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The general-purpose bitensorially gauge-covariant differentiation procedure set up in the preced-
ing article is specialized to the particular case of bundles with nonlinear fibers that are endowed
with a (torsion-free) Riemannian or pseudo-Riemannian metric structure. This formalism is used to
generalize the class of harmonic mappings between Riemannian or pseudo-Riemannian spaces to a
natural gauge-coupled extension in the form of a class of field sections of a bundle having the origi-
nal image space as fiber, with a nonintegrable gauge connection A belonging to the algebra of the
isometry group of the fiber space. The Bunting identity that can be used for establishing uniqueness
in the strictly positive metric-Riemannian case with negative image-space curvature is shown to be
generalizable to this gauge-coupled extension.

I. INTRODUCTION

The purpose of this article is to construct and investi-
gate the natural gauge-coupled generalization of the ex-
tensive class of nonlinear field models known as harmonic
mappings. The work will be based on the use of the
general-purpose bitensorially gauge-covariant differentia-
tion formalism set up by the author in the preceding arti-
cle, ' of which the relevant essentials (as specialized to the
torsion-free Riemannian or pseudo-Riemaruuan case) are
summarized in Sec. II of the present article.

The general class of harmonic mappings has been stud-
ied in mathematical circles for many years. A convenient
introductory review„ from a physically motivated point of
view, has been provided by Misner. One of the reasons
for interest in harmonic mappings

is the fact that they include the subclass known to physi-
cists as nonlinear tr models in the case when the Rieman-
nian image space P' has a suitable homogeneous sym-
metric space structure. Wherever W is subject to a con-
tinuous isometry-group action (not necessarily a fully ef-
fective one as in the homogeneous case) the possibility
arises of generalizing the class of simple mappings of the
form (1.1) to bundle sections, whereby the base space M is
mapped vertically into fibers of the form W in a bundle
3t subject to the isometry-group action in question. The
purpose of the present work is to describe the natural ex-
tension of the general class of harmonic mappings of the
form (1.1) to a class of gauge harmonic bundl-e sections

that will be automatically determined by the specification
of a bundle connection A for any given Riemannian struc-
ture on the base M and the fiber space W. (For the spe-
cial case of the nonlinear o models with homogeneous
symmetric space structure such a generalization has al-

ready been carried by the present author using the more
traditional method whereby the curved fiber space is
treated by an imbedding in a higher-dimensional flat
space. )

After the appropriate gauge harmonic field equations
have been derived in Sec. III, they will be shown in Sec.
IV to be amenable to treatment by an extension of the
method recently developed in the context of ordinary har-
monic mappings by Bunting '5 for the purpose of estab-
lishing uniqueness of solutions subject to suitable boun-
dary conditions and inequalities.

II. THE BITENSORIALLY COVARIANT
DIFFERENTIATION PROCEDURE

FOR FIBERS WITH (PSEUDO-) RIEMANNIAN
STRUCTURE

We start by summarizing the bitensorially covariant
differentiation procedure set up in the preceding article'
insofar as it applies to the restricted special case of fields
taking values in a space W with a Riemannian or
pseudo-Riemannian metric structure as specified in terms
of local coordinates X" ( A =1, . . . , m) on 9 by

ds =gag dX dX (2.1)

with an associated metric connection whose components
are given by the standard formula

] wI A C g (gD{A,C) TgAC, D ) (2.2)

(using parentheses to denote symmetrization) where g
are components of the inverse metric to gzz, and the
comma suffixes indicate partial derivatives with respect to
the corresponding coordinates.

Despite these restrictions in relation to the more general
situation considered in the preceding article (where the
connection I was allowed to be quite arbitrary) the
present context remains nevertheless more general than
that considered by Misner insomuch as we do not sup-
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pose that the field configurations in W are defined abso-

lutely, but allow for the possibility of an intrinsic indeter-

minacy modulo the action of a gauge group 9' which
must, of course, be a subgroup of the isomorphism group
of W, the existence of a nontrivial gauge freedom thus re-
quiring the existence of a nontrivial isometry group with
respect to the metric (2.1). This means that the field is to
be considered as a section 4(x) in a bundle A with fiber
space P' over a base space M which we shall suppose to
be described by local coordinates x" (p= 1, . . . , n). Such
a bundle will be characterized locally by a simple but
nonunique direct-product structure which may be
represented by expressing the elements of a neighborhood
in 8P as a couple (X,x) with corresponding local coordi-
nates IX",x"j for XEP', xGM. In such a coordinate
system the fiber-coordinate components of the fiber
metric as induced on the bundle will depend only on the
X",i.e, we shall have

gAB,p =0 (2.3)

v vcr 1 (2.4)

the corresponding form induced on the bundle will satisfy

g~, g =O (2.5)

