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Evolution of cosmic strings
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The evolution of a system of cosmic strings is studied using an extended version of an analytic
formalism introduced by Kibble. It is shown that, in a radiation-dominated universe, the fate of the
string system depends sensitively on the fate of the closed loops that are produced by the interac-
tions of very long strings, The strings can be prevented from dominating the energy density of the
Universe only if there is a large probability {& 50%) that a closed loop will intersect itself and break

up into smaller loops. A comparison with the numerical simulations of Albrecht and Turok indi-

cates that the probability of self-intersection is indeed large enough to allow the energy density in

strings to stabilize at a small fraction of the radiation density, but there is a potential problem with
the gravitational radiation that is produced by the strings. If the string tension p is too large, then
the gravitational radiation will be so copious that it interferes with primordial nucleosynthesis. By
assuming that the probabihty of self-intersection is less than 85%, as the comparison with the re-

sults of Albrecht and Turok indicates, an upper bound on the string tension is obtained: Gp & 10
(6 is Newton's constant. ) This is slightly smaller than the values ( &2)(10 ) predicted for the
cosmic-string theory of galaxy formation. This bound would become significantly lower if the prob-
ability of intersection is less than 85%.

I. INTRODUCTION

Topologically stable cosmic strings appear naturally as
a consequence of spontaneous symmetry breaking in many
grand unified theories, ' as well as in the low-energy se:-
tor of superstring theories. 3 There has recently been some
interest in the idea that these cosmic strings, formed at a
phase transition in the early Universe could have served as
seeds for the primordial density fluctuations that are re-
sponsible for the large-scale structure of the Universe.
This idea, originally due to Zel'dovich and Vilenkin, s is
based on the assumption that, in a radiation-dominated
universe, the strings will evolve in a scale-invariant
manner, so that at any given time, the length scale and the
energy density of the string system will depend only on
the horizon size. In this picture, the energy density of the
string system would evolve as a small, constant fraction of
the energy density in radiation. Many authors6 " have
explored the details of Vilenkin s scenario in which indivi-
dual loops of string serve as the "seeds" for the collapse of
individual galaxies, and loops of a much larger size may
be responsible for the formation of clusters and superclus-
ters.

Very recently, many papers have appeared arguing that
the cosmic-string model for galaxy formation has many
advantages not shared by other galaxy-formation
scenarios. For instance, Turok and Brandenberger have
found that the string theory induces density fluctuations
that do not convict with the observed microwave-
background-radiation isotropy. ' They have also
claimed' ' that the cosmic-string model accurately
predicts the correlation function of Abell's rich clusters of
galaxies, and is the only theory of galaxy formation to do
so. Similarly, Albrecht, Brandenberger, and Turok' have
argued that voids and superclusters, which seem to

present a severe problem for other theories of galaxy for-
mation, can be explained by the cosmic-string theory of
galaxy formation. Finally, Schramm' has argued that
the large-scale structure of the Universe can be described
as scale-free, and that such a scale-free spectrum might be
best described by the string scenario.

Despite these successes, the basic premise that the
string system evolves in a scale-invariant manner has not
been proven to be correct, although substantial progress in
this direction has been made by Albrecht and Turok. ' In
order to see why energy loss presents a difficult problem,
let us consider a very simple string system: a radiation-
dominated universe filled with long straight strings. In
this case, as the Universe expands, the length of string in
a comoving volume grows as R while the volume in-
creases as R, where R is the scale factor. Thus, the
string density falls as 1/R, much slower than the 1/R4
falloff required for scale invariance. In fact, in this case,
the strings will quickly come to dominate the Universe, a
cosmological disaster. Now, assume that instead of being
straight, the strings have a Brownian configuration with
some persistence length L, which is much smaller than
the horizon. In this case, the stretching of the strings due
to the expansion is negligible compared to their total
length. This is because for a Brownian string, the length
of string between two points separated by a distance
d &~L is -d~/L. So, for Brownian strings, the density
falls off as —1/R, which would be safe in the matter-
dominated epoch but disastrous in a Universe dominated
by radiation. For a consistent cosmic-string scenario, it is
necessary that there exist some energy-loss mechanism for
the system of strings.

The production and decay of closed loops is the only
such mechanism. A closed loop can be formed when two
segments of string intersect. If the segments intercom-
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mute (change partners) when they intersect, then loops
can be formed if the colliding segments are part of the
same string or upon two intercommutings of different
strings. The probability of intercommuting is not known
a priori, but the preliminary indications from a calcula-
tion by Shellard' are that the probability is of order one.
If all closed-loop trajectories intersect themselves at some
point during their period (the trajectories are all periodic
inside the horizon), then the loops can rapidly decay into
smaller loops by successive intercommutings. Because the
period of the loops is proportional to their size, it will
only take about one expansion time until the loops are
small enough to radiate massive particles such as Higgs
bosons or gauge bosons. For gauge strings (those formed
as a result of a spontaneously broken gauge symmetry),
this mechanism can be ruled out because of an important
result obtained by Kibble and Turok. ' They have shown
that there is a large class of loop trajectories that never
self-intersect, so that the fragmentation of the loops will
be truncated when the average loop size is not much
smaller than the horizon„much too large to decay into
heavy particles.

The only option then is for the strings to radiate mass-
less particles. For global strings (those formed as a result
of the spontaneous breaking of a global symmetry), loop
decay is very fast (- a few ex ansion times) through the
radiation of Goldstone bosons. (Global strings may also
decay by successive intercommutings. ) But since gauge
strings couple to no massless particles except for gravi-
tons, ' they can only radiate gravitationally. Since the
strings couple to gravity only very weakly, they wi11 live
for many expansion times before they decay. It is essen-
tial to the galaxy formation scenario that this occurs be-
cause, in order to give rise to a significant density fluctua-
tion, a loop must live for a long time.

It is not clear that this energy-loss mechanism will be
efficient enough so that the energy density of strings will
scale as 1/R as is necessary for the consistency of the
string scenario. Since a loop lives for a long time, there is
a large probability that it will collide with and be absorbed
by a long string before it can radiate away much of its en-

ergy. (The probability for a loop to be absorbed by a long
string decreases considerably if there is a large probability
that a loop will self-intersect and split up into smaller
loops. This is one of the reasons that the fate of a system
of cosmic strings depends sensitively on the probability of
self-intersection. )

Once a loop has been absorbed by a long string, any en-

ergy lost to gravitational radiation will be more than com-
pensated for by an energy gain due to the stretching of the
string. The numerical calculation of Albrecht and Turok
is an important step toward confirming previous specula-
tions that the string scenario is indeed consistent, but be-
cause of the limitations of their calculation some doubts
still remain. Their main constraint is the finite number of
points on their lattice. (They use an 80 cubic lattice. )

Because of this limitation, they can only run their simula-
tions for a factor of —10 in time before the horizon grows
as large as their whole lattice. As a consequence of this
they can never achieve a solution that is scale invariant, at
least on the scale of small loops. Of course, small loops

tend to decouple, and Albrecht and Turok have checked
and found that their results are not strongly dependent on
the loop size they use as a lower cutoff. But, it is conceiv-
able that their results are an artifact of their initial condi-
tions which had a much smaller proportion of closed
loops than their "steady state" (or scale-invariant) solu-
tion. The relative lack of closed loops in the initial state
means that the long or "infinite" strings can lose energy
through the production of loops, but that they will not
gain as much energy by the absorption of loops as they
would if more loops were present. Although it seems like-
ly that they have evolved their simulations long enough to
avoid this problem, it is an important question to check.
Another possibility is that the evolution of the string sys-
tem might differ only slightly from the 1/R~ falloff of a
scale-invariant system, changing too slowly to be seen in
the numerical simulation, but fast enough to cause a con-
flict with known cosmology.

