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%e determine a one-parameter family of covariant Langevin equations for the metric tensor of
general relativity corresponding to De&itt s one-parameter family of supermetrics. The stochastic
source term in these equations can be expressed in terms of a Gaussian white noise upon the intro-

duction of a stochastic tetrad field. The only physically acceptable resolution of a mathematical am-

biguity in the ansatz for the source term is the adoption of Ito's calculus. By taking the formal
equilibrium limit of the stochastic metric a one-parameter family of covariant path-integral mea-

sures for general relativity is obtained. There is a unique parameter value, distinguished by any one

of the following three properties: (i) the metric is harmonic with respect to the supermetric, (ii) the

path-integral measure is that of De%itt, (iii) the supermetric governs the linearized Einstein dynam-

ics. Moreover the Feynman propagator corresponding to this parameter is causal. Finally we show

that a consistent stochastic perturbation theory gives rise to a new type of diagram containing "sto-
chastic vertices. "

I. INTRODUCTION

The stochastic quantization method of Parisi and Wu'

provides an interesting alternative to the standard quanti-
zation of gauge theories, as no gauge fixing and associated
Faddeev-Popov ghosts are required. It appears
worthwhile to apply this scheme also to the gravitational
field, although, pessimistically, one might expect that all
the well-known difficulties of the standard (i.e., Hamil-
tonian and path integral) approaches to quantum gravity
will show up again, though, maybe, in a different guise.
From the optimist's point of view it is precisely this
transformation of an old problem into a new guise that
might offer some new insight, however. We feel that sto-
chastic quantization does indeed live up to this expecta-
tion in the case of the gravitational field: We hope that
our main result, contained in Sec. V, is of interest also to
those who have reservations about the stochastic ap-
proach.

The main obstacle to applying the Parisi-Wu method in
its original form to the metric tensor field of general rela-
tivity is the fact that the Euclidean Einstein-Hilbert ac-
tion is not bounded from below. This necessitates a modi-
fication of the standard Euclidean path integral and
hence also of the stochastic formalism in which this path
integral is expected to define the equilibrium distribution
of a stochastic relaxation process. Several ad hoc modifi-
cations of stochastic quantization have been proposed to
overcome this difficulty. In our opinion the physically
most promising one is to generalize stochastic quantiza-
tion so as to make it applicable to fields in hysical
space-time with Lorentzian metric signature. The
linearized gravitational field has already been treated in
this manner. In this paper we propose a nonperturbative
stochastic quantization scheine for the metric tensor in
the full nonlinear Einstein theory. This scheme differs
from another one proposed some time ago. The pertur-
bation theory implied by our scheme is found to be dif-

ferent from that employed in Ref. 5.
In Sec. II we show that the principle of general covari-

ance with respect to field redefinitions determines a one-

parameter family of Langevin equations for the metric
tensor field of general relativity. The parameter is the
same as in DeWitt's metric on the space of four-metrics.
In Sec. III the stochastic source term of the Langevin
equation is expressed explicitly in terms of a stochastic
vielbein functional and a Gaussian white noise. A so-
called Ito-Stratonovich ambiguity in this expression is
resolved by requiring that the stochastic metric be in-

dependent of the choice of the vielbein functional, while
maintaining the covariance of the Langevin equation with
respect to general coordinate transformations. In Sec. IV
we associate an "analytically continued" Fokker-Planck
equation with every complex Langevin equation and
derive from its equilibrium limit a covariant path-integral
measure, again depending on one parameter, for general
relativity. In Sec. V the existence of a preferred parame-
ter is pointed out, distinguished by (i) harmonicity of the
metric with respect to the DeWitt metric, (ii) coincidence
of the measure with the DeWitt measure, (iii) the special
role it plays in the linearized Einstein dynamics and
causality of the corresponding propagator. The lineariza-
tion corresponding to this parameter is not the standard
linearization, however, since it has been shown that in the
latter the propagator of stochastic quantization is non-
causal. In Sec. VI we sketch the perturbation theory im-
plied by our covariant quantization scheme and show that
it gives rise to a new type of diagram containing "stochas-
tic vertices. " A final section is reservtxl for concluding re-
marks.

II. COVARIANT LANGEVIN EQUATIONS

Our main guideline for the formulation of a Langevin
equation for the metric tensor field g tt(x) will be the no-
tion of general covariance with respect to field redefini-
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(2.1)

Here 6"" is the inverse of a metric tensor functional
6„„[4]in field configuration space, and the summation
over A' includes a space-time integration. The stochastic
source term g"(s) will be defined here only implicitly by
requiring that all its correlations vanish with the excep-
tion of

(g"(s)g" (s') ) =2(6""[e(s)])5(s—s') . (2.2)

tions in field configuration space. The usefulness of this
conce}&t in quantum field theory has been stressed recent-
ly. ' " For conciseness we shall adopt the notation of
DeWitt (see, ey. , Ref. 12) and represent a general stochas-
tic field by 4 (s) where s is the fictitious evolution pa-
rameter and A =(a,P, . . .;x) comprises component in-
dices as well as the space-time coordinates. By covari-
ance, then, the general form of the Lorentzian generaliza-
tion of the Parisi-Wu ansatz' for the Langevin equation
for 4" must be

6=det(6„„)= g C'0( —1 2g), (2.8)

6""=6 p p (x,x')

=(2C lg I) '" g..gpp+g. pgp.