The gauge indeterminancy consists in the possibility of
conserving this structure when effecting a fiber-coordinate
transformation of the form

X"(X,x) I G "(X,x) . (2.6)

The requirement that the property (2.3) should be
preserved is expressible as the condition that the gauge
transformation (2.6} should be characterized by the prop-
erty

(2.7)

where the E „are components of some base-space one-
form-valued vertical vector field K& satisfying the fiber-
space Killing equation

while, if we suppose that the base space has its own
metric, given by

ds =g„„dx"dx"

with the resulting connection

A~GA A B GA (2.11)

of the connector field A will preserve the gauge algebra
property (2.10). As in the more general context con-
sidered in the preceding article, the nontensorial (inho-
mogeneous) transformation rule (2.11) gives rise to a pure-
ly tensorial transformation rule

P A} GA P 8

for the corresponding fiber tange-nt Uecto-r field -Ualue-d

gauge curua-ture two form -F as defined by the basic for-
mula

F~„"——2A(„"~)+2A(„A~)" g (2.12)

(where square brackets denote antisymmetrization) so that
F can be considered as a globally well-defined bitensorial
field over the entire bundle A.

The covariant derivative D4 of a field 4(x) (i.e., a sec-
tion of the bundle 9F ) over M was shown' to have biten-
sorial components 4"

~&
given simply by

e "~„=a~"+~„" (2.13)

and transforming under (2.6} according to the ordinary
vectorial rule

C ll 6 ~C~l (2.14)

where BQ" denotes the base-space gradient components
of the coordinate component X"(4(x)) of the field 4
with respect to the local gauge coordinate patch [X",x"

I
on the bundle AF.

In order to construct higher-order similarly bitensorial
derivatives, it is necessary to introduce the section-
dependent connector field co which was shown' to be
given by

g —4
l

Ig c+A (2.15)

where the values of 1 s"c and 8„"s are evaluated on the
section 4(x}. In terms of this connector field and of the
ordinary base-space connection I the second-order covari-
ant derivative components are expressible as

(2.10)

The condition characterized by (2.7) and (2.8} automati-
cally ensures that the corresponding gauge transformation

(2.8) A A A 8~ i~i.=(@' i~);.+~ s~ i~ (2.16)

where V is the ordinary Riemannian operation of covari-
ant differentiation with respect to (2.1} and (2.2) as ex-
pressed by

VE = "(X +I" K ) (2.9)

In such a context, the gauge connection A can be ap-
propriately envisaged in the manner described in the
preceding article, ' as a gauge-patch-dependent fiber-
tangent-vector-field-valued one-form A with local coordi-
nates A„" which acts as the generator of the relevant
fiber-space isometry transformations, and which must
therefore be characterized by the same Killing-vector
property as K, namely,

The antisymmetric part of this bitensor wi11 be expressible
(in the torsion-free case under consideration here) purely
in terms of the curvature field P as evaluated on the sec-
tion in the form

& z
I Ie l &) (2.18)

Antisymmetrized differentiation at higher orders intro-
duces contributions arising from the curvature of the fiber
and base spaces, as represented by the corresponding Rie-

where the semicolon denotes ordinary (base but not fiber)
covariant derivation as defined by

(2.17)
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~a~ ~=~~f~ I~l.vl+~~lv l~l~~l p

Thus, starting from the basic expression

(2.19b)

man tensors with components ~ps n and ~p» n obtained

from (2.2) and (2.4) by the standard formulas

~gg n=21'(ii ini, g]+21 (g ig i
I a] D (2 19a)

uniform field over W giving no contribution to the field
equations for 4.]