An alternative approach for calculating the evolution of
a network of cosmic strings has been attempted by Kib-
ble. 2z He set up equations for the formation and absorp-
tion of closed loops by long strings in order to study this
problem analytically. In this paper, an improved version
of Kibble's formalism is developed and used to study the
evolution of a system of cosmic strings and test the con-
sistency of the string theory of galaxy formation. With
this approach, we have no limit to the size of the loops
that we can consider or to the length of time that the sys-
tem can evolve. It is also easy to see the effect of varying
the intercommuting probability. The drawback is that we
must absorb many of the details of the string evolution
into unknown parameters. Although we can obtain
bounds on these parameters analytically, we can only
determine their actual values through comparison with a
calculation like that of Albrecht and Turok. On the other
hand, these parameters are actually useful if we wish to
understand which physical processes have a significant in-
fluence on the evolution of the string system because we
are able to vary them. For instance, we find that, if a
scale-invariant solution is to exist, then there must be a
high probability ( &0.5) that an arbitrary loop produced
by the intercommutation of long strings with self-intersect
and break up into smaller loops.

The final advantage to this approach is that small loops
can be treated almost exactly, and since the energy density
of the string system is dominated by small loops, it is im-
portant to what the density of small loops really is. For
instance, in the cosmic-string theory of galaxy formation,
the small loops are responsible for density fluctuations, so
if we want to know the magnitude of the initial fluctua-
tions, we must know the density in small loops. Also, be-
cause the density of gravitational radiation is proportional
to the total energy density in strings, we find that we can
obtain a limit on the string tension from the requirement
that the density of gravitational radiation be small enough
to satisfy primordial nucleosynthesis constraints. This
constraint is much stronger, at present, than the con-
straint on the density of gravitational radiation obtained
from the timing of the millisecond pulsar. With an
estimate of the probabHity of self-intersection obtained
from the results of Albrecht and Turok's simulation we
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obtain Gp &10 . Such a limit is marginally in conflict
with the values, Gp) 2)&10 6, obtained from the galaxy
formation calculations of Refs. 2, 7—9, 13, and 14. Thus,
primordial nucleosynthesis seems likely to provide an im-

portant constraint on the cosmic-string theory of galaxy
formation.

This paper is organized as follows. Section II is devot-
ed to a review of Kibble's formalism with a few minor ex-
tensions. In the third section, we solve Kibbles string
evolution equation and show that no scale-invariant solu-
tion exists if we neglect the self-intersection of loops. In
Sec. IV we modify Kibble's formalism to include several
processes that Kibble neglected including the self-
intersection of loops and gravitational radiation. We then
present the solution of these equations. In Sec. V we com-
pare our results with those of Albrecht and Turok, and fi-
nally, in Sec. VI, we discuss our conclusions.

ds~=R (v)(dr —dx ) . (2.1)

If we take o to be the parameter denoting position
along the string we can write the expression for the total
string energy inside a comoving volume V as

E=R os, (2.2)

where

BX

87

2 2' '1/2
Bx (2.3}

and the integration is over all strings in the volume V.

Implicit in these formulas is the assumption that

BX BX

O'T 80
(2.4)

which can be satisfied by a proper choice of the parameter
o provided we are in the center-of-mass reference frame

In these coordinates the equation of motion for the
string is

II. STRING EVOLUTION EQUATIONS

We will now review the formalism for the evolution of
a system of strings in an expanding universe as developed
by Kibble. In Sec. II A we will introduce the equations
of motion for a noninteracting system of strings. Interac-
tions between loops and long strings are added in Sec.
II B.

A. String equations of motion

In the cosmological setting that concerns us, we may
neglect the thickness of the string and treat it as a truly
one-dimensional object. With the exception of gravita-
tional radiation (which will be added in a later section) the
gravitational interactions of the strings will also be
neglected. The justification for this is that the strings
couple to gravity with strength Gp-10 so gravity
should have very little influence on the string motion. 5

We will work in a Robertson-Walker space-time with the
metric

B Bx 2 BR Bx B 1 Bx+
B B& 7R B~ B Bo ~ Bo

(2.5)

From (2.5) we can immediately derive expressions for the
time derivatives of e and E,

Be 2 BR Bx
(2 6)

B~
=

R B~
'

B~

E=E (1——2{v )),8
where

(2.7}

&v') —=

der e

The dots in (2.7) denote derivatives with respect to ordi-
nary tinie, dt =R d T.

For very straight strings, we can neglect the term on the
right-hand side of (2.5) and obtain a very small terminal
velocity. Thus, in this limit (2.7) implies that the energy
in a comoving volume grows as R, so the string density
would fall as 1/R as noted above. For very small loops
or Brownian strings with a persistence length much small-
er than the horizon, we can neglect the damping term on
the left-hand side of (2.5). It is then simple to derive the
result that (v ) = —, (( ) denotes an average over t as
well as o). In this ease (2.5) implies that the energy in a
comoving volume is constant, as we might expect. Hence,
in the absence of intercommuting the density of strings
drops no faster than 1/R ~.

B. Interactions between loops and long strings

In order to test the standard string evolution scenario,
we will now set up rate equations for the interactions be-
tween infinite or long strings and loops, following Kibble.
We will classify as long strings all the infinite strings as
well as all the "large" loops. {A precise definition of large
loops will be given below. ) The scale of the long strings,
I., will be defined by

pV
L2 (2.8)

where E is the energy in long strings contained in the
volume V. If we define to(v)dv as the probability that a
given string segment has a velocity in the range U to
v +dv, then the number of string segments between v and
v +dv intersecting a surface of area A is given by

( 1 v2)1/2
A to(v)dv . (2.9)

2I.

Th«act«of (1—v )' in (2.9) comes from the fact that
a string segment of energy 8' has a length equal to
(1—v')' @'/p, and the factor of —,

' is just an average of
cos8.

If we ignore the correlations between different string
segments, the probability that, in the time interval 5t, a
string segment of proper length 2~1& (energy =2np, l&)
and velocity U& will collide with a long string is
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2) 1/2 sin812d 812f I
vl+v21&t2~li(1 —»')'"

2 ~(v1)du1~(u2)dul
2I.

~l )6t
(max(ui, v2)(1 —u1 ) (1—v2 ) }, (2.10)2 1/2 2 1/2

L 2

3m'
=(max(ui, u2)(1 —vi )'/(1 —u2 )'/ } . (2.11)

where, to obtain the last expression, we have integrated
over 812 (the angle between vi and v2). In order to evalu-
ate

(max(ui, u2)( 1 —ui )' (1—u2 )'

we would need to know the correct form for co(u), which
is not easy to obtain. The case in which we are the most
interested is when the scale size of the strings is slightly
smaller than the horizon size, but we can only obtain a
good estimate of

(max(u, u )(1—u ')'/'(1 —u, 2)'/2)

when the string scale is much smaller than the horizon. If
we take to(u) to be the same as it is for a small circular
loop ( u =sint In l), then we obtain

Et«m 100us
——E f(y, x)x dx,ps

where we have defined

(2.14)

In order to discuss interactions between loops and long
strings, it is convenient to define the nuinber density of
loops with radii between l and l +dl to be

n (l)dl = f y—, —1 E l dl (2.13)
2npl V 'L L

so that the energy density in loops of size l to l +dl is

E l dl

We can use (2.10) to write down the expression for the

energy gained by long strings by absorption of closed

loops

Fortunately, the results of our calculation will not be very
sensitive to the exact value of

(max(ui, u2)(1 —ui }'/ (1—v2 )'/ ) .
and

V=@'(max(vi, u2)(1 —u1 )' (1—u2 )' (2.15)

An essential requirement of the standard energy-loss
scenario for the string model is that, once formed, many
loops will survive without reconnection for a very long
time in order to radiate away. Thus, it is important to
know the probability that a loop will survive once it is
formed. This depends on the probability p that two string
segments will change partners when they collide. Al-
though it is not really known what this probability is, it is
usually assumed that @=1 is required for the standard
scenario to work, and there is apparently some indication
that this is true. '8 %e will use p =1 in all our calcula-
tions, and in the concluding section, it will be shown how
to generalize these results to other values of p. Before we
write down the expression for the probability of loop sur-
vival, it is useful to introduce some new notation: let

y =L/t be a measure of the ratio between the string scale
and the horizon, and let L-t . (a=1 gives the scale-
invariant evolution that is assumed in the standard
scenario of string evolution. ) From (2.10), the probability
for a loop of proper radius l formed at time t to survive
until t = ac is

t'

exp —(2a —1} (max(vi, u2)(l —u1 )'/ (1—v2 )'/ }I.y
e Put/yL (2 12)—

Thus, jf y 1, loops of a size much smaller than L will
almost certainly survive while large loops will not. On the
other hand, if y «1, we can only expect extremely small
( l & yL) loops to survive.