2k+1 gaPga'&

X5"'(x—x ) . (2.9)

In particular the determinant 6 is constant in the usual
parametrization of geometries, a property that holds only
if the number of space-time dimensions is four. ' More-
over we see from (2.8) that the signature of Gz„depends
on k.

Let us now insert the Einstein-Hilbert action

later reference we note the determinant and the inverse of
the metric (2.5):

(g"(s)g" (s') ) =26""5(s —s') (2.3)

A more explicit definition of g" will be given in the next
section.

Note that (2.2) implies

S[g]= J 14x ~g ~

'~~A,

~g ~

' (R p ——,'g pR),
2K

(2.10}

(2.11)

only if Gz„ is independent of 4 (and hence of g). For
nongravitational fields there exists a field coordinate sys-
tem (defining the "natural field variables"} for which
Gqq is indeed independent of 4. However, for the gravi-
tational field

C=4K .

Then we obtain

(2.12)

into the Langevin equation (2.1). As we want to retain the
canonical dimension Li of s, we choose

4"—=gap(x}, (2.4) A, +1
gap= 2i R p

—— g pR +gap. (2.13)
Gq~ must depend on 4 for reasons of ordinary general
covariance (except we adopt a bimetric theory). [The in-
dex positions in (2.4) should cause no confusion, as usual-

ly the covariant metric is taken as the gravitational field
variable, which, when considered as a field coordinate,
must carry an upper index. ] Indeed, ordinary covariance
requires that the actions of general coordinate transforma-
tions on g p(x) be isometrics with respect to the field
metric Gz„. The most general local metric Gzz that has
this property is known' to be

Note that g does not have its usual canonical dimension
L in Eq. (2.13). By the field rescaling

g p=g p/(2x'~~) (2.14)

( G~ =1 if A, =O. (2.15)

one recovers this canonical dimension, however, and
moreover, Gq~ becomes dimensionless with

6 =6 p' p(x x')

~ g ~

1/2(gaa gpp'+ga'p'gpa +ggapg'a'p)
2

X5'4'(x —x'),

g=det(g p},

A,Q —i

(2.5)

(2.6)

(2.7)

As is easily seen, the drift term in the Langevin equation
(2.13) is proportional to the Einstein tensor only if A, =O.
Also, only in this case does one obtain the standard
Langevin equation for the linearized gravitational field
discussed in Ref. 8 [the numerical factor in (2.12) has been
chosen such that then also the parameter s is the same].
This appears to give the value A, =O a preferred status. It
will be argued in Sec. V, however, that a different value
(k= —1) has all the prospects of describing the correct
physics. For the present we shall leave A, unspecified.

The constant C in (2.5) must be different from zero, but
otherwise its choice is irrelevant: It can be seen froin (2.1)
and (2.2) that a positive rescaling of C, C~yC, y&0,
corresponds merely to a rescaling of the parameter s,
s —+ys. Even a change of the sign of C does not affect the
equilibrium limit as will be seen in Sec. IV. We are thus
left with a one-parameter (A.} family of field metrics. For

III. RESOLUTION OF AN
ITO-STRATONOVICH DILEMMA

Definitions (2.1) and (2.2) of the stochastic processes
4" and g" are purely formal and not useful for practical
calculations. Our aim is to reduce (2.1}to a more familiar
type of stochastic differential equation by giving a more
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explicit definition of g". This may be accomplished as
follows. We introduce a field-independent "reference
metric" GMM in field configuration space and associate
with it a stochastic vielbein functional E A [p] obeying

there appear spurious terms in

(g"(s)g" (s')) = l,EM"(s)EM" (s'))

X(( ' (s)g' ' (~'))+ (3.10)

GM'ME A[4]E A [0']=GAA [Nl . (3.1)

With the help of the vielbein we may define the anholo-
nomic "vector components" g( ' by

g(0)M EM [y]gA (3.2)

that violate (2.2). Equation (2.1) with the Stratonovich in-

terpretation for (3.3) is also not form invariant under a
4-dependent change of the vielbein, in contrast with naive
expectations. Indeed, if we perform a @-dependent, local-
ly 6' '-isometric transformation of the vielbein function-

01

gA E A[y]g(0)M (3.3)

with

EM E A' b A' ~

A M A (3.4)

( g(0)M(~ )g(0)M'(s ~

) ) 2g (0)MM'5(B s ~

) (3.5)

It is then natural to take (3.3) as an ansatz to satisfy (2.2)
and to define P)M as a generalized Gaussian white noise
with nonvanishing correlation

EM"[@] ~M "[@]EN"[@']

g(0)M pM [@g(0)N

g (0)MNA PA Q 6 (0)PQ

P N

then a spurious term

P A NB

5
~N EM

(3.11)

(3.12}

(3.13)

