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%e consider soft-pion corrections to the Skyrme sohton to one-loop order. Starting; from

steinberg s law-energy expansion, are construct a meaningful and consistent effective description to
one loop, which embodies Skyrme s model in the classical limit. In this context the soft-pion contri-
butions to the nucleon and 6-isobar masses are evaluated, and their relevance to baryon dynamics

discussed.

The renewed interest in effective chiral models to
describe low-energy phenomena stems from the relative
success of Skyrme-soliton phenomenology. ' There
seems to be an increasing indication that chiral symmetry
rather than confinement is the pertinent constraint on
low-energy observables, reminding us perhaps of the
relevance of current algebra. However, such a descrip-
tion will remain unsatisfactory in the absence of a quan-
tum scheme that would account for soft-pion Skyrme-
soliton dynamics in agreement with soft-pion threshold
theorem s.

Skyrme's approach' to hadron dynamics is rooted in
the nonlinear cr model. The common wisdom is that the
large-N, version of QCD is a weakly interacting phase of
mesons and glueballs decoupled to leading order, and out
of which baryons emerge as solitons. 's In this respect,
Skyrme's model provides a simple realization of the
large-X, scenario consistent with current algebra. In yet
another line of thought, Weinberg argued some time ago
for a systematic description of low-energy phenomena
based on the sole assumptions of unitarity, locality,
Lorentz invariance, and chiral symmetry in conformity
with the general precepts of current algebra. Not surpris-
ingly perhaps, it turns out that Skyrme's script provides
the starting lines to Weinberg's general scenario.

It is well known that the long-wavelength properties of
QCD are dominated by the u and d quarks whose current
masses ( —10 MeV) are small compared to the QCD cut-
off A~ ( —150+80 MeV), where MS is the modified
minimal-subtraction scheme. In this regime, massless
QCD has an additional SU(2)L, SSU(2)x symmetry which
is believed to be spontaneously broken to SU(2)) with the
appearance of three massless Goldstone bosons:
n, m+, tr Quantitatively, . this symmetry translates into
a set of anomaly-free chiral SU(2)L SU(2)n Ward identi-
ties which, in return, constrain the different parameters of
the various correlation functions in the QCD vacuum. At
low energy, any sensible approximation to QCD must
abide by these identities. A systematic procedure that
keeps track of them makes use of an effective Lagrangian
description in terms of the chiral excitations (sr, sr-) (Ref.
8). In this spirit, Gasser and Leutwyler9 have shown that
to leading order in the pion momentum, the solution to

the chiral Ward identities is the gauged SU(2)t. SU(2)x
nonlinear tr model. They have established that the next-
to-leading-order solution is consistent with Weinberg s ex-
pansion in the presence of source terms, assessing
Weinberg's approach in the context of QCD. It is this ap-
proach that we seek in this paper to investigate soft-pion
Skyrme-soliton dynamics beyond the tree level, on a basis
which is consistent with the ster data.

Consider a model with SU(2)L, SU(2)it symmetry
spontaneously broken to the diagonal subgroup SU(2)r.
The vacuum state of this model contains massless Gold-
stone bosons (sr, sr +) which -are described by an SU(2)-
valued field U(x), i.e.,

7rU(x)=exp ir
p

L„=U'a„U,
(2)

where co —— F /4, ci and —c2 are dimensionless parame-
ters. The terms deleted are of higher order in derivatives.
Aside from form-factor terms such as Tr[L„BL"],quar-
tic terms of the form Tr[(t)„L„)], Tr[(B„L„)], . . . can
be eliminated through the use of the Cartan-Maurer equa-
tion. " The Skyrme model is a particular case of (2) in
which c2 ——0. The topological character of the model al-
lows for the existence of nontrivial field configurations
(Skyrme soli tons) that can be identified with QCD
baryons at low energy. Their classical stability depends
on the relative strength and sign of c] and c2. In princi-
ple, these parameters are uniquely determined by the
QCD inputs. However, the absence of a quantitative
understanding of QCD in the long-wavelength approxi-
mation leaves them undetermined. They are to be fixed
by experiment. For simplicity, we wi11 be assuming later
on that the renormalized couplings satisfy

~

c2 ~

Here F =93 MeV is the pion-decay constant, and the Ys
generate the Lie algebra of SU(2). At low energy, the
dynamics is given by Weinberg's chiral expansion'

Wo ——co Tr(L„)+ciTr[L„,L„]
+ c2 TrILq, L„)z+
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«
~
c i ~, and specialize to the 8 = 1 hedgehog configura-

tion, widely discussed in the literature, ' i.e.,

Uo(x) =exp[i~ rF(r)],

F(0)=m', F(00 }=0.