Similarly, the production of closed loops can be described
by

E«1~&—— Ea (x—)x dx,PU
to oops (2.16)

where the loop production function a(x) is defined by
this expression. We should note that we have already
made an implicit assumption by writing down (2.16}.
That is, we have assumed that a(x) depends only on x
and not on y, the ratio between I. and the horizon size. It
is possible that the detailed form of a (x) may depend on

y, but most of the dependence on y has been factored out
in (2.16). Since the fate of the string system depends sen-
sitively on the detailed form of a(x) for only a small
range of y, we are probably safe in neglecting any residual
dependence.

Combining (2.16) and (2.14) with (2.7) we obtain an ex-
pression for the rate of change of the energy density in
long strings:

W'e can write down a similar equation for the time deriva-
tive of the energy in closed loops:

fy-d E I =E [xa (x) xf(y, x)] . (2.18)—J 2

(Note that we have neglect~ any stretching of the imps. )
Using (2.8) to eliminate E from (2.17}and (2.18), we can

—=—(1—2(u'})+ " f x[f(y,x) ( a)]xdx . (2.17—)E I.
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obtain two coupled equations which describe the evolution
of the system of loops and long strings:

T

AEt, i (l)dl =E5t —apu l l dl
tO OOPS (3.2)

3——2—=—(1—2(u ) )+ f x [f(y,x)—a (x)]dx,R I. R q pU

R L R L

(2.19)

3 ———f(y,x) xf—'(—y,x)+y f(y, x)L, . a
L ' L '

ay

= ~ [xa(x) xf(—y,x)] . (220)
L

(If we drop the y term and set u =u, these are just the evo-
lution equations derived by Kibble. )

We have taken two different approaches to solve these
equations. The first approach, discussed in Secs. III and
IV, is motivated by the scaling solution discussed by Kib-
ble. We assume specific forms for 1m' (t), L (t), y(t), and
a (x), which allow an exact solution of (2.19) and (2.20).
This exact solution can then be used to calculate the devi-
ations of R (t), L (t), and y(t) from their assumed forms.
We use this approach for our main analysis, and it has the
advantage that we can evolve the system for an arbitrarily
long time. The second approach will be to integrate (2.18}
and (2.20) numerically. Here, we are limited because the
solution eventually develops numerical instabilities, but
we are able to include arbitrary initial conditions. This
approach is useful when trying to check the results of Al-
brecht and Turok. '

III. SOLUTION TO KIBBLE'S
EVOLUTION EQUATIONS

In this section we solve Kibble's evolution equations
with a simple choice for the loop production function
a(x) and we show that, unless the self-intersection of
loops or string correlations play an important role, a
scale-invariant (or scaling) solution cannot exist. Before
we can show this, however, we must obtain some limits on
a(x).

A. Limits on the loop production function

V 5t
L 2+L

PU . (3.1)

Before we attempt to solve (2.19}and (2.20), we need to
discuss the unknown loop production function a (x). An
estimate of f a (x)dx can be obtained by considering the
number of collisions between segments of long strings in a
volume V. The probability of a collision can be obtained
by multiplying the probability that a string segment of
proper length 2ml i will collide with a long string (2.10), by
the number of segments in the volume V, V/(2nliL ).
Multiplying the collision probabihty by p, we obtain the
intercommuting probability

Dividing (3.2) by 2npl (the energy per loop) and setting it
equal to (3.1) we obtain

E~ —— a xdx, E~~1, (3.3)

where E~ is the fraction of long string intercommutings
that produce new loops. I't &1 is strictly true only when
the loops are produced by colhsions of uncorrelated seg-
ments of long strings, but loops are generally produced as
a result of collisions of waves on a single long string.
This process clearly involves correlations between the dif-
ferent string segments. Nevertheless, it seems quite un-
likely that loop production will occur at a higher rate than
the crossing of random segments of long strings.

An upper bound on fa(x)dx has been suggested by
Kibble. ~i He noted that, in a nonexpanding universe
(neglecting gravitational radiation), the equilibrium solu-
tion of (2.19) and (2.20) is

a(x)=f(y, x), L=O. (3.4)

[We have implicitly assumed that a(x) does not depend
on the expansion rate of the Universe. ] If the equilibrium
solution resembles the random configuration in which the
strings are formed, then only about 20%%uo of the total
length of string would be in the form of loops. This im-
plies that

length in loops 0
length not in loops

(3.&)

8. Solution to the evolution equations
neglecting correlations between string segments

2(a —1)=(u ) —1+ f x[a(x) f(y,x)]dx,—
y

0= axf'(y, x) —(a —1)y f(y,x)
ay

(3.6)

+3{~—,' )f(y,x)+ x[a (—x)—f(y,x)] .
y

Using a= 1, the solution to (3.7) was found by Kibble to
be

Now, let us see if either of these restrictions (3.3) or
(3.5) are consistent with the scaling solution that is usually
assumed. We will take L —t and R —t '/ (for a
radiation-dominated universe) so that a solution with
a= 1 corresponds to the Kibble's scaling solution. Thus,
(2.19) and (2.20) become

f(y,x)= f dy ePu(x y) /ra (y)dy—(3.8)

From (2.16), we can see that the energy converted to loops
of size between I and I +1/ in the same time interval is Substituting this into (3.6) we obtain the condition
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2(a —))=(U~) —1+ f dyya(y) 1 — f dx
r y O X

ePU'(X —y) /y

=(u ) —1+ I dya(y) ye i'~~"M
0 y 2'2'

y

where M( ——,', 2,pvy/y) is Kummer's function. s

In order for a scaling solution to exist the integral on
the right-hand side af (3.9) must be large enough so that it
can cancel the texxri (v ) —1. It is somewhat surprising,
then, that the integrand in (3.9) blames negative for
pVy/y ~0.85. This implies that the productian of large
loops is not an efficient way for the long strings to lose
energy. Because they have a high probability to recon-
nect, they are very unlikely to survive long enough to ra-
diate away. Hawever, we have not included the process in
which a large loop produces smaller ones in our Eqs.
(2.19) and (2.20), and, therefore, we are in danger of un-

derestimating the energy loss through large loops. For
this reason, we will always cut off the loop production
function and include loops larger than the cutoff with the
lang strings. If some of these large loops survive long
enough to shrink below the cutoff size, we can treat them
as if they are formed when they are at the cutoff size.

As a first approximation, let us ignore loop fragmenta-
tion and take

2( —1)= ( ) —1+FII
y

(3.10)

where I(z)=ze 'M( ——,, —,,z). A graph of I(z) vs z is

given in Fig. 1. Setting (u2) = —,
' and I(puxu/y) 0.15

(their maximum values), and using F~, 1, we obtain an

upper limit on a,
n= —,'+ —,'Fi(0. 15)(0.825, (3.11)

0.2

—0.2
I(z) -0.4

FIG. 1. I(z)=ze 'M( z ~ 2~z) vs z

a (x)=Fi5(x —xo),
where xo is an unknown constant presumably of order
one. Then, (3.9) becomes

which is close to its minimum value: a=0.75. Note that
we have chosen the function a (x}such that the integral in
(3.9) is maximized, subject to the constraint (3.3), so no
other choice for a (x} will give as large a value for a. [If
we have used Kibble's constraint (3.5}, we would obtain a
more stringent limit: a(0.769, and if we had used the
loop production function that Kibble suggested,
a(x)=0.4/x, we would get an even smaller result. ]
Thus, the scaling solution, a=1, cannot be satisfied. This
means that the density in strings will decrease more slow-

ly than that in radiation, and the strings will soon come to
dominate the Universe. Therefore, an additional energy-
loss mechanism is required for the string theory of galaxy
formation to be consistent.

IV. CORRECTIONS AND SOT.VTIONS
TO THE EVOLUTION EQUATIONS

The purpose of this section is to extend Kibble's for-
malism to include some of the effects of correlations be-
tween different string segments, and to solve the resulting
evolution equations.

