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%e consider an electroweak model based on the gauge group SU(2)L, XU(1)~ XU(1)~ XD with iso-

spin as a spontaneously broken symmetry, and D a discrete symmetry which interchanges the two
U(1)'s. The new physics is characterized by the vacuum expectation value of a Higgs triplet with

Majorana couplings to the leptons, and an extra heavier neutral vector boson. The model is compa-
tible with a global SU(2)L, gSU(2)~ symmetry which is extended to the Yukawa and Majorana sec-
tors of the theory. The model also suggests the existence of a triplet of colored scalar particles with

Majorana couplings to the quarks, which generate the u-d quark mass difference by radiative
corrections in a strong-coupling regime. Such colored scalar particles would be observed in the pp
colhsions as dijets with large transverse missing energy, and the color singlets as hke-sign isolated
dimuon events. A dijet can simulate a monojet if one of the jets is hidden in the hadronic back-
ground.

I. INTRODUCTION

It was thought long ago that electromagnetic self-
energies are at the origin of mass differences within isoto-
pic multiplets and that the electron mass is of electromag-
netic origin. However, all the attempts to actually com-
pute a mass difference such as the neutron-proton mass
splitting have failed. Nowadays, it is no longer possible
to deal with electromagnetism as an isolated phenomenon
and one has to consider contributions from other interac-
tions. At an energy scale of 100 GeV, for example, the
weak contributions are as important as the electromagnet-
ic effects, and this has suggested2 an interesting mecha-
nism for the cancellation of the electromagnetic self-
energies by the weak interactions.

In renormalizable gauge models with spontaneously
broken symmetries the only counterterms in the Lagrang-
ian are those allowed by the gauge structure of the theory.
Thus, if a mass difference, or a mass, vanishes to zeroth
order of spontaneous symmetry breaking (SSB), the sum
of the higher-order contributions is finite and calculable
to each order of perturbation theory, as a consequence of
the renormalizability of the theory. This is a most in-
teresting possibility, but no convincing model has been
found to implement this idea in the framework of local
gauge theories. In the Glashow-Weinberg-Salam
(GWS) model of the electroweak interactions, ~ based on
the gauge group SU(2)L XU(1)r, each quark or lepton
mass is generated by an independent Yukawa coupling
with the scalar particles of the Higgs sector, and no rela-
tion among the particle masses exists. Infinite counter-
terms for each mass are introduced to compensate for the
ultraviolet behavior of the self-energies. Quark and lepton
masses appear as free parameters in the model. Thus,
when computing a mass difference the electromagnetic
divergence is not canceled by the weak interactions.
Could this be symptomatic of a shortcoming of the stan-
dard model'? Not necessarily. It would have been gratify-
ing, however, to find a scheme for the computation of

mass relations in the framework of a unified model of the
weak and electromagnetic interactions.

How does one impose additional constraints in the
theory in order to allow for the calculability of mass rela-
tions? The Higgs potential in the standard model is in-
variant under the global symmetry O(4)-SU(2}L,
XSU(2)a. When the scalar field acquires a vacuum ex-
pectation value (VEV), O(4) spontaneously breaks down to
O(3)-SU(2}L,+~ which is isospin. Isospin is conserved
by the self-interactions of the scalar bosons to all orders,
and this guarantees that the zeroth-order relation
Mii ——Mzcos8~ is not spoiled by higher-order effects.
However, there is strong isospin violation in the fermion
mass matrix, which is not understood within the standard
model. Indeed, it is generally accepted that isospin is an
accidental symmetry due to the smallness of the u and d
quark masses with respect to the hadronic scale, rather
than an exact symmetry.

