagrangian with respect to
the metric tensor is symmetric. Thus T, can be separat-
ed into two parts, a symmetric part (metric energy-
momentum tensor f,,) and an antisymmetric part
(energy-momentum tensor due to spin, 7,,):

Tuvzt;w'*"ryv . (12)

The field equation (10) is an extension of Einstein’s equa-
tion under gravitation caused by the torsion field and the
scalar field. In the usual BD theory, Einstein’s field equa-
tion contains the term (¢ ,.,—g,,A¢) which results from
the presence of the second derivatives of the metric tensor
in R, while Eq. (10) does not contain the term because of
the independence of the tetrad and the spin connection as
the fundamental variables in our case. The second term
on the right-hand side is the energy-momentum tensor of
the massless scalar field.
The field equation for w"b,, is given by

(—@+2YR)(Ftop+85F 1, —84F 1 p)
= —8mot g+ 84(—¢ g+2¥R g)
~8(—¢ 4 +2YR,), (13)

where 0" g is the spin angular momentum tensor defined
by
1 )
otp= V=2 (e"ae"B-e"Be”a)awab (V —gLy) (14)
u

and is related to 7,, by the modified divergence
VaAt=AF —F* ,AF:

Tuv=Vg(0%,— 0, —0,,%) . (15)
By contracting the u and S indices Eq. (13) is changed
into
(—¢+2YR)F* =410 () +3(— o +2YR 5)/2 .  (16)

If we substitute Eq. (16) into the field equation (13) again,
it becomes

(—¢+2yR)F¥ p= —873F 5+ 384 —d o +2YR o)
— 384 —¢ 5+2YR p) , a7

where =¥,z is given by
SHap=0"ap+ 7 (8h0* p—Bho’ e . (18)

Note that the fluctuations in the scalar curvature R and
the scalar function ¢ can act as sources of the torsion
field. Even if the gravitational Lagrangian density is
given by L =¢R(y=0), that is to say, in the case of no
fluctuation in R, the torsion field may be generated by a
nonspin term, the gradient of the scalar field. Thus in the
absence of spins the torsion does not vanish; it can propa-
gate with the scalar field. The form of the torsion field
produced by the scalar field in Eq. (17) is similar to that
by the tlaplon'® which requires minimal coupling and
gauge invariance for a complex scalar field. The similari-
ty is caused by the Lagrangian (1) containing the kinetic
term of ¢. But they thought that only the tlaplon deter-
mines the torsion field, it is the same idea as Dunn’s. The
fact that the terms containing the parameter w are absent
in the field equation (13) means that the effects of ¢ and
spin on the torsion field would be of the same order of
magnitude.

By contracting the A and p indices in Eq. (10) the y-
containing terms are canceled and then

R=—81T/¢p+wd &7/¢*. (19)
Substituting this into the field equation (5) gives
Ap=4rT /w+F¥y,¢* (20)

while the denominator of the first term on the right-hand
side in the usual BD theory is w+ . It is due to the fact
that Eq. (10) does not contain the term of the second
derivatives of ¢. Here T denotes the trace of T,,. For
traceless 7, for example, the vacuum or electromagnetic
case, the torsion-scalar coupling term determines the wave
equation of ¢. Of course, since the torsion is described by
a function of the spin and scalar, it would be the spin-
scalar and scalar-scalar self-interactions. For the y=0
case,

Ap=47T /w+8m3H* 0" /b +34 10" /26 1)

and if the magnitude of w is large enough to make R =0
in Eq. (19), then the right-hand side of Eq. (21) becomes

8BTSt bt /D +2020 2/

The field equations (5), (10), and (13) are consistent
with the conservation laws. Since the background space-
time of the field equations is the EC manifold, the geome-
trical identity which relates the curvature tensor with tor-
sion and the Bianchi identity of EC theory®!! are still re-
quired to show the consistency. For convenience, consider
the case of the vanishing value of y (Ref. 12). Taking the
modified divergence V) of both sides of Eq. (10) with
=0,

ViTY, —FP, TA + 0P R, =0 . (22)

It is determined with the help of Eq. (5) and the identity
ViGH,=Ff,G" — s TP R, . (23)

Also if we take the modified divergence of Eq. (13), then
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V,u0*ag—(Tog—Tgy)=0 (24)
with the help of the identity of EC theory
ViT%u=Gp—Gg (25)

where T*,,=F*, +8,Ff,, —8,FF,, is the modified tor-
sion tensor. Both Egs. (22) and (24) are exactly the con-
servation laws of energy-momentum and spin angular
momentum respectively. The scalar field does not break
the conservation, and it has the same base as the usual BD
theory whose field equations require the conservation law
of GR (Ref. 4). However, even if the torsion field van-
ishes, Eq. (22) does not become the usual conservation law
of GR (or BD theory) since the torsion does not consist of
spin only. There remains the coupling term of the scalar
field and curvature.

Recently Sdez'’ did similar work on the basis of
Mpller’s tetrad (MT) theory!* using a different action
[R +F*4+$F+(3¢)*]. Since MT theory considered the

tetrad field alone as the fundamental variable unlike our
theory, the torsion field is represented in terms of the
tetrad field without the spin connection field, and treating
the spinless matter the spin angular momentum tensor
does not appear. Therefore, the conservation law of
Saez’s theory does not have the form of EC theory, Egs.
(22) and (24), but the form of GR.

It is applicable to any cosmological or astrophysical
models to indicate the physical importance of the scalar
field and its interaction with spin through the field equa-
tions (5), (10), and (13). Like the general BD theory'® our
calculation can be extended to the case of ¢ dependence of
the parameter © and/or y.
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