The variation of the section 4(x) and thus of the corre-
sponding coordinate components X"(4), while keeping
the background fields p, m as well as the base metric g and
the gauge connection A constant, leads to an infinitesimal
variation 5L given in terms of the section component vari-
ations 5X"by

@ Ivl»le=(@ li I») n+~'n ii@ l~l»
A A A A (2.20)

for the third-order bitensorially covariant derivative of 4,
one obtains

5L =(pe i~5X"). + 5X",5L
;p

where the Eulerian derivative takes the form

(3.5)

A 8 e@ iei(»ie)=+a a@ iv ~m I@ l~' (2.21)

Q»p ii =4 ip~ i»Ren ii +Vga»
C ~ A A (2.22)

where the section-dependent total curvature bitensor 0
will be given (in this torsion-fro: case) by

I.
5@8

= —[(p@ i")
i

—~ ], (3.6)

where the base and fiber metrics g and g have been used
in the normal way for the definition of (bitensorially) co-
variant index raising and lowering, so that explicitly

e„i~=g~"g„,(a~'+~„') . (3.7)
III. THE GAUGE-COUPLED GENERALIZATION

OF A HARMONIC MAPPING

L = 2pg„gg""4—"i„4~i„+n&(4), (3.2)

where p and m are given scalar fields over the base space
M (which may occur naturally as known weight functions
in certain contexts) and where V is a self-interaction po-
tential that is given as a scalar field over the fiber space
P' and which, to avoid breaking the symmetry, should be
required to be invariant under the gauge group action, i.e.,

(3.3)

for any member K of the subset of solutions of the fiber-
space Killing equations

v "x"=0 (3A)

that constitutes the gauge group algebra [Evidentl. y if
one were considering the gauge coupling of the usual kind
of nonlinear o model for which the fiber space W is
homogeneous, and if one wished to use a rnaxirnal gauge
group which would act effectively over the whole of W,
then the requirement (3.4) would restrict P to be a trivial

In terms of the formalism set up in the preceding sec-
tion, it is obvious how one should proceed to generalize
the concept of a harmonic mapping as described, e.g., by
Misner, so as to incorporate a minimal gauge-invariant
coupling to a nonintegrable gauge-connector Geld. In the
following analysis we shall allow, in addition to the
minimal gauge coupling, the possibility that there is also a
nonhnear gauge-invariant nondifferential self-coupling
term.

The field equations for such a system will be obtained
by the application of the usual kind of stationary-
variation principle to a Lagrangian integral of the form

I= "x g '~I. 4,D4 (3.1)

over the base space M, where the Lagrangian scalar func-
tion L is taken to be a quadratic function of the gradients
of the field section 4, with the gauge-invariant form

In expressing the first term on the right-hand side of (3.5),
use has ban made of the fact that because it acts on a
quantity which is scalar with respect to the fiber indices,
the ordinary base-coordinate-covariant differentiation
operation, as denoted by a semicolon ean be used inter-

changeably with the gauge-covariant differentiation
operation indicated by a bar. Since it thus takes the form
of an ordinary divergence this first term can be eliminated
in the usual way, so that one obtains the required field
equat10ns

I. =0
5@,A

(3.8)

VP(peA
I
p)+pa 8 I PVBA Ap ~V Ay,

where (using the notation of the prodding article' )

V~(p~" i„)=(p~" i„)'~+pe'i~f, ",a„x'.

(3.10)

In transforming from (3.9) to (3.10) we have taken advan-
tage of the fact that, in addition to the obvious conse-
quence

(3.12)

of (2.4), the conditions (2.2), (2.3), and (2.10) taken togeth-
er ensure that the gauge-covariant derivative of the fiber
metric g, as evaluated on the section N, will also automat-
ically vanish, i.e.,

(3.13)

so that all the bitensorial index-raising and -lowering
operations commute with bitensorially covariant differen-
tiation.

expressing the condition that 4 should be a critical point
of the integral I, in the form

(pe„i )i„=~m. (3.9)

This system of equations may be written out in somewhat
more explicit but no longer manifestly gauge-covariant
form as
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In the absence of the additional self-coupling term 1
and of the gauge field A (and provided p is uniform) the
field equations (3.8) can be seen to reduce to a system of
the much studied harmonic type described, e.g., by Mis-
ner.