In the model presented here, we extend the isospin sym-
metry to the whole theory by introducing a discrete sym-
metry, or permutation symmetry which interchanges the
u and d quarks in the quark sector, and the neutrino and
the electron in the leptonic sector. Furthermore, we re-
quire that this transformation leave unchanged the local
SU(2). When applied to a left doublet the discrete sym-
metry acts as an element of SU(2}. This is not the case for
the hypercharge sector of the theory, which is not invari-
ant under the discrete symmetry. We are thus led to in-
troduce a new hypercharge, labeled here as the X hyper-
charge. It turns out that the sum of the X and F quan-
tum numbers corresponds to 8 I. (baryon minus lepton—),
which is promoted to a local symmetry. Our model is
thus based on the gauge group SU(2)L, XU(1)rXU(1)»
XD, with D a discrete symmetry operation which inter-
changes the two U(1)'s. Models of the electroweak in-
teraction with two massive neutral vector bosons have
been studied extensively in the past, ' and can be con-
sidered as descendents of the grand unified theory based
on SO(10). ' In our model isospin is an exact symmetry
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of the electroweak interaction, which is spontaneously
broken by the pre@ence of a new symmetry-breaking
scale. 2~ The isospin-breaking effects which are manifest
at lower energies are sensitive to the spontaneous
symmetry-violating scale and are calculable.

In addition to the usual Higgs doublet of the standard
model, we introduce a singlet Higgs field which is a
SU(2)L and Fhypercharge singlet, and whose VEV breaks
8 —L. The VEV of this new Higgs field contributes
simultaneously to the mass of the new U(l) gauge boson
and to the Majorana mass term of the neutrino. The
smallness of the neutrino mass is thus naturally explained.
The new singlet Higgs field is the color-singlet member of
a larger family which includes a triplet of colored scalar
fields with Majorana couplings to quarks. The large iso-
spin violation in the quark mass matrix is generated by ra-
diative corrections from the colored scalar particles in a
strong-coupling limit. The model is compatible with the
invariance of the Higgs and Majorana sectors of the
theory under the global SU(2)L )(SU(2)R symmetry.

The discrete symmetry is trivially realized in the local
group SU(2)L XSU(2)R, but this entails dealing with a
rather complex Higgs sector. The model presented here is
a minimal extension of SU(2)L XU(1)r. The only natural
way to introduce a new mass scale in this model is
thraugh Majorana couplings since another Higgs doublet
would make it difficult to keep the neutrino light.

In Sec. II we discuss the role of the discrete symmetry
and some technical aspects of the construction of the
model. In Sec. III we write the mass matrix of the vector
bosons corresponding to the two VEV's of the model in
terms of mass eigenstates, and the siune is done with the
mass matrix of the neutrino. In Sec. IV we discuss the
new signatures in pp collisions at very high energy in
terms of the scalar bosons incorporated into the model.
The signatures correspond to dijets or dimuons, according
to the type of scalar boson involved in the process. In
Sec. V we perform a specific calculation to illustrate the
use of the discrete symmetry. We compute the u-d quark
mass difference, which is generated in this model by radi-
ative corrections by colored scalar particles in a strong-
coupling regime. Some final remarks and comments are
given in the Conclusion.

II. THE MODEL

for the leptons, and

uR~e'"dR& dR~e' uR ~ (2.2)

V

Q, = f 13xL, —L„L= (2.4)

where r,s =1,2, a =1,2,3, and the H are the Pauli ma-
trices. Under D the hypercharge generators transform
into each other: Q»- -Qr.

The electric charge generator is Q~ =Q3+ Qr, as usu-
al. It is noteworthy that the sum of the two Abelian hy-
percharges corresponds to the baryon minus lepton
(8 —L) quantum number, which becomes a generator of
the theory. Thus, for the leptons

Qr+Q» ———f d x(v v+e e )=QR L . (2.5)

The corresponding generators for the quark sector are

Q» = d x[ 6 (uLuL, +dLdL, )—3 uRuR + 3 dRdR ],3

Qy= f d x[ 6 (uLuL+dLdL )+ 3 uRuR —
3 dRdR ],

(2.6)

for the quarks. Similar relations hold for the left fer-
mions but with different phases since the two chiral de-
grees of freedom are independent, although the phases
within a doublet are not independent. Since the left fields
are in SU(2)L doublets, the discrete symmetry enters as a
global isospin rotation, that is, a particular SU(2) element.
Thus, the left sector of the theory is invariant under D.