A. The self-intersection of loops

The mechanism that we have ignored is the self-
intersection and fragmentation of loops. In showing the
failure of the scaling solution we considered the produc-
tion and reabsorption of loops by long strings but we ig-
nored all loop-loop interactions. In principle, we should
include both the process in which two loops intersect and
farm a larger loop and the inverse process in which a loop
self-intersects and splits up into a number of smaller
loops. This second process is particularly impartant be-
cause self-intersection is likely to be quite common, and
because the smaller loops are less likely to recombine with
the long strings. Kibble and Turok' ' have shown that
there is a large class of loops that never self-intersect
which are, in fact, essential for the galaxy-formation
scenario. However, it is unknown what fraction of the
loops formed by the long strings will self-intersect. It
seems likely, however, from the work of Turok and Kib-
ble, that this fraction is neither very close to zero nor to
one. We will account for the self-intersection process by
an appropriate modification of the loop production func-
tion a (x). The other process in which two loops combine
to form a larger loop is likely to have a much smaller in-
fluence on the overall evolution of the string system, and
we can include it as a minor correction to the self-
intersection probability.

We can model this behavior very simply if we assume
that there is a probability ps~ that a loop will break up
into two equal-sized pieces. Then the ratio of the energy
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in loops of proper radius between 0 and 1/2 to the energy
in loops of size between //2 and I ls psi/(1 —psi). We
can then define an effective loop production function
a~(x) to have the form

~.n(x)=~.«"@0—«), g-1 Ssi=(i)"+' (4.1)

3(1+spy/2). (4.2)

For /=1. 5 and y=0.6, this probability is 291o. (y=0.6
is the value that seems to match Albrecht and Turok's re-
sults. ) So, perhaps a larger value for g' is appropriate, but
since this would make my final limit on Gp more strict, I
will take g = 1.5 to be a conservative choice.

In order to relate a,rr(x) to Iii, we will take

which has the correct behavior for all x less than g. [Re-
call that xa(«) is proportional to the energy produced in
loops of size x.j We have implicitly assumed that the
process of successive self-intersections actually takes place
rather rapidly and this is indeed the case. Because the
loop oscillations are periodic with a period proportional to
the proper length of the loop, daughter loops will self-
intersect in roughly half the time it took their parent to
split up, so the loop fragmentation process should com-
plete itself in roughly one oscillation time. If p &1, the
fragmentation process should take roughly —1/p oscilla-
tion times.

The correct value for g is given by our assumption that
the scale of curvature on a string is roughly the same as
the average distance between strings. (An argument justi-
fying this assumption is given in the final section. ) If we
take /=1. 5, as we have done in most of our calculations,
then the average parent loop has a radius of =0.8L (as-
suming its average velocity is U~, = 1/V2), while from
(2.9), the average distance between neighboring segments
of long strings is =1.7L. Thus, /=1. 5 implies that the
diameter of the average parent loop is roughly the same as
the average distance between the long strings.

Another way to check that we have picked an appropri-
ate value for g is to recall that our justification for cutting
off the loop production function at x =g was that loops
of size larger than g would not survive long before being
readsorbed by the network of long strings. When psi is
large, it is particularly important to check whether a large
parent loop will survive long enough to intersect itself. If
g & 2/y, a loop of proper radius f will be stretched by the
expansion and will not self-intersect until the horizon has
grown much larger, but in the meantime, it will probably
be reconnected to a long string. Thus, g & 2/y should be
an upper limit on g. For y &1 (which holds in all the
cases of interest), this constraint is easily satisfied for
(=1.5.

We must also check that loops of size & g have only a
small probability (p, ) to survive long enough to self-
intersect before they intercommute with a long string. By
integrating (2.10), we can obtain the probability that, in a
time interval, 5t =+GAL /2, a loop of proper radius gL will
not collide with a long string. (This value of 5t is just the
time it takes for a loop initially at rest to self-intersect. )

Using (2.11),we obtain

a (x)= —8(x —g/2)8(g —x), g-1l

ln2 x
(4.3)

to be the "primordial" loop production function which is
reduced to a,rf(x) by the self-intersection process. [Equa-
tion (4.3) is normalized according to (3.3).] Since energy
is conserved during these self-intersections, we require
that

XQp X X= Xg~ff X X

Il +2g g

2 ln2
(4.4)

We should note that there are two effects that may tend
to interfere with the relation between the probability of
self-intersection psi and n Fir.st, we have assumed that
the loop fragmentation process takes place instantaneous-
ly and neglected the possibility that a loop may reattach
itself to a long string before it can break up into smaller
loops. A loop of radius l that is formed almost at rest
will first intersect itself (if it is of the self-intersecting
variety) at time -nl/2, so the probability that the loop
will split into two before it can recombine is -e
where x =I/L. Unless x «1, the probability that the
loop will recombine before it splits up is not negligible, so
our assumption that the loops instantaneously fragment
may be faulty. On the other hand, although one part of
the loop may recombine with a long string, the rest of the
loop will not "know" that it has recombined until enough
time has elapsed for a wave to travel half way around the
loop. In the meantime, the rest of the loop will continue
to fragment; hence, the final spectrum of daughter loops
may be almost the same as if the parent loop finished
fragmenting before the collision with the long string. Our
other assumption in making the identification (4.1) was
that the probability of self-intersection is independent of
loop size. In fact, this is unlikely to be the case. The
periodic non-self-intersecting solutions of Turok and Kib-
ble only exist when the loops are much smaller than the
horizon; larger loops are not periodic and are therefore
more likely to self-intersect. Since the larger loops are
also the most likely to be absorbed by the long strings, the
errors from these two assumptions tend to cancel, so our
treatment of the self-intersection process is probably
reasonable.

8. Other corrections to the string evolution equations

Before we attempt to solve (2.19) and (2.20), we must
introduce a further correction factor to account for the
fact that we have overestimated the probability of loop
reconnection for small loops. In our original treatment,
we treated all the string segments as if they were uncorre-
lated; this assumption is particularly bad in the case of
small loops. If p =1, a long string can only intercom-
mute when it strikes the near side of the loop. Thus, a
small loop has an effective length equal to ——,

' of its true
length. For a loop size x —1, however, the effective
length is much closer to its true length. Similarly, when a
loop intersects a long string and is absorbed, the inertia of
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the original loop may cause the trailing edge of the loop
to intersect the long string again, producing a new loop.
We can take both processes into account by adding a
correction factor 5&1 in front of the (pu/L)xf(y, x)
terms in (2.19) and (2.20), implying that the energy re-
turned to the long strings by the reconnection of loops is
only a fraction 5 of the energy that would be returned
from a network of straight segments of equal total length.
Presumably, these processes together should contribute a
factor of -0.5 to 5. In our calculations, we will take
5=0.5 to be the most likely value and 5& 0.3 as a lower
limit on 5.

Another effect that we can incorporate into the correc-
tion factor 5 is the red-shifting of loops. So far we have
implicitly assumed that loops are formed at rest. Since
the rms velocity of the strings is —I/v 2, we might ex-
pect that the loops formed will have a non-negligible velo-
city. If so, the loops could lose a large fraction of their
energy by red-shifting as the Universe expands. It seems
likely, however, that the rms velocity of the loops pro-
duced will be considerably smaller than 1/V2. This
means that the loops can lose some fraction &30%%uo of
their energy by red-shifting if they survive for a time of
the order of one expansion time. The simulations of Al-
brix:ht and Turok indicate that the kinetic energy of the
loops is indeed much smaller than this the average velo-
city of the daughter loops in their simulation is only
-0.1. Thus, we can expect that the loops will lose & 3%
of their energy by red-shifting. Loops formed as a result
of very many self-intersections may gain kinetic energy at
each self-intersection, and so they may have a higher velo-
city than this. (These loops would be smaller than the
cutoff in Albrecht and Turok's simulations, so they would
not see them. ) Fortunately, only a small portion of the to-
tal loop energy is likely to be carried by these very small
loops so we will need only a small correction to account
for them.

The final correction to the string-evolution equations
that we must include is the loop shrinkage and energy loss
due to gravitational radiation. The total power radiated
by an oscillating string is proportional to Gy, , so it is
convenient to write it as P=A,Gp where A, is a dimen-

sionless constant. This implies that I = (A/2n )G—p, in. -

dependent of the size of the loop. Because our ultimate
limit on the string tension will be proportional to A, , it is
important that we use an accurate value for A, .