(3.14)

(3.15)

where O' ' M is the inverse of GMM.
When (3.3) is substituted into (2.1), the Langevin equa-

tion is recognized to be of the type studied by Ito' and
Stratonovich. ' It is well known (see, e.g., Ref. 15) that a
stochastic differential equation of this type is not well de-
fined because the Wiener-type process 8™(s)whose in-
crement

d PrM g(0)Md (3.6)

E "[P]dW (s)

lim {(1 a)EN "[4(s)]—+aEN "[4(s+M)] I
hs~O+

)&[W (s+M) —W (s)], (3.7}

0&a&1. (3.8)

From the mathematical point of view there are two natur-
al choices of a: a=0, defining Ito's calculus, and a= —,',
defining Stratonovich's calculus. In the following, we
show that a=0 is dictated by physical requirements. %e
shall make extensive use of results on covariant stochastic
calculus obtained by Graham. '

Let us consider the Stratonovich interpretation first.
Its attractive feature is that it imphes that each term in
(2.1} transforms as a "contravariant vector" under arbi-
trary coordinate transformations in field configuration
space. On the other hand, for a &0 (3.7) and (2.1) imply
that @"(s) depends statistically on W (s+ds) —W (s),
and hence in general

( 8[4(s)]g"(s) }&0, (3.9)

appears in the associated stochastic inte ral is of un-
bounded variation (or, put differently, g( ' is a general-
ized process, its sample "functions" being distributions).
The product EN"[4]dW (s) may be interpreted in infin-
itely many different ways:

ENB GBCE. N (3.16}

SEucl ~ (3.17)

~here Sq ~
is the Euclidean action. It has been conjec-

tured by Parisi' that the real process (with complex prob-
abilities) described by this modified FP equation has the
same expectation values as the original complex process
with real probabilities).

The modified FP equation for the Stratonovich inter-
pretation of (3.3) and (2.1) reads

dP[@x] 5
gc A

6" [4 ] P[C,s],
5@"5 (3.18)

g A )GAB ~ + ~ E BG(0)MK
SeB 5e' (3.19)

adds to the "drift vector" in (2.1). (It is even possible to
transform the drift vector to zero by an appropriate C)-

dependent "rotation. "'
) Therefore a different choice of

vieibein defines a different process 4", which is clearly
not desirable.

The physical consequences of the vielbein dependence
can be read off from the Fokker-Planck (FP) equation im-

plied by the Stratonovich interpretation of (3.3} in (2.1).
Since (I)" is a complex process, this FP equation involves

partial derivatives with respect to the real and imaginary
parts of 4". Because we are interested in the limit s~ ao

which is expected to exist only in the distributional sense,
we shall not write down this correct FP equation, but a
modified one, obtained from the FP equation for the Eu-
clidean analog of 4" by the analytic continuation

where F is an arbitrary functional of 4(s). Consequently (gA) (C A) (3.20}
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Equation (3.19) shows the explicit dependence of the prob-
ability distribution P[e,s] on the choice of the vielbein
even in the equilibrium case BP/Bs =0. The Stratonovich
interpretation is therefore not viable in our case. The
same conclusion may be reached for all other values of a
in (3.7) different from zero.

If the Langevin equation (2.1) with the ansatz (3.3) and
(3.5) is interpreted in the sense of Ito, the unphysical
dependence on the choice of the vielbein disappears. In
particular (3.10) reduces to (2.2}because of the "nonantici-
pating" nature of e(s), and hence of Est"[e(s)], with
respect to d $V(s). On the other hand, in Ito's calculus e "
is not a contravariant "vector, " but transforms inhomo-
geneously according to

FA gAB
seB ' (4.2)

(4.3)

Q[e,s]=
~

6
~

'i P[e,s] .

Equation (4.1) implies

(4.4)

~g [

—ii2 ~g
~

li2
s

The probability distribution P [e,s) being a scalar density
in field configuration space, it is natural to introduce the
corresponding "scalar field" Q defined by

er A se eB GBc
se' se'se' (3.21) X FA g eA gAB Qse' (4.5)

(the same rule holds for EA in Stratonovich's calculus).
Therefore the Langevin equation (2.1) is not manifestly
covariant with respect to field redefinitions, but assumes
its particular form only in a special class of "coordinate"
systems.

A generally covariant stochastic quantization scheme
may be based on the covariantized Langevin equation

A g eA gAB [ ] +gA (3.22)

where b,G denotes the Laplace-Beltrami operator of the
field metric G„B. The left-hand side of (3.22) is indeed a
"vector, "because

This equation is not covariant, because the term in
parentheses is not a "vector." This is not surprising, as
we have seen in the last section that (2.1) is not covariant
in the Ito interpretation. If we adopted (3.22) instead of
(2.1), then the spurious term —EGe" would disappear in
the parentheses in (4.5}and we would obtain

BQ VB 5S
Q

5Q (4.6)se' se'
which is manifestly covariant. Here V =6 Vc with VC
the covariant derivative with respect to e implied by the
Levi-Civiti connection I Bc of the field metric GAB.