A minimal extension of the GWS model which contains
the discrete symmetry requires a right neutrino and a new
hypercharge generator (X hypercharge), since the usual F
hypercharge generator is not invariant under D. Our
model is thus based an the gauge group SU(2)L
XU(1)» XU(1)»XD.

The generators of the X and F Abelian hypercharges
are

d x[ i(vLv—L+eL eL ) —vRvR],3

(2.3)
Qr= d x[ i (vLv—L+eL eL ) eR eR l

3

and the generator of the SU(2)L gauge group is

The divergent terms in the calculation of mass differ-
ences cancel due to the natural mass relation imposed by
the discrete symmetry that interchanges neutrinos and
electrons in the leptonic sector, and up and down quarks
in the qvaf'k sector. An immediate problem arises here,
since this would imply that the masses of the neutrino and
the electron are degenerate. This problem is circumvented
with the introduction of a new mass scale, as explained
above.

We require that under the discrete symmetry the I.a-
grangian be invariant and the charge generators transform
among themselves, so that the theory be closed. Under
the discrete symmetry D the right fields transform ac-
cordlI1g to

QN= f d x& Vs~
t

P 2
s&

L

where r,s =1,2, a = 1,2, 3. It follows that

Q»+Qr ——f d x —,'(utu+dtd)=QR (2.7)

I I

W, =L iy gW ~—g ~g' I.
2 2 2

The quantum number assignments are indicated in Table
I.

Let us consider the leptonic terms of the Lagrangian
density

v~ —+e' e~, e~ ~e' v~, (2.1) +e R (Q+g'8)eR+ vR(Q+g'8')vR . (2.8)
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TABLE I. Quantum numbers of SU(2) XU(1}XU(1)XD.

Sector

Leptons

Particle

e

I3

1

2
1

2

1

2

Quar ks 1

2

1

2

1

2

1

6
1

6

2
3

1

3

1

2

1

2

1

6
2
3

1

3

2
3

1

3

1

3

1

3

1

3

1

3

1

3

~ -2/3

~1/3

~4/3

4
3

1

3

2
3

1

3

4
3

3

4
3

2
3

2
3

2
3

2
3

0 e'I
U= ]pe 0 (2.9)

is a SU(2} element provided a=m —P. We can choose
a=O and have U =i' as a representation for the global
unitary transformation. The W term triuisforms as usual
under SU(2): W r +UW rU -' Thus, thi. s term is left
invariant by D.

Let us examine the Higgs structure of our model. The
terms of the Lagrangian that involve the usual Higgs
doublet are

Ag(LPeg+Lgva —), (2.10)

where P =iv P, and the scalar self-interaction terms have
been omitted. The X hypercharge assignment of the
Higgs doublet follows from the above equation.

How does P transform under D? From the invariance
of the Yukawa interaction terms in Eq. (2.10), it follows
that P transforms as

Q~Uiv P', (2.11)

which is an antiunitary transformation. Notice that Eq.
(2.11) reduces to P~ —P' for the particular phase a=0.

Under D the last two terms transform into each other,
with eq ~va and 8~8'. The discrete symmetry requires
that the X and Y hypercharge couplings are identical.
The doublet L in the first term transforms as L~UL,
where

What is remarkable is that the first term of Eq. (2.10} is
also invariant under the transformation given by Eq.
(2.11). This is not apparent since P has opposite sign X
and Y hypercharge quantum numbers (see Table I), and
thus under D the 8 and 8' part of the Lagrangian of Eq.
(2.10} changes sign. Compare this with the first term of
Eq. (2.8), where the 8 and 8' part of the Lagrangian does
not change sign under D, since the X and Y quantum
number assignment is identical for left quarks and lep-
tons, respectively. The invariance of the first term of Eq.
(2.10) follows from the rules of transformation under D
that we have seen so far, and rH = —Hr'.