Vachaspati and Vilenkin have calculated A, for several
different loop trajectories, and they have found that A, is
usually about 50, but some of their loop trajectories had A,

values greater than 100. The appropriate choice for the
purposes of our calculation would be an average over the
non-self-intersecting loops that would be produced by the
long strings by the processes that we have described. The
A, values for the few non-self-intersecting loop trajectories
calculated by Vachaspati and Vilenkin were all around 50.
Furthermore, the loop trajectories that yielded much
larger values of A, seemed to be rather degenerate cases
that ~ould be unlikely to be produced by long strings or
by the fragmentation of parent loops; they either had very
large angular momentum, resembling a rapidly rotating
double line, or were almost circular with very little angu-

lar momentum such that the whole loop passes through a
short line during each oscillation. (These are the types
that may form black holes. ) Hence, a A, value not much
larger than 50 is probably appropriate for our calculation.
We will use A, =2(hr, so that

I = —10Gp .

Thus, (2.18) becomes

(4.5)

zf y'z
d E 1 =E

2 [xa (x)—x5f (y,x)] 2np—In(t),

(4.6)

and our final string evolution equations, the analogs to
(2.19) and (2.20), are

and
(4.10)

pU5 f ( )
0 (x)

r

ax+ f'(y, x)+(1 a)y —f (y,x)10Gp,

y ay

+3(a—N)f(y, x) — f(y, x) .106@
fX

(4.11)

If we take a (x} to have the form given by (4.1)»d (4.4),
we can find an exact solution of (4.11):

1 n+2 Pl

g 2ln2 5
g +BE

m Q z Q+gcL z+a z+e
e~'-"'du

(4.12)

3——2—=—(1—2(u ))+ J x [5f(y,x) a(x))dx—,R L 8 L

(4.7)
r T

3 ———f (y,x)+ ———x f'(y, x)+y f(y,x)
i i, . a

R L ' L L '
i3y

PU l
L

[xa (x) x5f (y,x—)]+ f(y,x} . (4.8)
xL

C. Solution of the string evolution equations

Now, after discussing all our assumptions and parame-
ters, we are ready to solve (4.7) and (4.8}. We will write
the time dependence of R, I., and y as

Z-t~, L-~, y-t -',
and we will neglect all terms proportional to N or a. (Our
calculations show that this assumption is self-consistent in
the cases of interest. ) Inserting (4.5) and (4.9) into (4.7)
and (4.8), we obtain

2a=2N(i+(u'))+ J x f(y, x) dx, —
y 5
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B(u —s)X& (4.13)

where zo ——max(0, (z+e)z ~" ~' ' —e).
Before we can evaluate (4.13) to obtain the time evolu-

tion of the string system, we need two additional in-
gredients: an expression for (u ), and an equation for
N(t) [i.e., R (t)]. As we saw in Sec. III, (u ) is a func-
tion of the curvature scale of the long strings, which we
have assumed to be y. (The possibility that the scale of
curvature of the strings is different from the mean dis-
tance between the strings will be discussed in Sec. VI.} In
Sec. II, we saw that when y«1, (u ) = —,, and when

y~~ 1, (u ) =0. Numerical simulations by Turok and
Bhattacharjee2s seem to indicate that the transition be-
tween these two regions is rather abrupt. In our calcula-
tions, we used

8=, z=x/g, e=pu 5g 10Gp,

y 2a —1' ' (2a —1)yg
'

q=3 +1—a, (z +e)z " ' '=z+e.
2a —I

To obtain (4.12) we have used the boundary condition that

f(y,x/g') vanishes when x =g. This boundary condition
holds for a & 1, which will be true if we choose a suffi-
ciently large initial value for y. When we substitute (4.12)
back into (4.10) it becomes

2a= 2N(1+(u ))
n 2~I+ (2a —1) 8
21n2 5

' /+BE

x J, dz z"+' —a J'du'" '+'

The expression for p, can be found from (2.8) and (2.13)
to be

r

1+ Jdxf(x) (4.17)

and the energy transferred from loops to gravitational ra-
diation is given by the last term of (4.6). With (4.5), this
gives

Ps(x)d E 10Gp, f( }d
dt V Lx

(4.18)

a —1 —4Nt ~ Pi~Pe (4.20)

for the rate that the density of gravitational radiation in-
creases. Initially, we set pz ——0, and then we use (4.18) to
calculate the density of gravitational radiation produced
by the strings in a given time interval. After it is pro-
duced the density of the gravitational radiation scales as

Now we can use (4.13)—(4.18) to calculate evolution of
the string system in the early Universe. %e start at time '

p 7 10 3z ( 10 GeV)
to ——

2
=7X10 sec

p p
when the string damping becomes negligible. Our initial
condition for y is to set y(to)=1, and it is implicitly as-
sumed that at t =to we already have an "equilibrium"
configuration of small loops so that Eqs. (4.7) and (4.8)
can be used to describe the subsequent evolution of the
system. Presumably, it would probably take some time
(until t-tu/10GIt, ) before the very small loops could be
formed, but thereafter, we should expect that (4.7) and
(4.8) will describe the evolution of the string system accu-
rately. We start our calculation by choosing a value for a
and evaluating (4.13) several times until a self-consistent
solution for a is found. Once we find a, we evolve

1 1

2 1+ky'
(4.14)

from tu until t, (usually t„=lOt„ i). Then we calculate
a from (4.13),p, from (4.17), and

with k being varied from 0 to —,'. It should be noted that,
although we have merely guessed a form for (u ), an er-
ror here will not have a great influence on our results be-
cause scaling solutions tend to occur only for fairly small
values of y. (Unless we take I't & 1.) In fact, our main
conclusions will be valid even if ( u ) = —,

' for all values of

The last ingredient we need before we can solve for the
time evolution of the string system is Einstein's equation
to determine how X evolves. It is

1/2
8&6 }y2(p. +p. +Ps.) (4.15)

R t 3

where p„p„and p~, are the densities of ordinary radia-
tion (or relativistic matter), strings, and gravitational radi-
ation, respectively. p, is calculated from

4
3 ~o

pr

Pgr 327rGP, 10GP,
1

po 3g 'v

te X X

&n —i X
(4.21}

for the change in bp~/pu in the interval t„ i to t„
(po 3/32~——Gt2 is the energy density of a radlatmn-
dominated universe}. We can continue this procedure un-
til t=2X10" sec=10"t, when baryons ordinarily be-
come important.

D. Cosmological constraints on p, and p,

In order for the string scenario to be consistent with
known cosmology, we roust require that the strings do not
come to dominate before the Universe becomes matter
dominated at t =2 X 10' sec. If the strings should come
to dominate much before this time, then the microwave
background radiation will reach 2.7 K long before the age
of the Universe is 4X 109 yr (the age of Etirth). Actually,
the situation is not quite so simple. It is possible that, if
the strings do not dominate over the radiation by a large
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amount, the Universe could pass from the string-
dominated phase to a baryon-dominated phase at roughly
the usual time, so that the strong-dominated phase would
have little influence on the current relationship between
the age of the Universe and the microwave background
temperature.

