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Two versions of the cloudy-bag model (surface and volume coupling) satisfy the commutation re-

lations of current algebra. Perturbation-theory evaluations of various observables are compared for
the two treatments. The electromagnetic properties are essentially the same in both versions. The
volume-coupling model contains, in lowest order, a pion-quark contact interaction that contributes
to the axial-vector current. Including the effect of this term leads to a computed value of g~ of
about 1.2S, if the radius of the nucleon bag is around 1.0 fm.

I. INTRODUCTION

In the cloudy-bag model (CBM) hadrons are treated as
quarks confined in an MIT bag that is surrounded by a
cloud of pions. ' The CBM Lagrangian satisfies the
SU(2) X SU(2) current algebra and obeys chiral symmetry.
Pionic effects treated perturbatively as quantum fluctua-
tions around bag model solutions, provide significant
corrections to baryonic properties. Results for nucleonic
charge, magnetic, and axial-vector-current distributions
as well as pion-nucleon scattering are in very good agree-
ment with experiment. In addition g„has the reasonably
accurate value of 1.09. The significance of the g„value is
reviewed by Faessler. 6

The purpose of the present work is to explore the conse-
quences of the current algebra in a more detailed fashion
than has been done previously. We begin with a brief re-
view of the previous impact of current algebra on the
CBM.

In the original version ' of the CBM, the pseudoscalar
interaction between pions and quarks takes place only at
the surface of the bag. Although the Lagrangian for this
model has conserved axial-vector and vector currents and
obeys the current algebra (see Appendix A) it was difficult
to identify the explicit terms and dynamics which lead to
the well-known current-algebra predictions for various ob-
servables. For example, it was not clear how to obtain s-
wave pion-nucleon scattering. This problem was solved
by Thomas, see also Ref. 8, who obtained a transforma-
tion on the quark field operators which made the
current-algebra results more explicit. In particular, the
transformed Lagrangian explicitly contains the
Weinberg-Tomozawa ' (WT) term responsible for low-
energy s-wave pion-nucleon scattering. Another conse-
quence is that the pion-quark interaction is of the pseu-
dovector form and takes place over the entire volume of
the bag. The use of the W'I' term leads to a reasonably ac-
curate evaluation of the width for the p meson to convert
to two pions. " The original and new formalisms are re-
viewed briefly in Secs. II and III.

The previously mentioned good results were ob-

tained with the original formalism. Thus it is necessary
to determine the implications of the new formalism for
observables computed earlier. For baryons of the
ground-state octet, the pion-baryon vertex functions are
the same in the two formalisms. This is discussed in Ref.
12 and in Appendix B.

There are, however, some changes in the electromagnet-
ic interaction that are expected from the new derivative
form of the pion-quark coupling. The preservation of
electromagnetic current conservation requires that there
be an additional contribution to the electromagnetic
current absent in the surface coupling model. This
y+q~+m+q term is shown in Fig. 1(a). Its influence on
baryon magnetic moments and nucleonic mean charge ra-
dii is evaluated in Sec. IV. In addition there is a term that
plays the role of a virtual p meson. A tr+n pair pro-
duced by a virtual photon can be absorbed at once by the
WT term [see Fig. 1(b) and Sec. V]. The effects of the
terms of Figs. 1(a) and 1(b) are very small and tend to
cancel.

A more interesting observable, for our present purpose,
is the axial-vector coupling constant g„. In the original
CBM it is only the quarks that contribute to gz, even

though both pions and quarks carry axial current. The in-
troduction of the WT term raises the possibility that there

FIG. 1. Contact interactions in the volume-coupling form of
the cloudy-bag model. In (b} p and q —p are the momenta car-
ried by the two virtual pions.
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is a contribution to g„ that was missing in the early
evaluations in the CBM. This is because of the Adler-
%'eisberger' relation between gz and pion-nucleon
scattering cross sections. Any term that influences pion-
nucleon scattering should have some effect on the values
of gz (Ref. 14). Here we identify the new term. It is of
the q~q+n form shown in Fig. 1(c) and, tends to in-
crease g~ by significant amounts depending on the bag ra-
dius. The correction to g~ is evaluated in Sec. VI.

II. THE ORIGINAL CLOUDY-SAG MODEL
FORMALISM

The cloudy-bag model (CBM) in the absence of gluon
fields is defined by its Lagrangian density

W(x) =[q(x)(iy r} mq)q—(x) B]8v—

which, according to Noether's theorem, results in the con-
served vector current

V"=qy" q—8v+j 0 (elf.)n xdt'n,
2

(2.3)

'r'Py q ~

2

m~e+ pf+f(px &)x &[I (~If—)cot(irlf)] .