Finally, note that since the pion coupling is derivative
in nature, i.e., involves B&e'/F, one can view (2) in the
trivial sector as a soft-pion expansion (p ), or a weak-
coupling expansion (1/F ), or a large color expansion
(1/N, ) since F 2=0(N, ), and use it as a starting point
to understand the long-wavelength properties of @CD.

To investigate soft-pion Skyrme-soliton dynamics we
need to consider (2} beyond the tree level. Unfortunately,
the model as it stands suffers from severe ultraviolet and
infrared divergences and turns out to be not renormaliz-
able in 3 + 1 dimensions. What this means is that beyond
the tree graphs the model requires counterterms of in-
creasing complexity to cure the infinities arising from
higher-loop calculations. This should come as no surprise
since (2) is, after all, a truncated form in a chiral expan-
sion that involves infinitely many higher-derivative terms.
There is no reason to believe that the leading terms should
account for all dynamical scales.

Weinberg7 has shown that the leading term in (2) de-
scribes uniquely em scattering in the trivial topological
sector, to order p2 in the pion momentum. Consistency
with unitarity requires the inclusion of terms of order p .
Since loop contributions are suppressed in the sense of a
low-energy limit by powers of p „one needs to consider
the one-loop effect about the leading term in (2} along
with the tree-level contributions from the quartic terms to
order p in the trivial sector. In this spirit, it is possible to
make the model meaningful to one-loop order.

Consider the vacuum-to-vacuum amplitude associated
with the Lagrangian (2) in the presence of the Skyrme sol-
iton, i.e.,

and similarly for the ansatz (5b). Since Uo(x) satisfies the
saddle-point equation

R t(P) =exp i-
+

in terms of which the left-handed currents on S~ read

Lq ——R (Lq+r~)Rt,

r~ —(B~R )R—

i 1 1
, [0 «4)+o

(10)

The last expression constitutes a 1/F expansion about
the Skyrme soliton (iaeak coupling) consistent with the
present semiclassical description. Injecting (10) into (2)
and neglecting pion Skyrme-soliton correlations with large
momentum transfer, one obtains a soft-pion Skyrme-
soliton dynamics of the form (massless chiral fluctuations)

one deduces the one-loop contribution to the vacuum-to-
vacuum amplitude in the form

5~S
Zi ——exp i S[UO) ——,

' Trln
5y'5yb

5S=exp i S[UO) ——,
' Trln

5p5g

It is therefore sufficient to use either left or right fiuctua-
tions to describe soft-pion dynamics to one-loop order. In
this spirit, consider

U( x, t) = Uo(x)R t(P(x, t) ),

Z= &0.„, i 0,„&

isI U]
co 2lf'o

2 Tr[(B„Q) ]+ Tr(Qadi'A„)

where S is the classical action for the SU(2)-valued fields
described by (2). To investigate soft-pion fiuctuations, let
us specialize to the following class of field configurations:

U(x, t) =Uo(x)R (P) (5a)

or

U(x, t) =L (g) Uo(x) . (5b)

L (g) and R (P) are also SU(2)-valued fields which are to
be treated as fluctuating left and right mesons about the
Skyrme-soliton configuration Uo(x). [If Uo(x) is a solu-
tion of the equation of motion associated to (2}, then both
(5a) and (5b} lead to the same on-shell form of the soft-
pion Lagrangian of Ref. 12.] Using (5a), one can linearize
the Haar measure dib[U(x)] on SU(2) to an ordinary
I.ebesgue measure, i.e.,

g dp[U(x}]= ff dg(x)[1+O($ )] (6)

2 Tr([$,8„$]AI'),

where A& is an SU(2)-valued field defined through

A~ L„+ [L„,[L——~,L„]]+ IL„,IL~,L„II . (12)

The semiclassical contribution to Z is given by the
saddle-point equation

which is just the classical equation of motion for the
hedgehog configuration in the 8 = 1 sector, under the an-
nounced assumption that

~
c2 ) &» ~ci (. In Euclidean

space, the soft-pion contribution follows from the one-
loop correction through
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Z=exp(S(~)) f gdp(x)exp ——,
' f d xp'(x)Dzp (x)

=(detDx ) ' exp(SO ), (14) S) loop
= ~

the operator DE is given by

Dz 5——8 +Tr(v Az Bv ) .