e"=igi ' (igi' 6" )G (3.23)
1 Az 56~B 5gee 5GBc

pA GAJ
5e 5e 5e

(4.7)

transforms as
2e~A

e~ A g C A+GBc (3.24)se'se'
In the present paper, however, we shall stick mainly to the
"naive" Langevin equation (2.1) with the field variable
(2.4), because only this version allows us to obtain also the
noncovariant (in field configuration space) path-integral
measures that have been proposed in the literature. Note
that (2.1) is still covariant with respect to diffeomor-
phisms, because the latter act linearly on e" and hence
5 e'"/5e 5e vanishes

Finally we mention a further advantage of Ito's cal-
culus. As indicated above, the process e"(s) is "causal, "
e"(s) and de (s') being uncorrelated for s &s'. There-
fore a discretized version of equation (2.1) can in principle
be used to simulate satnple "paths" of e"(s) on a comput-
er by repetitive calls of a Gaussian random number gen-
erator for the Wiener increments. '9

With regard to the question of the equivalence of sto-
chastic quantization with path-integral quantization it is
interesting to check whether the modified FP equation ad-
mits an equilibrium solution Q~ proportional to e' . The
stochastic equilibrium averages will then coincide with the
Schwinger averages of quantum field theory. A sufficient
condition for the stationarity of Q~ in (4.5) is

r

i —Gb, eBQAB G Qeq (4.8)

= ——,(1+A, )g ~(x)5' '(0) . (4.9)

Evaluation of the second term on the right-hand side
(RHS} of this equation gives

—GABb, ge = —f d y 6 B'r (x,y)
56&s~tr(y, x )

5g tt(x')

IV. FORMAL EQUILIBRIUM LIMIT
AND PATH-INTEGRAL MEASURE

The modified FP equation implied by the Ito version of
the Langevin equation (2.1) is

r

F"[e)+ 6~[e] P[e,s],Se" Se"se'
(4.1)

Now

5' '(0)g B(x)= g ln
~ g (y)

~

5
sg~B(x)

Therefore

Q~[g]

y= ——,(1+A,) .

(4.10)

(4.12)



Thus Q,q
contains in addition to e also a nontrivial

path-integral measure, and we obtain the following formal
expression for the equilibrium expectation value of an ar-
bitrary functional F[g]:

(E[g]) cc f g ff ~g(x)
~
"dgap(x)F[g]e' (5} . (4.13)

x a&P

This expression shows that the Langevin equation (2.1)
with 4"=gap can reproduce any covariant (with respect
to diffeomorphisms} measure based on the integration
variable gap with the exception of y= ——,'. The values

y= ——,
' (Refs. 20—22) and y=0 (Refs. 23 and 24) have

been considered most frequently. A unique noncovariant
re with weight

I g I
'"I"'g

I
r~«lng from

lattice discretization and also from a canonical formula-
tion~5, has also been proposed. Note that DeWitt's choice
y=0 is obtained only for A, = —1. Some unique implica-
tions of this parameter value will be pointed out in the
next section.

As is well known, the path integral (4.13) is not normal-
izable even in a formal sense because of the invariance of
S under diffeomorghisms. By analogy with the situation
in gauge theories ' one is led to conjecture, however,
that stochastic gauge fixing will yield an equilibrium
distribution that is formally identical with the Faddeev-
Popov distribution of standard quantization in an ap-
propriate gauge. An investigation in this direction has al-
ready been carried out by Sakamoto, who uses an ap-
proach different from ours.

V. HARMONICITY, DeWITT MEASURE
AND LINEARIZED EINSTEIN DYNAMICS

The DeWitt path-integral measure [y=O in (4.13)] ap-
pears attractive because of its invariance under general
coordinate transformations. It is obtained from (2.1) only
if A, = —1. The reason is that only in this case

Therefore, and because G is constant, the integration vari-
able g p in (4.13) may be replaced by

~ g ~

'
g P, if

A, = —1. The variable g p is the only one for which a re-
lationship of this type and harmonicity hold at the same
value of A..

Up to this point in the paper our considerations have
been completely independent of the special choice of ac-
tion S[4]. We now want to examine the stochastic
dynamics generated by the Einstein action in the linear
limit defined by

gap lap+2+ Cap ~

1/2 (5.3)

(5.4)

(5.5)

Here q is the Minkowski metric, and all indices will be
transvected with this metric. For the parameter value
A, =O the Langevin equation for f p(x, s} implied by the
action S'0' has already been studied in an earlier paper,
to which we refer the reader for more details on the tech-
nical points of the discussion that follows. Our aim is to
derive the Feynman propagator for a general value of A, .
It is convenient to work in momentum space where the
linear operator V of (5.5) is given by

V= k'(P' —2P') . (5.6)

(5.8)

Here P and P are members of a complete orthogonal
set [P,P', PO, P I of projection operators on the space of
symmetric tensor fields, the superscript indicating their
(massive) spin value.