This gives a conserved axial-vector current

A"=qy"y q8v+—f&P'n'+ & & sin(2n lf),
(2.4)

wliele JQ is the spherical Bessel function. In the limit of
m& ——m~ =0, (2.1) is also invariant under the infinitesimal
chiral transformation

—-'q(x)e "~"&"fq(x)~

+—'~ w(x) ~"ir(x)——'m 'ir (x) (2.1)

which when m +0 becomes a partially conserved axial-
vector current (PCAC),

Here q(x) is the quark field, me is the quark mass ma-
trix, ir(x) is the pion field of mass m, B is the constant
"vacuum pressure, " and f is a constant. 8v is a volume
step function

1, x&V,
0 otherwise

&„~=(d„n)&+f sin(irlf)d„&,

where m=
~

n
~

and e=eln The equat. ions of motion
appear in many places. ' ' Here we only recall that

(iy 8 mq)q(x—)=0, x6 V,

is"et@) /iy nq(x)=e"~'& 'fq(x), xeS,

(~ +m )ir(x)= — q(x)y rq(x)bs,

(2.2a)

(2.2b)

(2.2c)

where (2.2a) is the free Dirac equation for the quarks in-
side the bag; (2.2b) is the linear surface boundary condi-
tion which guarantees that the quarks remain permanent-
ly confined inside the the bag volume; and (2.2c) is the
Klein-Gordon equation for the pions with a highly non-
linear source term on the bag surface which is given only
to the lowest order in f '. The Lagrangian density (2.1)
is invariant under the infinitesimal vector transformation

and hs —n 88v——, a surface 5 function in terms of the
outward four-normal to V with n„n"= —1. The covari-
ant derivative is defined as

with

WMrr=q(iy 8—me)8v B8v i qqbs—~—
2 2W =TB„ir 8'ir ——,m

qy 1"1Tqks .l

2f

(2.5)

A quark-pion Hamiltonian is derived in the canonical
fashion. One then obtains

H =HM~+H~+HI

with

(2.6)

HMrr= I [q( iy V+mq—)q+'B]8vdix

H = —,
' I [(B,ir) +(Vir)i+m e ]d'x,

q& iry'q lsd'x ..
2f

After canonical quantization of the quark and pion

fields (2.6) becomes an operator equation with H~H.
The fields are then given by their mode sums

irj(x;t)= J i,zzai, je
' +H.c. ,[(2~)'2,]'"

q (x;t)= g [gt(x)b t+P&(x)d &],

(2.7)

(2.&)

from which we can identify f as f~=93 MeV, the pion
decay constant. The time components of the currents in
(2.3) and (2.4) are shown to satisfy the current-algebra
commutation relations in Appendix A.

The reasonable approximation used when working with
(2.1) is to linearize about the point e =0. Keeping only
terms of order (frlf ), (2.1) becomes
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4nrjm (X)=+nr

nd'
JI

nl—i sgn(K)j,

XS'„e " 8(R r), — (2.9)

Where E„„=Pin„/R, Nn„ iS a nOrmaliZatian faetOr„9'„are
the spin-spherical harmonics, and

l =J + I sgn(K),

I'=j ——,
'

sgn(K) .

where pik=(k +m )'~ and aij destroys a pion with
momentum k and isospin label j, and b,t (d,i) destroys
(creates) a quark (antiquark) and flavor a in the bag
model 1. Here l represents all quantum numbers for a
given mode and the creation and destruction operators
satisfy the canonical commutation relations for bosons
and fermions. The positive-energy bag modes are solu-
tions to (2.2a) with the linear boundary condition given by
(2.26) neglecting the effect of the pion field. The most gen-
eral solution assuming a static spherical geometry and
massless quarks is

~n]e

2R (nr+K)Jp (tunr)
(2.11)

The last step is to project H onto the subspace of color-
less nonexotic baryonic bags,

8=—PHP,
(2.12}

P=
~
Ag)(Ag

~
.

A E IN, B„A,. . . I

Here
~ Ag ) are the SU(6) baryonic quark wave functions.

The projection in (2.12) is restricted to the low-lying
baryon octet and decuplet of physical particles which are
members of the 56 representation of SU(6}. Here we let
the bag radius R be a parameter independent of 8, and as-
sume all baryons in (2.12) to have the same radius. Then
the projected Hamiltonian in a second-quantized notation
becomes

H = g ApBp(Ag ~H ~8g) =HMrr+H +HI

jp(pI„,) = —Kji(p)„„)

to be ~=2.04. X is a two-component Pauli spinor, and
the normalization condition

f q (r, t)q(r, t)d r =1

sets

Here j and rn label the mode's angular momentum and its
'R component, K is the Dirac quantum number which dif-
ferentiates the two states of opposite parity for each value
of j, and n labels the radial mode. Here we use only the
mode, 1SI~I, corresponding to K = —1. Then we have

&or
Jo

with

HMIT= g mpgA pAp,

Hn= g d k pikag aug,
3

j=1
3

Ht = g f d k g A p8 p(ug&a I I+ topi ja 1 j ) .