As it stands, the model has three problems. The elec-
tron and neutrino masses are degenerate, and so are the
masses of the two neutral vector bosons that arise in this
model, which we will call Zi and Z2, linear combinations
of W3, 8, and 8'. We also have «n interacting right neu-
trino. However, we can solve all three problems simul-
taneously through a minimal extension of the Higgs sec-
tor, with the introduction of a neutral scalar boson X
which is a SU(2)L singlet and whose VEV breaks 8 L—
by two units. The new field X couples inequivalently to
the 8 and 8' Abelian bosons lifting the mass degeneracy
of the neutral vector bosons Z, and Z2. It also couples
with the right neutrino via a Majorana interaction term
vL, X v~ to keep the physical neutrino almost massless,
while the v~ acquires a large Majorana mass. %e expect
the VEV of the X to be larger than the VEV of the P of
the standard model, and it defines a new mass scale.
Since 8 L is a generator of—the theory, gauge invariance
implies that the 8 Lquantum numbe—r of the X is 2.
Furthermore, it is neutral and a SU(2)L singlet, its Y hy-
percharge is zero, and it does not couple with the S. This
is consistent with the requirements that the photon be a
linear combination of the W3 and 8, and massless. The
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Xhypercharge assignment of X is 2.
To maintain the invariance under D of a Lagrangian

with the Majorana term present, it is necessary to include
also a doubly charged Higgs boson g++. These two sca-
lar bosons with B I.—=2 are reminiscent of a SU(2)z

I

triplet found in the 126 representation of the grand uni-
fied model based on SO(10},which also contains a singly
charged boson X+. We will include this third boson in
our model, as seems reasonable. The Lagrangian for the
new mass scale is then

W» [(d——q+2igB„')X ] +[(dp+ig'Bq+ig'Bq )X+] + [(Bq+2ig'Bq )X'++] A ie—I.X+vx

—X,vL X+e„A,,e—l X++e„—A,,vLX'va+ H. c. . (2.12)

Let us remark that the global SU(2)L )(SU(2}a symme-
try of the Higgs potential V(P,P') of the standard model,
is extended in our model to the Yukawa interactions.
Furthermore, if A,

&

——)L,i this symmetry is also present in
the Majorana sector. This can be made evident by intro-
ducing a matrix formalism for the Higgs particles:

as follows:

cos 8 —sin8 cos8

p,2=Mzo —sin8cos8 sin28

ri cos8 tang —ri sin8 tang

e cos8 cot/
—e sin8 co|A}(

g —a+1

Wy ——kgLCR —Ail. '(ir )XR,

where

yo y+ X+ i/2X++

~2X X+

(2.13)

(2.14)

ecoQ=ri tanf=sin8,

g —e+1=5sin28 .

(3.6)

(3.7}

It is then straightforward to find the eigenvectors of the
mass matrix p~, which are

III. MASS EIGENSTATES

In this section we examine in detail the symmetry
breakdown of our model for the specific Higgs assignment
discussed in the last section. We first find the gauge-
boson masses that are the eigenvalues of the mass matrix
obtained from the Lagrangian terms

2

cos8 cos4 sin8

Vi —— —sin8 cosP, Vi ——cos8

sing 0

cos8 sing

Vi = —sin8 sin4

cosP

(3.8)

a +igW —'+i~B i~B~z

+ [(&„—i 2B„')X ]' .

In terms of the VEV's of the Higgs fields P and X,
0(y)=, &X'&=~. ,

2 Po
(3.2)

we obtain for the neutral vector bosons the matrix

cos28

p =~zo —s1nH cos8

sin8cos8

—sin8 cos8 sin8cos8

slil 8 —slil 8
—sin 8 5sin 8

(3.3)

where 8 is the Weinberg angle, M 0 is the mass of the Z
boson of the standard raodel,

Z i
——8'3cos8 cog Bsin8 sing ——B'sing,

y = W'sin8+B cos8,

Zz ——W cos8sing —Bsin8sing+B'cosP .