In the linear limit the Langevin equation (2.15) becomes

4ap=i ~apy'fy5+4ap (5.7)

gr y5 G
—l yiivys

@A q Pc@A 0. (5.1) where the inverse supermetric is simply

i.e., A, = —1 is the unique parameter value for which

g p(x) are harmonic "coordinates. "
Of course the covariantized Langevin equation (3.22)

implies via (4.6} the generally covariant equilibrium distri-
bution

(5.2)

I

apy5 T(Pay Ips+ 9a59py+P lap9ys) ~

iM:——A, /(2A, + 1),
and g is Gaussian with correlation

(gap( k,s)ga Ir(k', s') )

=2(2n) G 'ap p5' '(k+k')5(s —s') .

(5.9)

(5.10)

(5.11)
which is independent of A, because of (2.8) and coincides
with (4.11) in the case A, = —1.

We note in passing that besides gap also
~ g ~

'
gap is

harmonic for A, = —1. In general there are two real solu-
tions of the type

~ g ~'g p to the harmonic coordinate
condition (5.1) except in the interval i(, & —„where r be-

comes complex. There is a unique parameter A, for a
given exponent r such that

~ g ~

'g p is harmonic, with the
exception of r= ——,

'
and ——,', where no solution exists

(note that for r = ——,',
~ g ~

'g p are not valid coordinates
because they comprise only the conformally invariant part
of the metric g p). Another remarkable feature of
i(, = —1 is that only in this case G~pd@ is a differential,
namely,

H(s) eius (5.13)

corresponding to the "Hamiltonian" W. Equation (5.8)

implies

8' py~= V py —JMk g pTyy5 2

Ty5. y5 I y5

(5.14}

(5.15)

If f(x,s) is subjected to the initial condition ltd(x, O) =0
as usual (for a discussion of different initial conditions see
Ref. 8), then the solution of (5.7) is given by

g(s}= f H(s — s)g(s') d's, (5.12)

where 0 is the "Schrodinger kernel"
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Lr'. =krk'l(k'+io) . (5.16) G(k,s)= f d(m )K(k, m —iO)e' ', (5.20)
2'1T'

Since W is not a linear combination of orthogonal projec-
tions, H is most practically calculated using the relation (W —m l)K(m )=I . (5.21}

G(k, s) =9(s)H(k, s), (5.17) Equation (5.21) defines the "propagator" corresponding to
the "field equation"

where G is the retarded Green's function of the deter-
ministic part of Eq. (5.7) obeying

i W—G(k, s)=5{s)l .

(W —m l)/=0,
p2 p1 pO pO'

E=
k m — m m 2k +mi

(5.22)

Here l is the unit operator on symmetric tensor fields,

I ii&s=5(,&5is)'. (5.19)

The Green's function G can be computed by Fourier
transforming (5.18) with respect to s:

+ A,k2riT

[(3K+2)k +m ](2k +m )

2)) k LT
mi[(3A, +2)k2+mi](2ki+m )

where (riT)~is" ri~isT"——, etc. Using complex integration
in (5.20) we obtain via (5.7}

ik2sp2+p)+PO+ 2ik~—sp0 +) '{e—i(3k+2)k s e
—2ik s) T

3

—i(3A, +2)k s & —2ik s

3A, +2 3(3A, +2)

ik sp2+p1, +po+ & —i(3p, +2)k s T3 + —i (3@+2)k s

3p, +2 3(3)u+2)
(5.24)

From (5.12), (5.24), and (5.11) we may calculate the "stochastic propagator"

D~ik ir (k,s;k', $'):= ( P~p(k, s)g~ ir(k', s'})
r

=2(2m. ) 5'4'(k+k') doH iver (k, s o)H ir" —(k', s' o)G—
0

(5.25)

(5.26)

In this section we are not interested in its explicit form, but only in its equilibrium limit, which defines the Feynman

propagator E:
im D ii ir{k,s;k', $)=i(2') 5' )(k+k

shoo

Since H(k}=H( —k), we have

(5.27)

K p ir(k) 2i f dr H pr (k w)H irrs(k r)+ H prr(k r)H p s(k r) (5.28)

The explicit result is

(o) P 1 P
k+iO 2 k —iO

—i (p'+p ),

(5.29)

(5.30)

(riL+Lri)1 1

2 k —I, O

1 1

k iO—1 1 1
'971+

k iq 0 —3 (3@+2)k i0—

q:=sgn(3)M+ 2},
oo =2 f dss

1 2 p+ ao I-I-,
6kz i 0 3(—3@+2) 3(p+2)k' —i 0 3)u+2

(5.31)

(5.32}

(5.33)

One recognizes in K' ' the propagator of the standard linearization (X=)L),=0) and checks easily that R vanishes for
p=0. Reca11ing that

p'= —,
' TT,

(5.35)
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we conclude from (5.29)—(5.32}that

r

E= —— —)00 I'—P 1 qq . g i 2 1 4@+2 . 2 0 1 1

2 + imp P +- (yiL+Lyi) .
k +iO 6 k —iqO 3(3}u+2) (3}M,+2)k' —i 0 3p+2 3 (3p, +2)k i—O

(5.36)

Thus the whole propagator is causal if
2 1p( —
3

=—- —2+A, Q —T (5.37)