IV. GENERAI. IZED BUNTING IDENTITY
FOR GAUGE-HARMONIC 1NAPPINGS

4(0;x)=4(0)(x), 4(1;x)=4(i)(x) (4.1)

and varying smoothly as a functions of x, so that 4(t;x)
represents a well-behaved section in 3P over M for each
fixed value of t Without .loss of generality —except for
the exclusion of curves that become null in fiber spaces
with indefinite-metric signature —we may, following

The purpose of this final section is to extend to the
gauge-coupling system that has just been presented a very
useful identity involving the deviation between two hy-
pothetically different sections of the kind that was intro-
duced by Bunting ' for systems of ordinary harmonic
type for the purpose of establishing uniqueness subject to
appropriate inequalities and boundary conditions.
Bunting's work was motivated by the problem of estab-
lishing the uniqueness of solutions of the black-hole
equilibrium problem, which had been reduced by the
present authors' (subject to global hypotheses which still
lack an entirely complete and rigourous justification) to a
boundary-value problem of the right (harinonic) type. A
concise presentation of the main results of Bunting's
work, and an examination of the relation between the
Bunting identity and a more specialized identity con-
structed independently for the same purpose by Mazur'
(including as a special case the identity of Robinson') has
recently been given by the present author. ' The Mazur
identity applies only in the more restricted context (which,
however, includes the case of the black-hole problem) in
which the harmonic system is an appropriate kind of non-
linear o model, as characterized by a requirement to the
effect that the image (fiber) space should have a fully
symmetric homogeneous structure. The natural gauge-
coupled extension of the Mazur identity for such fully
symmetric spaces has already been described by the
present author elsewhere. The Bunting method, which is
applicable to a much less restricted class of image spaces,
uses concepts related to those introduced in a general
study of harmonic systems by Schoen and Yau."

The context that we wish to consider is one in which we
have two distinct bundle sections 4(0)(x} and 4(i)(x)
which we suppose to be homotopically connectable in the
sense that in the fiber over each base point x EM there is
some (smooth) curve 4(t;x) parametrized by a variable t
ranging from 0 to 1, with

Bunting, require that the parametrization should be ad-
justed so as to be affine along the curve about each base
point x EM, with parametrization chosen so that the cor-
responding tangent vector with local components given by

sA (4.2}

should everywhere satisfy

As sg =s

where s is the total metric length of the curve.
Let us introduce the notation

D=s "Vg (4.3}

to denote the correspondingly parametrized operation of
covariant differentiation along the fiber above any fixed
base point x GM. Let us similarly use the symbol D& to
indicate gauge-covariant differentiation, as defined in Sec.
II, of quimtities defined in the section 4(t;x) determined
by any fixed affine parameter Ualue t Wh. en applied suc-
cessively to the fields 4(t;x) and A these gauge-covariant
differentiation operators satisfy the identity

D(pD„$") pD„s "—=0 . (4.4)

At the next higher order, they satisfy a commutation
identity that involves the fiber-space curvature, in the
form

D[D„(pD&P")) D„(pD&s")=—pR "ace(D&P )s D„P

(4.5)

A=ps' D~s (4.6)

where the right-hand side is to be evaluated at any fixed
value of t in the interval (0,1), the result being manifestly
independent of the choice. Taking the base-space diver-
gence of this relation gives

, [p(s }.„]'"=p(D—"sz)D&s"+s&D"(pD„s") .

Now since the left-hand side is manifestly independent of
t, the same must be true for the apparently r-dependent
right-hand side, which will therefore be unaffected by in-
tegration with respect to t over the unit interval (0,1).
Applying this integral operation to the second term on the
right-hand side, and using (4.5}, one obtains, after an in-
tegration by parts,

Now the squared path length si appearing in (4.2} can
be considered as an ordinary (evidently gauge-
independent) scalar field over the base M. As such it will
have gradient components given by

1 P 1

2 p(s )'~ 2 pD~s

1f dt[s„D (pD„s")]=[s„D"(pD„@")]0—f dr[(Ds„)D (pD„4")+psgR LCD(D"4 )s D„4 ] .