(3.9}

The procedure followed to calculate the values of e, ri,
and the new mixing angle P is as follows: we eliminate e
and g by using (3.7), and are left with an equation for
tang,

tan P+ (5 sin8 —1/sin8)tang —1 =0 . (3.10)

Setting sin8 to its accepted value, sin8=0. 47, we approxi-
mate

5 sin8 —1/sin8=15. 04(cro jpo) (3.11)

with eigenvalues 1 —e, 0, and I+ri, respectively. We
identify the Vi, V2, V3 with the mass eigenstates Zi, y,
Zz, respectively:

(g2+g i2) I l2 (3.4) which is valid to one part in 50. To this same precision
we obtain the solution of the quadratic equation:

5= 1+32(00jpo) tang = (po/oo)
1 (3.12)

Following the crafty parametrization of the secular
equation of p, , found in Ref. 22, we can write this matrix

(We chose the solution of the equation that makes e
small. ) From (3.12) and assuming that po & oo, it follows
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that {{)& —,', rad, thus giving the Z, a very small B' ad-

mixture, and making Zz basically a B' state. The values
of e and g are

@=0.031(pp/ao), ri =7.07(no/po) (3.13)

From here we obtain the masses of the neutral vector bo-
sons:

Mz, ——Mzov'1 —e=0.98Mzp(po/pro)

Mz ——Mzov'I+vi=2 66.Mzo(cro/po)
(3.14)

=Ay L /v g —A 2v g X vx +H. C. (3.15)

The neutrino mass matrix follows from this equation.
Diagonalizing it one obtains two eigenstates: a heavy fer-
Qllon,

+8 ++L

with mass rri~ ——A2oo, and a light one

C
7l =VL +V@

(3.16)

(3.17)

with Illass riiq =rrlg /2lri~.
If we set m„& 10 eV, we obtain a lower bound for rnid..

m~ ~5 GeV.

IV. SIGNATURES IN pp COLLISIONS

The X bosons we have incorporated into the model cou-
ple to leptons with Majorana couplings, since they have
B L=2. We descri—be here the signatures that the scalar
bosons X and the related colored bosons ", that we intro-
duce below, will have in pp collision experiments at high
energy, such as the one performed at CERN.

The X bosons have a very well-defmed signature which
comes from the process qq -+Z X++I Z {X+-+-

~p+-p+-). It is one or two pairs of like-sign isolated
muons, as shown in Fig. 1. The like-sign muons at these
energies behave as if massless and are therefore created
going parallel to each other, when the X disintegrates.
Such events have in fact been reported by UA1.2 The
background comes from heavy-fiavor decays, although it
seems insufficient to explain the observed events.

The scalar bosons X are found in the 126 irreducible
representation of SO(10). Under SU(2)L, XSU(2)ii
XSU(4)c the 126 transforms as

126=(1,1,6)+(3,1,10)+(1,3, 10)+(2,2, 15) . (4.1)

We can further decompose SU(4)c under its maximal sub-

group SU(3)c XU(1)s L, . We are interested in the
(1,3,10) which decomposes as

(1,3, 10)=(1,3, 1)(2)+(1,3,3)(—', )+(1,3,6)( ——', ) (4.2)

under the color subgroup, and where the number in

Thus, the mass of the Zi is very close to, and that of the
Zi is at least three times larger than, the mass of the Zo.

We now examine the effect of the new mass scale on
the right and left neutrinos. The only terms that will give
mass to the neutrino, that are allowed by gauge invari-
ance, are (2.10) and (2.12),

FIG. 1. Process that produces like-sign isolated dimuons.

parentheses corresponds to B L. We—recognize the three
scalar bosons with B L=2 —in the (1,3, 1) triplet, and
also find a larger family of colored scalar bosons with
B L= —, —which has Majorana couplings with the
quarks. These colored scalar representations are a 6 and a
3, but since they involve the same kind of coupling, and it
is likely that the 3 is lighter, we will simply ignore the 6.
The quantum numbers of the 3, which we call:" are listed
in Table I.