The quadratic divergences in E are harinless as they do not contribute to gauge-invariant quantities. In fact the only
part of E contributing to gauge-invariant expectation values is

(inv) 1 1 1 1
+ap, a'p'(k)= Y(9aa' lpga+ Pap'gapa' 3 qaipia p )

g ~ qaNa pk +i0 6 k iq—O

6 'apa p(A, = —1)
if@(——', .

k +iO

(5.38)

(5.39}

We find it remarkable that the field metric with parameter value A, = —1 appears in the propagator. Another remarkable
property is that the whole of E assumes an especially simple form if A, = —1. Making use of

apyS= Y~( ay pS+ aS py ) Y~ ap yS (5.40}

me obtain

+apa'p' =
2 ( 1 a9app'+ Qap' gapa' 1 +aa'p'+ iaa'kpkp'+ Pap'kpka'+'gapa'kakjF +yipp'kaka' }(-1) 2 1 ~ 2 0

k2+i0

(5.41)

The ease p= ——', must be treated separately. Since in

this case there is a double pole in the last term of (5.23),
the last term of (5.24) becomes

( —1+ ', ik s)LT—.

Consequently

7j'g l 2 1—00 —
q

(yiL+Lyi)
6k i 0 —3 6k i 0—

(5.42)

1 i 2 2

6k i 0—
(p = ——,

'
) . (5.43)

Note that the first term on the RHS of (5A3) differs from
what would be obtained if the limit p~ ——', were taken

after the limit shoo, and in a symmetrical manner,
namely,

1 1

k'-iO (5.44)

P denoting the principal value. This discrepancy will be
seen shortly to be related to the so-called van
Dam —Veltman mass discontinuity. '

yapys yapys M26apys (5.45)

with 6 the inverse of the field metric (5.9). The extension
(5.45) implies

8' p" 8' p~ —M I p~~,

0~e-fM2sH

(5.46}

(5.47)

The propagator corresponding to the massive extension is

Having evaluated the Feynman propagator implied by
stochastic quantization it is natural to seek an inverse to
it. This is a nontrivial problem because of the divergences
present in E. In standard quantization the Feynman
propagator is obtained by inverting the linear differential
operator defined by the free part of the action. If a gauge
invariance is present, as in the case of the linearized gravi-
tational field, the propagator does not exist. The usual

way around this difficulty is to break the gauge invariance
of the action by adding a gauge-fixing term to the La-
grangian. Adding a mass term to the Lagrangian may be
considered as a special case of gauge fixing. In the fol-
lowing we show that K may be identified with the inverse
of a certain massive extension of linearized gravity in the
(singular) limit as the mass goes to zero.

It is natural to consider the massive extension

3@+2 I
k —M +&0 6 (3 +2)k +M iO M i—O—

1 1

3 (3@+2)k +M —i 0

2 1 4ju+2 1

3(3p+2) (3@+2)k'+M' i 0 3p+2 M' ——i0

(5.48)
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If p, &——', , the I' term in (5.48) has to be replaced by

2k2 4 1

3(M —iO) 3 M i—0
Po (5.49)

Comparison of (5.48) and (5A9) with (5.31) and (5A3),
respectively, shows that indeed

K 2 —+ K,
M2~0

(5.50)

where also the correct singularity structure of K is im-
plied: If i 0 is replaced by ie in K~„ then (5.33) is con-

sistent with

N) = liiil E'
a~0+

(5.51}

W=g-(W'G, (5.54)

where T denotes the ordinary matrix transposition. Since
IV=G 'V[cf. (5.8)] and G =G, V=V, it follows that

(5.55}

Therefore the stochastic propagators (5.25) and (5.26) can
also be written as

D(k,s; k', s') =2(2n. )~5( '(k +k')
min(s, s')

IW($ Ir)g —i( IW($ —rr))T—
0

This is a confirmation of the fact that K can be obtained
also from the Langevin equation with real damping,

it p= —&0 p+&~ p"frs+4p (5.52}

if the limit @~0+ is taken after the calculation has been

performed.
It is easy to evaluate K 'I, once it is noted that the

operator W is Hermitian with respect to the scalar prod-
uct

&$.$)= f $'r $.$$a™$„,= JS'r $rO$. IS.SSI

Denoting the Hermitian adjoint of IV by lV, we have

pearing in the Lagrangian for a massive pure spin-2 parti-
cle,

M
(4 pC 0—"y4's) .

2
(5.60}

The "anomalous" behavior of the corresponding propaga-
tor for M ~0 is known as the van Dam —Veitman mass
discontinuity.