In Euclidean space our conventions are

g&„——diag(+1, +1,+1,+1)
and AE ——( —iA, A), etc. From (14), we conclude that

S& ——So ——, TrlnDE .E

As it stands, the Trln term in (16}suffers from both ul-
traviolet and infrared divergences and needs proper regu-
larization. The UV divergences can be handled by dimen-
sional regularization in a chiral-invariant way. Unfor-
tunately, the infrared divergences can only be removed via
a finite infrared cutoff which breaks explicitly chiral sym-
metry as shown later on. In d-dimensional Euclidean
space (d =4—e), we have

d-4
Si =So — f d"x Trt(x

~
lnDE ~x), (17)

2

where p stands for the renormalization scale and the
remaining trace is over internal indices. To evaluate the
Tr ln term in (17), we will use the adiabatic approximation
of Goldstone and Wilczek. ' The latter is consistent with
Weinberg's expansion in the trivial sector. For that we
assume that the variations in the Skyrme-soliton field are
small compared to its Compton wavelength. In this spirit,
it is straightforward to show that the commutator and an-
ticommutator terms in (17) yield higher-order terms in the
field gradients to one-loop order and should be dropped.
This result agrees with Weinberg's argument that loop
contributions are suppressed by powers of p~ with respect
to the tree-level terms in the trivial topological sector (p&
is the pion momentum). At one-loop order, it is therefore
sufficient and consistent to consider

FIG. 1. General contribution to the effective action to one-
loop order. The dashed line corresponds to a soft meson, while
the wiggly lines are soft-meson Skyrme-soliton interactions
as described by the soft-pion Lagrangian {11) with A„
=L„+0{I.).

Aq L~——+O(L )

in terms of which we have

D=B'+L 8+O(L'),

L~ ——Tr(v L~d)=2@ Aq,
(19)

where we have used the fact that L& ir A—&, which fol-
lows from the fact that detU=1. Injecting. (19) into (17)
yields

TrlnD =Trln(B~)+ Tr in[1+(Bi) 'L 8]
1)k+1

=Trin(B )+ g Tr[(B ) 'L 8] . (20)

The general contribution to (20) is diagrammatically
shown in Fig. 1. The first term in (20) is the free space
divergence and can be subtracted away since it does not
affect the present dynamics. Moreover, consistency with
the tree-level expansion (2) shows that only k =1,2, 3,4
contribute to S t, as shown in Fig. 2. Higher-order terms
yield higher-order field gradients which are suppressed at
low energy. Straightforward calculations show that the
tadpole diagram in Fig. 2(b) vanishes identically. More-
over, the k =2 and k =3 terms sum up to 0 (p ), so that
the soft-pion contribution to the effective action is ex-
clusively given by the box diagram of Fig. 2(d). Using the
pion mass m as an infrared cutoff, we obtain (a~0+)

—,
' TrlnD= — f d x ITr[(B„L —Bg~) ]—Tr[(B+ti BQ )[Ltt,L ]]+—Tr(L& L„)+-,' Tr(L„L„) J+O(L. ),

12

(21}

S i =So — f d "x(Tr[L~,L„] —3 Tr I Lq, L„J )

+O(L ) . (23)

where X is a cutoff-dependent expression of the form'
P

m~
X= ——ln +1n(4rr) —y (22)

64H & p
The chiral logarithm in (22) signals the smooth infrared
divergences inherent to chiral perturbation expansion for
massless pions. Using the explicit form of L as given by
(19), we can rewrite (17}in terms of the left current on S,
j..e.,