It is to be noticed that the end-point contributions in the first term on the right-hand side of this relation are proportion-
al (via a contraction with sq ) to the first term in the field equations (3.7). We can construct an analogous expression in-
volving the other term in (3.7) by a similar integration by parts of the form
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tssMAB ——s P Ao — t Ds

where the symmetric mass-tensor field on the fibers is defined by

~AB ~A ~B~
Combining (4.7), (4.8), and (4.9) we can obtain an identity of the form

(4.9)

(4.10)

[p(s2) ]',P+ s A t „D "= t DI' „D„"-R„s"D~4 s D„++M„E"s (4.11)

with 5L/54" as given by (3.6) so that the left-hand side
evidently reduces to a (weighted} I.aplacian of the squared
fiber distance si(x) between the sections 4(0}(x) and

4(il(x) at each base point x6M if all the intermediate
section Cp(t;x) of the homotopy are solutions of the field
equations (3.8).

For the purpose of establishing the uniqueness of solu-
tions to the appropriate global boundary condition prob-
lems, it wiB not do to assume that the intermediate sec-
tions 4(t;x) are solutions of the field equations: in exam-
ining the possible deviation —as measured by s —between
the solutions 4 il(x) and 4(01(x) one will be justified in
setting 5L/54 equal to zero only at the end points t =0
and t = 1. We can, however, get rid of the integral involv-

ing the values of 5L/54" at intermediate values of t if we
now restrict the homotopy (which up till this stage has
been left arbitrary apart from the parametrization} by re-
quiring that the fiber-space curves 4(t;x) for each fixed
base point x should be geodesic, which means (since the
parametrization has already been restricted to be affine)
that they should satisfy the equation

In practice this is likely to be a less serious restriction
than might at first appear, since one of the most convinc-
ing ways of establishing the existence of the homotopy it-
self in many cases will be to construct it explicitly in
terms of geodesics in the first place: all that is needed is
to be sure that for each base point x GM the required
geodesic exists and that it is unique, at least subject to
conceivably relevant additional restrictions (e.g., on the
maximum allowed length s) of such a nature as to
guarantee the continuous variation of the geodesic as a
function of the end points.

In the particular case of fiber space with a complete
(negative) positiue definite metric and a (positive) negatiue
definite Riem ann curvature then it is a well-known
theorem (see, e.g., I("obyashi and Nomizu' ) that the re-
quired geodesic between any two points exists and is
unique, thereby establishing the existence (and uniqueness)
of the required geodesic homotopy. Under these condi-
tions, integration of (4.11) over a base domain X [using
the same volume measure as in the variational integral
(3.1)] gives

DE"=0 . (4.12)

1

axpss "dS„=J dX f d([p(D"s„)D„s"—p)(+g(llg "(D&CF)s (D„4 )+wM„~s"s ], (4.13)

where the right-hand side will be a manifestly positive
(negative) definite function of the distance s (vanishing
only if s =0, i.e., if the two solutions 4(0} and 4(ii coin-
cide} provided that the density p and the base-space metric
are positive (negative} definite and that the potential P
has the appropriate convexity property as expressed by the
condition that the mass tensor M (weighted by n ) should
be positive (negative) definite. Under such conditions, it
will suffice if the boundary conditions ensure the vanish-
ing of the surface integral on the left-hand side of (4.12)
in order for one to be able to conclude that s must vanish
throughout the domain and thus that the solution 4 is
unique (for the given fiber metric g, connection A, self-
interaction potential F, and the given base-space fields

g,p, 77).
Even if the required ngativity or positivity, as the case

may be, of the fiber-curvature tensor and the mass tensor

held only indefinitely —as would be the case, for example,
if the potential P were absent —then the right-hand side
of (4.13) would still be positive definite as a function at
least of D„s". In these rather more general cir-
cumstances, boundary conditions ensuring the vanishing
of the surface integral on the right-hand side of (4.13)
would be sufficient, by (4.6), to guarantee at least the van-
ishing of the gradient of s, i.e.,

(4.14)

After one had thus established the uniformity of the
fiber-metric distance s between the two hypothetical solu-
tions, it would suffice in addition for the field to be fully
determined even at just a single limit point on the boun-
dary, S, in order to be able to conclude that s vanishes
everywhere and thus that the solution is entirely unique.
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