The Fierz-Pauli extension is one of the two massive ex-
tensions characterized by the property that only one phys-
ical mass value is present [in the other cases there is a
second pole of K~&(k) at k = —M /(3(u+2)]. The other

extension is that of A, = —1. In this case we have

K~~"——
2 2

[I' , (ri+—2—L)(ri+ 2L ) ]k' —I'+i O

P& 2PO

M —iO M —iO
(5.61)

Summarizing the results of this section, we have seen
that the parameter value A, = —1 is preferred both
kinematically and dynamically. It is distinguished
dynamically because (i) it governs the linearized Einstein
equations [cf. (5.39)], (ii) the corresponding Feynman
propagator is causal (though this is the case also for other
parameter values}, and (iii} considerable simplifications
occur in K [cf. (5.41)] and K, [cf. (5.61)]. Another man-

ifestation of property (i) is the fact that by adding the
gauge-fixing term

S,,= f d'x(a, y.r ,'a.—y„—r} (5.62)

to the action S' ' one obtains

~(o)+&st ——J d'x 1t pg»'(a= —1)(—Z)y„s.
(5.63)

It is not possible to change A, in (5.63) by a different gauge
fixing. It is amusing to observe that the usual harmonic
coordinate condition involved in (5.62) serves to make the
harmonicity of the metric itself, as implied by the Ein-
stein action, manifest.

=2(2e ) 5( '(k +k')

d~ eiW($+$' —2IT)g —1
min(s, s')

0 (5.56)
VI. PERTURBATION THEORY

K= 2i —dr ez'~'G
0

If W~R' —M I, we obtain

(5.57)

=(V—M G} (5.59)

Thus all the propagators K are "inverses" of the singu-
lar differential operator V in a certain sense specified by
(5.59) and (5.50}. With the exception of A, = —2 (p = ——', }
the principal value of the gauge-independent part is the
same for all propagators. The "critical" value A, = —2
corresponds to the so-called Fierz-Pauli mass term ap-

E = 2i dre '— 'G '=(W M I) 'G-
M~

(5.58)

g~p(x, s}=g~p(x}+2m'~ g~p(x, s) . (6.1)

A convenient choice of vielbein functional E~ is the fol-
lowing. %e introduce a deterministic, nonsingular
"reference metric" g~'(x, s) and an associated stochastic
tetrad field (in the ordinary sense) e' (x,s) with

The appearance of the stochastic source (3.3) in the
Langevin equation (2.1) implies that in the case of the
gravitational field a new type of diagram will contribute
in the perturbative calculation of stochastic averages. In
the following we sketch this perturbation theory briefly.
It can be formulated for the stochastic perturbation
t/r~p(x, s) of an arbitrary deterministic and s-independent
background metric g"p(x). The full metric is split ac-
cording to
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{O) u 5
ggb ~ 0,8 p gap (6.2) striction on g,b . Then

Since g ~ is a complex process, we admit also complex
e'~. It is therefore not necessary to iinpose a signature re-

A
~g ~

—1/4 +b

yields (3.1) via (3.4) with

(6.3)

G(0) ) (0) ) 1/2[ (0)aa'(x) (0)bb'(x~)+g(0)ab (x')g(0)ba'(x~)+gg(0)ab( )g(0)a'b'(x~)]g(4)(ww'= I82
(6.4)

For simplicity we shall choose in the following for the
reference metric

g,'b'(x, S)=5,b
and for the background metric

cl
g&p(x) =yi+p .

(6.5)

(6.6)

Moreover we make a concrete choice of orthonormal
tetrad fields:

e' (x,s)=(g+ ),

Here g+ is defined by

1/2 1/2(1+2 1/2 y)1/2

(6.7)

1+~'/ yiP (yiP) +——
2

(6.8)

~g ~

' 4e4~ g' '=2m'/2[j~p+J y (pg' '] (6.10)

g ~(n —))/2I(n)

N=2

&n/2g{n)

(6.11)

(6.12)

where yi+ is the square root of y) with one positive imagi-
nary eigenvalue.

We may now expand the drift term and the noise term
in the Langevin equation for the rescaled metric g p de-
fined by (2.14) in powers of a'

—1/2 5S
g ygps+ g pg'ys ~, = ~ p 4ys

V'yS

+I p(t/), ()tP), (6.9)

I

The iterative solution of (6.15) yields a series of tree dia-
grams whose first terms are depicted in Fig. 1. The main
new feature in these gravitational tree diagrams is the ap-
pearance of "stochastic vertices" corresponding to the
terms J'"', with n +1 prongs, n =1,2, . . .. These vertices
are represented by an encircled cross in Fig. 1.

The tree series expansion implies a perturbative expan-
sion of the stochastic average of products of tr'j fields. The
corresponding "stochastic diagrams" are obtained by join-
ing all possible pairs of crosses (including the encircled
ones) in the tree diagrams. (Because of the Gaussian char-
acter of g( ' no joinings of higher order need be con-
sidered. ) A joined pair of crosses is usually denoted by
just one cross, because diagrams containing single crosses
do not contribute to expectation values, again because of
the Gaussian character of j( '. We note that because we
have adopted Ito's interpretation of the stochastic integral
(6.15), all diagrams containing bubbles attached to sto-
chastic vertices vanish (Fig. 2). This brings about a great
simplification as compared with the rules that would fol-
low from Stratonovich's calculus. Figure 3 shows the
lowest-order nonvanishing contributions to the 1-, 2-, and
3-point functions. The crossed line denotes the stochastic
propagator D introduced in (5.25).