I

The nature of the divergences occurring at one loop is
similar to the tree-level terms retained in the chiral expan-
sion, making the model renormalizable to this order. In
the perturbative sector, the divergent terms in X agree
with %'einberg's calculation based on the renor-
malization-group equations. The explicit analysis per-
formed here provides the finite terms as well. To get a
memungful action to one-loop order, we adopt a
"minimal" subtraction procedure, and choose to fit the re-
normalized couplings to the D-wave m.m data at g thresh-
old, as discussed by Gasser and Lcutwyler. This pro-
cedure is consistent with the soliton philosophy. In this
spirit, consider
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We have subtracted a finite piece as well for later conveni-
ence. This should be of no concern since co, ci, and cz
are yet to be fitted. Through this procedure, the renor-
malized couplings ek depend on the scale parameters p
and m . Using (24) to one-loop order, one can determine
the D-~ave m.m-scattering lengths in the trivial sector and
use them to evaluate phenomenologically the couplings
ck . Following Gasser and I.eutwyler we obtain

~=' +j
c i ———,ttF (aq —4ai)— 1 Pl ~ 49

ln +
768 p

2

ci +c2 ——, nF~ (—a2—a2)+ ln i +R it 5 4 0 2

384 p 20

FIG. 2. Leading contribution to the effective action in the
soft-pion limit. (a) is the free-space contribution. The tadpole
contribution (b) vanishes identically, while the two- and three-
point insertions in {c)sum up to 0{@~). (d) shows the exclusive
contribution to the effective action to 0 (p ).

~o——&0+(Zo —1)co Tr(L„)+(Zi —1)c i TrfLq, L„]i

+(Zi —1)ci TrIL„,L„I', (24)

where W" is the renormalized version of (2), and the Z
factors relate the bare couplings (ci, ) to the renormalized
ones (ck ) through ck ——Zkck, k =0, 1,2. The pion wave-
function renormalization Z is fixed by unitarity, i.e.,
Z =BOZO. To one-loop order, the minimal-subtraction
prescription reads

Zk ——1+ Z, k =012,Vk

64n

where az and az are the D-wave tran scattering lengths,
l.e.,

a2 ——(17.0+3)10 m

a2 ——(1.3+3)10 m~
(27)

ci =(0.7+0.5)10

c
& +ci —(0.9+0.3)10

(28)

As already mentioned, Eq. (26) shows that the couplings
depend explicitly on the renormalization scale p, and the
pion mass m . For definiteness, we choose to evaluate c i
and c2 at p=m„, i.e.,"

1 1
70—0~ 3'r g~ T2 g ~

12' ) 4cg
2Z =—+y —1n(4m) —1 .

(25)
In the chiral limit, the pion-decay constant does not re-
normalize at one-loop order, co ——co. The renormalized
action to one-loop order reads

I

Pl
S~ —— x co Tr L& + c~ + 1+in

768 m„
Tr[L&,L„j + ci — 1+in

256m m&
TrIL„,L„I2

(29)

As indicated by Rho, ' the Skyrme-soliton parameters
used by Jackson and Rho to reproduce the pion-decay
constant I' and the axial-vector coupling gz at the tree
level, i.e., c~ ——1.4)&10 and e2 ——0, are consistent with
the renormalized couplings (28) at rl threshold. Finally
notice that the soft-pion corrections are attractive to one-

loop order.
For the hedgehog configuration, it is straightforward to

deduce the soft-pion correction to the mass term in the

i

which pushes down the Skyrme-soliton mass. This effect
is expected from naive second-order perturbation theory.
The results quoted in Table I show a 20%%uo effect due to
the soft-pion correction on the Skyrme-soliton mass.

To investigate the soft-pion effects on the S and b iso-
bar we follow the projection method advocated by Adkins,
Nappi, and Witten. To disentangle the slow rotation of
the Skyrme soliton from the chiral fluctuations R(x, t),
me mill make the plausible assumption that the collective
rotation in isospace satisfies

Pl
1+in

PRE ~
P

2 4
3pt4 kg 2

sin F sin F
0

f
A tA

f
(( f

R tR
f

. (31)

In this picture, the Skyrme soliton resembles a large but
slow wheel coupled to a small but quick wheel represent-
ing the chiral fluctuations R (x,t). In other words,
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TABLE I. (a) Soft-pion corrections to the ground-state energies M for the hedgehog Skyrme soli-

ton, nucleon, and h, isobar are quoted along with the moment of inertia A, . For the parameters of the
model (F and e ) we have considered two cases: (i) the parameters of Adkins, Nappi, and Witten (Ref.
2) which were fitted to reproduce the mass of the nucleon and d isobar: F =64.5 MeV, e =0.00421;
(ii) the parameters of Jackson and Rho (Ref. 3) which reproduce the pion-decay constant I and the
axial-vector coupling gq using the Goldberger-Treiman relation: F =93 MeV, e =0.005 52. (b) The
results in Refs. 2 and 3 are summarized.