The symmetries involved, including the discrete one,
dictate the following Lagrangian:

3

Wc ——y [(Bp igAg T"—+ig'y/Bp+ig'xrBp ):-g ]

—Aia I ~ Qg —A,id L ~ ds

—A,4d L, Qs —Agu L, ds +H.c.

(4.3)

where the repeated index a indicates a sum over
a =1, . . . , 8, and x; and y; are the appropriate X and Y
hypercharge number for the particular "i boson. The in-
teraction terms in this Lagrangian involve weak, strong,
and Yukawa couphngs in various combinations.

A very important point that has to be made is that
these color bosons allow no new decay channels for the
proton. This comes about from the fact that there are no
leptoqvm'k vertices, which are the ones that cause proton
decay in grand unified theories. Such vertices are forbid-
den by color gauge invariance.

The = color bosons have monojets and dijets with large
missing transverse energy as a signature. These events
cannot be explained within the standard model if the
transverse energy is higher than a few GeV's. The reason
for this is that if the transverse energy is high, the Drell-
Yan proaxs in the pp collision must involve the constitu-
ent quarks, and then the jet must be due to gluon brems-
strahlung, which cannot be the case since bremsstrahlung
is longitudinal. The dijets are due to the process
qq-+Zo-+="Zo{Z ~w). (See Fig. 2.) This same pro-
cess can be interpreted as a monojet if one of the ='s has
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can give high transverse energies, there is no kinematical
constraint here. It is possible that monojets have been
seen at CERN, and this has prompted several theoretical
explanations for monojets. If monojets have actually
been observed at CERN then good statistics and a careful
analysis will be necessary to clarify the issue.

V. SELF-ENERGY CALCULATION

FIG. 2. Pro{A:ss that produces dijets (and simulates mono-

jets), and large transverse missing energy.

low energy and remains hidden as part of the hadronic
background. Our ignorance of the values of the mass and
couplings of the " prevents us from making a numerical
prediction, but since it is clear that a four-prong process

As a specific example of the use of the discrete symme-
try in the cancellation of infinities, we compute the u-d
mass difference. We first consider the lowest-order radia-
tive corrections from the gauge bosons of the theory, in
terms of the mass eigenstates found in Sec. III. The
Higgs triplet X of the model with 8 I.=2—does not cou-
ple to quarks, and the discrete symmetry ensures that the
tadpole and loop corrections from the Higgs doublet P
cancel out from the mass difference. The role of the
colored scalar particles is discussed at the end of the sec-
tion.

All the divergent quantities cancel as expected from the
mass relation and we obtain the following expression for
the mass difference renormalized at the scale p «Mz ..

hm(p2) =m„(pi) —m~(pi)
2

Mz,

(4„)2 2(A) '"
p2

—2sin 8 cos2gln
Mz

p
+sin Pln

Mz

p

—cot 8sin8singcosgln(Mz, /Mz, ) ', (5.1)

where A, is the Yukawa coupling in the isospin limit
Ag Ag

If Mz, -Mz, -M, the above expression reduces to

1 Mz 2

hm(p )= a~A, ($0)ln zp
{5.2)

d(p /p, b(p ))=
1 b ln( —p /p )— (5.3)

where b is an effective coupling parameter, which depends

which has the wrong sign and incorrect order of magni-
tude to account for the u-d mass difference, since
(mg —m„)/m„-1. In the presence of strong interactions
the above results remain unchanged, since we are comput-
ing the lowest-order correction to a natural zeroth-order
symmetry.

Finally, we evaluate the contribution to hm from the
colored scalar sector of the model in a strong-coupling re-
gime, using the Dyson equation as a starting point for
nonperturbative calculations. The effect of the geometric
sum of bubbles in the scalar-boson propagator from its
scalar self-interactions is given to lowest order by the
renormalization-group scalar function d{p /p, ,b(p, ))

on the unknown coupling of the scalar self-interactions.
The above result for the function d(p /p, ,b(p )), is the
first term of a series expansion in powers of b. We ex-
ponentiate the above result to extrapolate to very short
distances (strong-coupling limit) the long-range perturba-
tive results. Explicitly,

d(p2/Iu, b(p ))=exp[bin( —p /p )] . (5.4)

We have no rigorous justification for this choice, but it is
a convenient ansatz, and it is also useful for analytical
computation.