A more stringent constraint on the string scenario can
be obtained by considering primordial helium synthesis.
(This constraint was found independently by Davis. i )
Our constraint is essentially the same as the familiar
bound on the number of light neutrinos, except that our
bound will be on the maximum density allowed in strings
and gravitational radiation. (We can treat gravitational
radiation and strings„ like neutrinos, because like neutri-
nos they have decoupled from ordinary matter. } This
constraint arises from the time delay between the time
( T=l MeV, 1=1 sec) when neutrinos and protons drop
out of equilibrium and the time ( T=0.1 MeV,

r = 100 sec} when the protons are too cold to photodisso-
ciate deuterons and nucleosynthesis commences. If the
density of the Universe is too large when Tz —1 MeV,
then the Universe will expand too fast and too few neu-
trons will decay before they can be combined into He nu-
clei, resulting in a He abundance that is larger than what
is observed. The constraint given by Boesgaard and Steig-
man is

ps +pgr g0.08 .
pr

(4.22)

' 1/2
t +dtps

or

It turns out that this constraint is difficult for the
string scenario to satisfy. This can be seen quite easily by
considering a system of strings satisfying a scaling solu-
tion with the density of strings of some fraction rl

—p„lp,
of the radiation density. If it were not for gravitational
radiation, the string density would scale as 1/R -t'~ p, .
Thus, without gravitational radiation the string density
would grow to

r

smallest loops (those formed at to) to decay by gravita-
tional radiation. Then, the constraint (4.22) becomes

7)(1—r) —,ln10 &0.08

or

i)(1—r) &0.0027 . (4.25)

1.0

0.8
f

0.6

So, if r is as large as 0.1, then we must require that
i) &0.0030 in order to satisfy the nucleosynthesis con-
straint. This constraint (4.25) is modified somewhat in
our numerical calculations by several factors that change
the expansion rate of the Universe. Between 10 ' sec
and 1 sec, many particle species become nonrelativistic
and annihilate, depositing their energy in the particles that
are still relativistic and in thermal equilibrium. This
makes the Universe expand slightly faster, red-shifting the
gravitational radiation slightly. The presence of the
cosmic strings also makes the Universe expand slightly
faster than it would otherwise. (For the choice of parame-
ters that seem to be in the best agreement with Albrecht
and Turok, we obtain N=0. 5007.) This effect red-shifts
the ordinary matter more than the gravitational radiation,
so it tends to cancel the previous correction. Finally, dur-
ing the time it takes for the first loops formed to decay by
gravitational radiation, —10Gpto, some gravitational ra-
diation is produced, but we have neglected it.

Our calculations show that these corrections combine to
reduce the density in gravitational radiation by a factor of
about 1.4, implying a factor of 2 correction to the bound
on Gp, that can be obtained from (4.25). These correc-
tions have been included in the calculations to obtain the
bounds on Gp given in Figs. 3 and 4.

dps 1 dt

pr 2 t
(4.23)

0.2

in a time interval dt. In order for the scaling solution to
hold, most of this energy inust be lost through gravita-
tional radiation. This implies that

dpgr 1 dt= i)——(1 r), —
p, 2 t

where we have defin& r as the fraction of 1oop energy in
the form of kinetic energy of small loops. Since this ener-

gy can be red-shifted away as the Universe expands, it
need not be radiated gravitationally. As noted previously,
the simulations of Albrecht and Turok indicate that r is
very small (r &0.03).

Since nucleosynthesis occurs at t -10 'to, we should in-
tegrate (4.24) for a factor of —10 'X 10Gp = 10 in time,
where the factor 10Gp is just the time it takes for the

100 i 0 108 10 2 10l6 1020 i OP 106 10i 2 10i8 1024 (030

1.0
1

P,

0.8 — (c }

0 4

0.2
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0
10 i O 10 10 10 i
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FICs. 2. The evolution of p„p„and p~, as a function of time
for Gp 10 k —

&g & and r =0.1: in (a), psq ——0.25, F~ ——0.6,
and 5=0.3, in (b), ps~

——0.5, FI——0.8, and 5=0.5, in (c),
@sr=0.62, Fg ——0.55, and 5=0.5, and in (d), @sr =0.76,
EI——0.35, and 5=0.5.
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FIG. 3. Constraints on Gp for various values of our parameters: in (a), k = —,'6 and S=0.5, in (b), k = —,'6 and S=O.3, jn (c), k =—'

and S=O.S, and in(d), k =
~ and S=0.3.

The results of our numerical calculations are summa-
rized in Fig. 2 and Fig. 3. In Fig. 2, p„p„and pl, are
plotted as a function of time for selected values of the pa-
rameters, and Fig. 3 consists of four constraint diagrams
indicating the behavior of the string system as a function
of Fi and psi with k [from (4.14)] and 5 taking the values
k = —,', , —,', and 5=0.3, 0.5. For both of these figures, we

have set g= l.5, p =1, and r =0.1.
Our constraint diagrams (Fig. 3) require some explana-

tion. They display the constraints on Gp, as a function of
four parameters. The axes of Fig. 3 are the probability of
self-intersection psi and the loop production amplitude
Fi, while the different graphs correspond to different
values of the correction factor 5 and the velocity parame-
ter k. The solid lines labeled with different values of Gp
indicate the constraint on Gp as a function of the param-
eters: ps', I'I, 5, and k. The region above and to the right
of each curve is the region of parameter space for which
the given value of GJM is consistent with standard nu-
cleosynthesis. The regions of parameter space below the
dotted lines are the regions for which no scaling solutions
exist. The shaded lines in Fig. 3 indicate the constraints
on ps, and Fi that we have obtained from a comparison
with the numerical results of Albrecht and Turok (as well
as the requirement that Fi & 1). The shaded line at the top
of each diagram implies that we expect that Fi ~1, while
the other shaded lines indicate the region of parameter
space suggested by a fit with the numerical simulations of
Albrecht and Turok. (This fit will be discussed in the
next section. ) Finally, the crosses in Fig. 3 represent the

points in parameter space corresponding to the graphs in
Fig. 2.

The shaded regions, labeled "previous work, " on the
left side of each diagram indicate that previous au-
thors~ ~~ 2 have neglected the self-intersection of loops,
corresponding to small values of psi. Note that these re-
gions fall almost entirely underneath the dotted lines.
This means that, if the probability of self-intersection was
negligible as was assumed in all the previous analytic
work, then a scaling solution would almost certainly not
exist. In fact, if 5)0.5, then it is necessary that psi & 0.5
for a scaling solution to exist. Hence, the self-intersection
process is critically important for the consistency of the
string model.

We also find that the question as to whether the strings
come to dominate depends only on F&l5 and ps, , and is
essentially independent of p, the probability of intercom-
muting (assuming p~0). This can be understood if we
examine (4.13). For some value of 8 &xp jy the integral
on the right-hand side of (4.13) has its maximum value,
but if this maximum value is not large enough to obtain
a =1, then there is no scaling solution and the strings will
come to dominate. Therefore, our results will only be sen-
sitive to p in those cases when a scaling solution exists. In
that case p determines the scale of the string system (y) at
the scaling solution.

The main conclusion to be drawn from Fig. 3 is that a
string tension of Gp&2&10 can be consistent with
helium synthesis constraints only for large values of Fi
and very large values of psi. Of course, it is possible that
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the correct values of these parameters are really quite
large, so we must make some attempt to determine what
these parameters really are.

V. COMPARISON VfITH ALBRECHT AND TUROK

A. Constraints on ps', E~, and p,

Although we have obtained stringent restrictions on the
parameters describing the string scenario, we can only
make definite predictions if we have some idea what the
correct values of the parameters might be. The best way
to obtain these parameters is to compare our results with
those of Albrecht and Turok. It is of particular impor-
tance to determine the probability of self-intersection psi
both because our results are the most sensitive to this pa-
rameter, and because there seems to be no other way to
obtain an estimate of it.

Unfortunately, it is not completely straightforward to
determine psi from the simulations of Albrecht and
Turok. According to Turok, ' their simulations indicate
that the "average" loop splits up into about 10 daughter
loops. The question follows: How do we relate this to
psi? Clearly, if we calculate the average number of loops
produced by parent loops with psi )—,', we get a divergent

result. If we take into account the fact that the simula-
tions use a finite lattice size, we can introduce an upper
cutoff for the number of self-intersections to make this
number finite. If we allow the parent loops to self-
intersect a maximum number of times m then we obtain

2k —lp k

k=1

Evaluating this for m =4, 5, and 6, gives

Ni ~(m =4)=10 for psi ——0.85,

Ni ~(m =5)=10 for psi ——0.74,

N~~~(m =6)=10 for psi ——0.66.