(a)

0.00421
0.005 52

64.5
93.0

MH
(MeV)

0.82
0.90

695
1183

Mg
(MeV)

1057
1511

361
328

H, m

0.22
0.41

0.00421
0.005 52

(MeV)

64.5
93.0

MH
(MeV)

1.01
1.05

M~
(MeV)

937
1496

Mg
(MeV)

1231
1778

(Mg —Mpg)

(MeV)

294
282

ga

0.61
0.80

U(x, t) =A (t) Uo(x)A (t)R (x, t)

hA, = 1+in1

9m

m~ "
2 z 2 s~n I'2

'

dr r2 sin F F' +4 2
m ~

(33)

which amounts to a net do:rease in A, by about 15% as
shown in Table I. The soft-pion fiuctuations produce an
overall attraction which tend to push down the N and b,

mass.
The soft-pion correction to the hedgehog axial form

factor gq is given by

1
~g~ =—

18m

Nl
1+in

+4 sin(2F}
sin E

This corresponds to a 50% decrease in g„as shown in
Table I. This result should be interpreted with care, since
the calculation is done in the absence of pseudoscalar and
axial-vector sources. A systematic calculation of g„
necessitates an elaborate renormalization scheme in the
presence of these sources, and will be reported elsewhere.

and all our previous arguments follow through for the
projected N and b, states. Equation (32} shows that rigid

chiral rotations do not affect the trivial vacuum, as of
course expected. The resulting correction to the moment
of inertia due to the soft-pion fiuctuations reads

We have presented an explicit and systematic approach
for investigating soft-pion corrections to the Skyrme soli-
ton. In the absence of a @CD script, Weinberg's general
chiral expansion seems to be the reliable framework for
discussing Skyrme-type phenomenology. We have em-
phasized that the urge to go beyond the tree level in this
effective description is not only needed for pion Skyrme-
soliton dynamics but also required by the unitarity of the
S matrix in the trivial sector. Using the soft-pion limit,
we have explicitly constructed the effective action to one-
loop order, and carried it through beyond the standard ef-
fective potential. A more detailed account of this pro-
cedure will be given elsewhere. ' In the light of the n.m

data, our results show that the soft-pion corrections to the
nucleon and b, isobar masses-are attractive and substan-
tial. This might suggest a mechanism based on soft-pion
fluctuations to restore the missing medium-range attrac-
tion in the central channel of the NN potential in the
Skyrme model. They also produce a 50% decrease in the
axial form factor g„of the hedgehog configuration.
However, this negative result should be interpreted with
care since we have disregarded possible source renormali-
zations. These soft-pion corrections to the Skyrme soliton
are of order 1. Although sizable, these effects are only
directional in the absence of the relevant vector-meson
resonances in the 1-GeV scale. The conjugate effects of
the vector mesons ~, p, and A

&
on the Skyrrne soliton will

be discussed elsewhere. '

Note added. In a recent work, Schnitzer' has investi-
gated similar issues using a constraincxl Hamiltonian for-
malism. The character of his approximation does not rely
on a gradient expansion, but rather on an explicit trunca-
tion of the pion propagator viewed as an infinite series in
the interaction kernel. As a result, his soft-pion correc-
tion to the Skyrmion mass is finite and positive. While
finiteness can be perhaps justified on the basis of the ap-
proximation used, his argument that the zero-point energy
must be definite positive is not correct because of the pos-
sible counterterms. The standard example for this is the
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zero-point correction to the kink mass in the sine-Gordon
model. We will elaborate further on Schnitzer's work
and the correct handling of the projection technique in the
soft-pion regime in a further study.
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