Because of the divergences in the Feynman propagator
(5.36) all stochastic diagrams will actually diverge in the
limit s~()o, although the divergences will not contribute
to gauge-invariant expectation values. For practical cal-
culations it is more convenient to use the inethod of sto-
chastic gauge fixing introduced by Zwanziger. s A com-
plete discussion of all covariant linear stochastic gauges in
linearized gravity for the case A. =O can be found in Ref.

(g~~(x,s)g I p (x',s'})

=(yi~ yipp+yi pyip, +pyi pyi p )5( '(x —x')5(s —s') .

{6.13}

The last equation is the Fourier transform of (5.11) with
respect to k and k'. The Langevin equation for g implied
by (2.13}is

iWg=iI(—g, dg)+J(P)g' '+g' '. (6.14)

This may be solved iteratively using the Schrodinger ker-
nel H introduced in (5.13}. With the initial condition
li)(x, O}=0Eq. (6.14) implies

P(s)= f doH(s —a'}[iI{g(a),BQ(o))+J(f(o))g' '((r)

+g' '((7)] . (6.15)

FIG. 1. Diagrammatical representation of the first terms in
the tree series expansion for P(s }. The line denotes the
Schrodinger kernel 0, the cross denotes the stochastic source

and the encircled cross with n + 1 prongs denotes
~/2J(n)g (0)
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(7.2)

FIG. 2. Example of a subdiagram that implies the vanishing
of a stochastic diagram.

8. In higher-order perturbation theory the method was
first applied to the gravitational field by Fukai and
Okano. It appears, however, that their discussion is in-
complete as they did not take into account the J term in
(6.14) and the associated stochastic vertices.

VII. CONCLUSION

G~p — g~pR =0,
2

(7.1)

where 6 p is the Einstein tensor. Although p=O looks
like a natural choice, it implies the rather odd exponent
y= ——, in the equilibrium path-integral measure con-
tained in (4.14), and the Feynman propagator of the corre-
sponding linearization turns out to be noncausal. %e
have argued in this paper that the natural choice is
p, = —1, in which case (7.1) becomes

There are two different contexts in which the results of
this paper may be interpreted. The point of view that was
adopted throughout the paper was to accept the I.angevin
equation (2.1), though it turned out to be not covariant
with respect to general field transformations, but only dif-
feomorphisms. Only in this way was it possible to obtain
a whole family of nontrivial equilibrium path-integral
measures. From this point of view the following interpre-
tation of our results is possible: A characteristic feature
of stochastic quantization is that it is based directly on a
classical field equation, and no classical action or Hamil-
tonian is required. Classically equivalent field equations
may give rise to inequivalent quantizations. This is what
happens in the case of the vacuum Einstein field equa-
tions. As can be seen from (2.13), the one-parameter fam-
ily of Langevin equations corresponds to the classical field
equations

with R p the Ricci tensor. Note the relation

~ p(x)= f &'x'G
p ~(x,x')G~'&(x')

9—
4 &/&9 (7.4)

which excludes Misner's choice y = ——,.
Our results may, however, also be seen in a different

context: Stochastic quantization should be generally co-
variant also with respect to changes of the field variable.
Therefore the covariantized Langevin equation (3.22) ap-
pears to be more fundamental than (2.1). This observation
does not make our ca1culations obsolete. Since the spuri-
ous term —hG4 in (3.22) is divergent unless it vanishes,
e.g.,

&Gg ~(x)= —,'(1+@)&"'(0)~g ~

'~'g, p(x) (7.5)

the Langevin equation can be solved only if the field vari-
able is harmonic. In particular the linearization is mean-
ingful only in harmonic "coordinates. " The propagator in
these coordinates may be easily inferred from the result of
Sec. V. Since it is related to the latter by a bilinear
transformation, the causality properties are the same. The
conclusion then is that one and the same equilibrium dis-
tribution, viz. , (5.2), gives rise to different stochastic per-
turbation theories based on different variables. In general
these perturbation theories are inequivalent; in particular
the causality properties of the corresponding propagators
may be different.

It appears worthwhile to study the perturbative aspects
of the stochastic quantizations of the gravitational field.
It cannot be excluded that there is a parameter value for
which the theory is finite. If nontrivial divergences are
present, however, a subtraction scheme at finite s will
have to be devised before meaningful calculations can be
made.

Finally we remark that in the causal range p ~ ——,
' the

stochastic perturbation theory inay even be performed in
Euclidean space-time, because then the original Parisi-%u
ansatz implies only decreasing exponentials in (5.24).

for p = —1 (7.3)

in which the Ricci and Einstein tensors appear with their
natural index positions.

We found that p = —1 implies y=0 and that the corre-
sponding field metric appears in the gauge-invariant part
of the Feynman propagator. The propagator correspond-
ing to p = —1 is causal and assumes a particularly simple
form in its gauge-dependent part. Causality alone, howev-

er, allows a whole range of parameter values p, . The cor-
responding range of exponents y is
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FIG. 3. Nonvanishing stochastic diagrams contributing to
the 1-, 2-, and 3-point function up to third order in a' (without
permutations and rotations).
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