(5.1}

(5.2)

or

iso=2 =0 81 (5.3)

A third estimate of psi can be made if we assume that
the average parent loop undergoes log&10=3.32 self-
intersections. This identification yields

Perhaps a better way to estimate psq would be to take
the median daughter loop to be one-tenth the size of the
parent loop. This would imply that

ii +2 = log io2,

choice for psi almost certainly implies that a scaling solu-
tion exists, but that the energy density in strings depends
on the string production amplitude Fi. If, as we expect,
F~ &1, it will be difficult to satisfy the nucleosynthesis
constraint for Gp & 10

We can obtain a more definite result if we fit our calcu-
lations with another result of the numerical simulations of
Albrecht and Turok. In order to demonstrate that they
have reached a scaling solution, they plot the evolution of
the energy density in strings as a function of time, but be-
cause their initial state has no small loops they cannot
hope to obtain as many small loops as a real scaling solu-
tion would have. Since small loops tend to decouple this
omission will probably not have a great infiuence on the
evolution of larger loops, but it does mean that they will

find that the energy density in small loops will always be
increasing. Therefore, in order to test to see whether a
scaling solution has been reached, they consider only the
energy density (p, ) in loops of radius larger than a cutoff,
r, =0.2t. (It should be mentioned that r, refers to the
real radius of the loop, not the proper radius, 1 that we
have used in most of our discussions. The relationship be-
tween /, and r, is I, =W2r, .) From Fig. 2 of Ref. 17 we
can estimate the value of p, at the scaling solution to be

p, t /p, =3.0+0's.
We can use this number to fix our parameter F~ and the

results of this fit are given in Fig. 3. Thus, if we are
driven

psi, we can use our calculation of p, t /@=3.0+0's to
bound F~, which according to (4.13) determines the equili-
brium density of the string network, p, . This procedure
gives the shaded curves in Fig. 3. It turns out, however,
that the ratio of p, to p, depends mainly on psi and only
very weakly on F~ and 5, so by fitting our results for p, to
those of Albrecht and Turok, we can obtain p, as a func-
tion of only psi, as shown in Fig. 4. Figures 4(a} and 4(b)
correspond to different values of the (U ) parameter k.
The error bars come from matching our value of p, t /p
to the value, 3.0+0 s, obtained from Albrecht and Turok's
results. Since k = —,', probably gives an underestimate of
(U ), we can use Fig. 4(a) to obtain a bound on Gp as a
function of psi. (Actually, the difference between k = —,',

and k =0 is negligible when y =0.6 as is necessary to ob-
tain the correct value for p, .)

The constraints on Gp implied by matching our value
of p, with that of Albrecht and Turok are given in Table
I. If psi &0.85 as the simulations of Albrecht and Turok
seem to indicate, we must require 6@&10 for the
string model to be consistent with primordial nucleosyn-
thesis.

TABLE I. Constraints on Gp as a function of psq.

Psr
=log210 and ps& ——0.77,

1 —Ss~
(5.4)

in rough agreement with (5.2) and (5.3).
Combining these estimates, we see that psq ——0.80+0.05

should result in the production of roughly 10 daughter
loops from each parent loop that Albrecht and Turok see
in their simulations. From Fig. 3, we can see that this

ps1

(0.66
& 0.77
& 0.87
~0.91
& 0.93
(0.97

~3X10
~5~10
(10

~2~10
&4~ 10
(10-'
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loops ensures that p, will tend to drop below its scaling
solution value initially. Once enough small loops have
been created so that they are in equilibrium with the long
strings, p, will begin to rise, but only very slowly. As we
can see from Fig. 5(b), for each of the three initial states
the cutoff string density sonns to approach some equili-
brium state for a short while, but then the curves seem to
flatten out. What may not be apparent from Fig. 5(b), but
is apparent from our calculations, is that, in all three
cases, g, is slowly increasing at the end of each curve.

(p, t-', t ', and ra, respectively. ) This means
that the equilibrium value of p, is greater than the values
at all three end points. Thus, if we saw this graph with
the resolution of the numerical simulations, we would

probably conclude that the correct value of p, at the
steady-state configuration is p, t Ip, =2.8, when the actual
value is p, t ly, & 3.4. Thus, it is possible that our fit with
the results of Albrecht and Turok gives an underestimate
of the energy density in strings at the scaling solution. If
so, the upper bound on Gp could be as much as a factor
of 2 lower, corresponding to the upper curves in Fig. 5

rather than the lower ones.
Despite these possible discrepancies, our calculations

generally confirm the main conclusion of Albrecht and
Turok: that cosmic strings do indeed evolve in a scale-
invariant fashion. If we assume that the correct value for
ps& is in the range suggested by their simulations, then we
find that a scaling solution does exist. For a reasonable
choice of our parameters, we can obtain the same energy
density in large loops and long strings.

The situation is quite different, however, when we con-
sider their conclusions regarding the energy density in
small loops. This result is important because the galaxy-
formation calculations, 2' the microwave-background cal-
culations, "' and the nucleosynthesis constraint all de-

pend on the density in small loops. Using the range for
psi that seems to correspond to the numerical simulations,
we find that the density in small loops is greater than that
obtained from the numerical simulations by a factor of
4.5+1.5. In order to obtain the same value as Albrecht
and Turok, we must set psi-0. 97. In Albrecht and
Turoks simulations such a high probability for self-
intersection would probably be indistinguishable from

psi ——1, which they have ruled out.
It is not surprising that Albrecht and Turok's result for

the density in small loops may be too low because they
have obtained it after running their simulation for roughly
a factor of 3 in time starting from an initial condition
that had very few small loops. Actually, for
0.75~psq ~0.85, at the loop size corresponding to the
smallest loops in Albrecht and Turok's simulation, we ob-
tain a loop density that is not much different from that of
Albrecht and Turok, but the difference occurs when we

extrapolate to smaller loops. With psi so large, we find
that many daughter loops are still being produced at a
loop size smaller than this, so an extrapolation to smaller
loops assuming negligible self-intersection would lead to
an underestimate of the energy density in small loops. It
would seem that, while the parameters for our calculation
must be fixed by comparison to the numerical simulation,
a more accurate determination of the density in small

loops can be obtained from our calculation than from the
simulation of Albrecht and Turok.

VI. DISCUSSION AND CONCLUSIONS

As we have shown in the previous tmo sections, our
analysis seems to lead to some important constraints on
the properties of cosmic strings. We should, therefore,
understand how our results depend on the assumptions we
have made and how our conclusions might change if we
vary some of our parameters.

A. Discussion of our assumptions and approximations

One of our most fundamental assumptions is that the
network of long strings can be described by one scale L.
As originally defined in (2.8), L defined the distance scale
of the separations between long strings, but we subse-
quently used it in several slightly different contexts. In
the expression (2.16) for the energy loss from long strings
to loops, we assumed that the loop production function
a(x) depends only on x =liL, so that the distance scale
between the strings determines the average size of the
loops that are produced. Similarly, the expression we
used for estimating (u ) (4.14) depends only on the ratio
y between I- and the horizon. Essentially, we have as-
sumed that the scale of curvature of a string is the same
as the scale of distance between the strings. This seems to
be a natural assumption when the intercommuting proba-
bility is of order one, but what if it is wrong?

Suppose, for instance, that the average radius of curva-
ture of the string is smaller than L. Then, the stretching
of strings would be less important, and (u ) would take a
larger value, but our bound on Gp was obtained in the
case where string stretching was already negligible, so the
absence of stretching would not change our results. A
very bumpy string mould also produce loops and lose en-

ergy at a higher rate than the ones we have considered.
(Recall that loops are generally produced as a result of
collisions of waves on a single string. ) Since the separa-
tion between loops is large, they would not be likely to be
absorbed by another string, so highly curved strings would
lose energy faster than the strings we have considered.
Thus, the scale of their curvature would increase faster
than the separation between strings, so apparently, a sys-
tem of highly curved strings will evolve into the type of
string system that we have considered where the curvature
has the same scale as the separation between the strings.

In the opposite case of very straight strings, we expect
that curvature on the scale of L would be restored by in-
tercommuting between different strings. If this is not the
ease, then the stretching of strings would be more impor-
tant than we have assumed while loop production would
be very much suppressed. Thus, in this case, the energy
density in strings would grow faster than our calculations
show, and a more stringent bound on Gp would be ap-
propriate.