The discrete symmetry simplifies again the calculation
of the mass differences, and the only surviving terms are
those due to the " ~ radiative corrections to the self-
energy of the u quark, and the = ~ for the d quark. If
the masses of the = and:- (that we shall label M„
and M~, respectively) were identical, we would obtain an
absolute cancellation; otherwise ~e obtain a finite contri-
bution to the quark mass difference. Even if the masses
are equal at the tree level, there are important radiative
corrections that split their values.

In the large p limit, hm is given by the renorma1ized
Dyson equation (after performing a Feynman parametriz-
ation)
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M~2
km(p')= „f, dt f dx f id qX~( q—'/p2't

hm(p )= (2b +3)
16m b (1 b)(b—+2)

xl (2+b)1 (2—b)
p2b

(5.6)

To illustrate our results, let us choose a particular value
for the coupling parameter b. If we choose b = —,

'
we find

b, m = m(M„—Mq)/p, (5.7)

which could account for the u-d mass difference given
the right values of A.3 and M„—Mq. We have thus
translated our ignorance of the origin of the u-d mass
difference to another scale.

VI. CONCLUSION

We have constructed a model based upon the require-
ments that it should have isospin as a good symmetry,
have calculable self-energies, and be a simple extension of
the GWS model. (Of course it should have this model as
some kind of limit. ) It has turned out that an appropriate
way of achieving our purposes has been through the intro-
duction of a discrete symmetry. We then accepted this
discrete symmetry completely, and built the model around
it. The result of following this logic was a model that in-
corporates an extra U(1} local group, and another mass

(2—x)(1—x)
[q t (1——x)]

(5.&)

where A(p /p, }=A3d(p /p, b(pi)), and A3 is the Ma-
jorana coupling constant defined in Eq. (4.3). The above
expression for bm is finite for b ~ 1 (for b =0 we obtain
the usual logarithmic result) and can be expressed analyti-
cally as follows:

scale apart from the usual one in the GWS model. It is a
distinctive feature of this model (made necessary by our
implicit belief in the discrete symmetry), that the new
mass scale is due to the SSB of the new U(1) symmetry,
and that the new leptonic mass terms in the Lagrangian
have to be of the Majorana type. The GWS model is ob-
tained in the limit of a large VEV of the X boson. Incor-
porating the new leptonic mass terms requires the intro-
duction of other Majorana interaction terms that involve
new particles and phenomenology.

The enforcetnent of the discrete symmetry in the com-
plete theory led to some interesting self-consistent techni-
cal manipulations. In the final Lagrangian, global
SU(2)L, XSU(2)» is a symmetry of the Higgs sector, and
the Majorana sector is compatible with this symmetry, as
seen is Sec. D. The self-energy contribution to the mass
difference of the up and down quarks was calculated, and
all the terms either cancel or are negligible, except for the
ones due to the colored bosons. Here the calculation was
done using Dyson's equation and exponentiating the bo-
son propagator. The result comes out to be in the right
order of magnitude.

The new phenomenological predictions of the model are
a new Z particle at least three times as heavy as the usu-
al one, like-sign isolated dimuon events, and dijets with
large transverse missing energy. The dijets can simulate
monojets if one is hidden in the low-energy hadronic
background.

If isolated like-sign dimuon events continue to be ob-
served in the laboratories, this model will gain in interest.
At present the authors have no insight as to whether the
discrete symmetry employed is just a useful calculational
device, or if it really corresponds to something found in
nature.¹teadded in proof: It should be stressed that the jets
resulting from the colored Higgs bosons are in fact com-
posed of two overlapping quark jets. These jets originate
in the decay of the massive scalar colored charged bosons
and are thus emitted preferentially parallel. These pairs
differ from the jets of the standard model which are pre-
ferentially emitted back to back in the laboratory frame.
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