It is also of interest to see how our results vary under
changes of g, p, or corrections to our expressions for u,
(2.15), and (2.11). If we set ( u ) = —, and take a = 1 (since
we are concerned with scaling solutions), we can derive a
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simple scaling law for these variations. When (U ) = —,',
the evolution equation (4.13) depends on p, U, g, and y
only through the combinations 8 =pu5$/y and
e= 10Gp/yg, but since the evolution equation is almost
independent of e, we can neglect it. (This just means that
the smallest loops have decoupled, so they cannot influ-
ence the evolution of the long strings. ) Thus, if we know
a scaling solution exists for one set of the variables, p, U,

g, and y, then we can find a solution for different values
of p, U, and g by choosing y such that 8 remains un-
changed. The new value of p, is then obtained from (4.12)
and (4.17). When we do the integral (4.17) we see that the
explicit factor of g in (4.12) drops out, but that we can no
longer ignore e because the dominant contribution to p, is
froin the smallest loops. In fact, we find that

—1/2
pg y2 y3/2

(6.1)

when 8 and F& are held fixed. Equation (6.1) implies
that, if we change the product pu keeping all other vari-

ables fixed, then y will scale as pu, and p, -(pV) . Simi-

larly, if we vary only g, we obtain y —g and p, —1/g. We
can apply these formulas to see how our constraint dia-

grams in Fig. 3 change under variation of p, U, or g.
We should note that the scaling law given above, (6.1),

does not apply to the constraints (given in Table I and
Fig. 5) that we derived from comparison with Albrecht
and Turok, so if it turns out that there is an error in our
estimate of v, it would not be correct to use (6.1) to calcu-
late the corrections to p, and Table I. This is because the
comparison with Albrecht and Turok's results involved
matching our value of the cutoff string density p, with
their value. For large values of psi (psi&0. 75), more
than 85%%uo of the contribution to p, comes from the long
strings, and this contribution is just 1/y . Thus, when we
constrain p, to be the value given by Albrecht and Turok,
we are essentially fixing y, not I'i and 8, so (6.1) does not
apply. Instead, we find that in most cases, we can vary p,
v, or 5 by a factor of 2, and our constraints on Gp, , as
shown in Fig. 4, will change by less than 5%. This rough
rule only breaks down when psq & 0.7, and our constraint
on Gp becomes very stringent.

Our constraint is not quite so insensitive to the parame-
ter g, which is a measure of the initial size of the parent
loops. This can be understood by noticing that a change
in f has the same effect as changing p and e by the same
factor. By the arguments given above, the change in p
will have no effect on our constraint. The change in e af-
fects p, -g' but not 1/y, which is the main contribu-
tion to p, . g also determines the fraction of the loops that
will contribute to p, . These two effects tend to cancel and
the result is, very roughly, that p, -g, for fixed p, .
Thus, since our constraint on Gp will have some sensitivi-

ty to g (Gp-g ), it is important to know the uncer-
tainty in our value for g. From the arguments given in
Sec. IV, it seems likely that /= 1.5 is a reasonable choice,
but it may be wise to allow for some uncertainty. Actual-

ly, if we set /=0. 75 as would be necessary in order to
weaken our constraint on Gp by a factor of —1.5, then,
from (4.2), we find that a loop with a slightly larger ra-

dius than g has a probability of 64% to survive long
enough to fragment into smaller loops. So, it seems that
even decreasing g by a factor of 2 is unreasonable, but we
should recall that, although well motivated, our expres-
sion for the loop production function is actually a fairly
crude approximation. Thus, the factor of 2 or so might
more properly reflect our uncertainty about a,rf rather
than g.

As we have seen in the previous section, our constraint
on Gp, is independent of almost all the parameters that we
have had to introduce to describe the string system. This
is because by fixing our parameters so that our value of p,
corresponds to that obtained from the numerical simula-
tions of Albrecht and Turok, we are in effect just calculat-
ing the ratio of p, to p„and the majority of unknown pa-
rameters simply cancel out of this ratio. This leads to the
somewhat remarkable result that if we ignore the possible
weak dependence on g, our bound on Gp depends only on
the probability of self-intersection psi. Apparently then,
it is quite important to obtain a better determination of
this parameter. Presumably, this can be accomplished by
a closer comparison between our analytic approach and
the numerical simulations of Albrecht and Turok.

8. Implications for galaxy formation

We should make some comments about the implica-
tions of our constraint (Gp g 10 ) for the string theory
of galaxy formation. Since the disagreement between our
constraint and the lowest estimate of Gp from galaxy-
and cluster-formation considerations is only a factor of 2,
our constraint is certainly not very severe by cosmological
standards. However, there is some reason to believe that
this disagreement will become somewhat more severe as
the physics of cosmic strings becomes better understood.
First, it should be emphasized that we have consistently
chosen our parameters so as to underestimate the number
density of small loops ( ni) and hence the total energy den-

sity in strings. Thus, it seems likely that our bound would
become more stringent if we had a better idea of what
values these parameters should really take. For instance,
if we take A, =50 and r =0.03 (which seem likely to be the
correct values) instead of the more conservative values
that we have used, then we obtain a bound on Gp that is
40%%uo stronger. Similarly, we can gain additional factors if
it turns out that the stretching of strings provides an im-

portant contribution to the evolution of the string system,
or if the appropriate value of psi is smaller than 85/o.
These corrections are, of course, in addition to the factor
that we may gain if Albrecht and Turok did indeed un-
derestimate p, as we suggested in Sec. V.

On the other hand, the determination of Gp, from
galaxy- and cluster-formation scenarios is also sensitive to
the exact value of the energy density in small loops which
we have calculated here. For instance, in Ref. 14, the
value of Gp is calculated using a value for the density of
small loops that is obtained by an extrapolation from the
numerical simulation of Albrecht and Turok. However,
as we have mentioned in Sec. V, their simulation is not
particularly well suited for this task, and in fact, our re-
sults imply a substantially larger value. So if our results
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are used instead of those of Albrecht and Turok, then the
estimate of Gp, obtained in Ref. 14 would decrease by a
factor of 2 to 6@=10 which is consistent with our
bound. However, if we are able to increase our estimate
of the number density of small loops, then the discrepancy
between the nucleosynthesis bound and Turok and
Brandenberger's value for Gp will increase because the
upper bound on Gp from nucleosynthesis scales as n—i
while Turok and Brandenberger's result scales as
Gp-ni ~ I.f, for example, we let ni take the max-
imum value that seems to be consistent with our results
(rather than the minimum value that we have used for our
constraint) the discrepancy between the nucleosynthesis
bound and the galaxy-formation bound will become a fac-
tor of 5.

C. Conclusions

We have calculated the evolution of cosmic strings
analytically, and our results confirm the main conclusions
reached by Albrecht and Turok with their numerical
simulations. The analytic approach is particularly helpful
when trying to understand the specific physical processes
that determine the behavior of the string system. It is also
useful for calculating the energy density in small loops
which is important for the galaxy-formation scenario, but
which is difficult to do numerically. We have found that
the fate of a system of cosmic strings depends sensitively
on the probability that the closed loops produced from
long strings self-intersect and break up into smaller loops.
If this probability is low than many of the closed loops in-
tersect and recombine with the long strings before they
can radiate away a significant portion of their energy.
This means that the energy density of the string system

will fall slower than that of radiation, and the Universe
will quickly become string doininated. However, if the
probability of self-intersection is large, then the string sys-
tem evolves in a scale-invariant manner so that the energy
density in strings is always proportional to that of radia-
tion. Since a large value for the probability of self-
intersection (psi ——0.80+0.05) is indicated by the numeri-
cal simulation of Albrecht and Turok, we conclude that
the scale-invariant evolution is probably correct.

However, if this estimate of psi is correct, then we can
obtain a bound on the string tension (6@&10 6) from
the requirement that the gravitational radiation produced
by the strings not be so copious as to interfere with pri-
mordial nucleosynthesis. This constraint is independent
of most of our assumptions and approximations (except
our estimate for psi), so it seems to be reasonably firm.
The constraint is marginally consistent with the value that
is required for the galaxy-formation scenarios, but since
this conflict may become more serious when the evolution
of the string system becomes better understood, it inay
eventually force a serious revision in the string theory of
galaxy formation. This constraint does, however, rely on
the correctness of the standard nucleosynthesis calcula-
tions, and it may be that nucleosynthesis is not as ~e11 un-

derstood as we expect. '6
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