(2.13)

X e '"""e(R r-)—

(2.10)

with the eigenfrequency pi=—pi I I determined by the
linear boundary condition (2.2b)

Here AO, BO destroy bare baryonic bags, mo& is the corre-
sponding bare MIT baryon mass, and the sums run over
all baryons in the octet and decuplet representations of
SU(6). The vertex function upi,j is associated with each
unrenormahzed vertex which turns a pion (k,j) and bag 8
into a new bag A and topi,j =—upi",j' is the vertex function
associated with the creation of a pion. We have

X
upij= f, e'"'(Ag iq(x)I. y'q(x) i8g)5(r —R)

(2Ir)'2pII, ]I"
.fp u (kR)=—I (Stisti lm

~
Sgsg ) ( Ttitti 1n

~
Tg tg )kmej nm. [(2~)3Z „]'" (2.14)

where (2.10}is used for the spatial part of the quark wave
functions so that u (kR)—:3ji(kR)/kR. fp are the tran-
sition coupling constants hsted in Table I (from Ref. 15}.
They are proportional to the reduced matrix elements of
the rank-1 irreducible spin-isospin tensor belonging to the
56 representation of SU(6). The Clebsch-Gordan coeffI-
cients depend on the spin S and isospin T and their third

components s, t of the initial and final baryons. k and
ej„are the complex spherical components of the pion
momentum k and the Cartesian unit vector ej, respective-
ly. For the case A =8 =Jul we find from Table I
fp =5fg with

(2.15)
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TABLE I. The g~+8 bare coupling constants fo /fq,
where fo is defined in Eq. (2.15}. All blank entries are zero.

A X X

0
4v 6/3 —4v 3/3

2 2v 6/3 21/30/3
—2v2
v 5/3

Then comparing the vertex (2.14) at zero pion momentum
one can show that f0 is related to the usual pseudoscalar
pion-nucleon coupling constant by

fo —3v4n f—NN~ .

This results in a value of fNy~ ——0.23 in comparison to the
experimentally determined physical value of 0.28.
correction that brings these numbers closer together is dis-
cussed in Sec. VI.

It is worthwhile to discuss the specific values of the bag
radius, R, used to compute observables. Nadkarni, Niel-
son, and Fished' have shown that, in certain idealized
(1+ 1}-dimensional models, shifting the position of the
bag wall has no effect. The possible implication of this is
that predictions in bag models should be insensitive to the
value of R. As reviewed in Ref. 1, the perturbative treat-
ment of the cloudy-bag model is valid only for bag radii
greater than about 0.8 fm. In this work, we present re-
sults for a variety of radii. These demonstrate insensitivi-

ty to the specific value of 8 in the model's region of va-

lidity.

HI. VOLUME-COUPLING FORM OP THE CSM

q (x)~q'(x) = U(x)q (x},
where

U(x)=exp[ir rr(x)ys/Zf ] .

Then equation (2.1) becomes

(3.1)

(3.2)

As mentioned in the Introduction, the cloudy-bag La-
grangian (2.1) has nonlinear conserved vector and axial-
vector currents which satisfy the SU(2}XSU(2) current
algebra of Gell-Mann. The proof of this to 0(f ) is
given in Appendix A. This means that all the old
current-algebra results for soft pions' should also hold in
the CBM. In particular the s-wave pion-nucleon low-
energy scattering lengths of Weinberg-Tomozawa9'0
should be derivable. However, in the original cloudy-bag
model where quarks are confined to the ground state and
recoil of the nucleon is neglected, there can only be @-
wave pion scattering. This is because the interaction be-
tween quarks and pions conserves angular momentum and
parity.

Clearly what one needs to get s-wave scattering in the
CBM is to allow quarks into odd-parity bag states, such
as encountered when including Z graphs at the quark lev-
el.

An easier way around this problem was discovered by
Thomas &also see Bartelski and Szymacha') who showed
that if one redefines the quark fields in a way similar to
Weinberg, a new effective chiral bag Lagrangian is ob-
tained which leads directly to the s-wave scattering for-
mula of Tomozawa and Weinberg. ' We now outline the
steps used by Thomas to arrive at his modified Lagrang-
ian.

Start with the usual surface-coupling CBM Lagrangian
(2.1), and define new quark fields,

W(x) =(iq 'Uy BUtq' B)Hv —
1 q 'q'hs—+ 1(S'&m) 1 m~ 'sr-

=(iq y Bq —&)Hv —T~q q bs+ (&„e) ——,'m rr +iq'y"(Ud„U )q'H (3.3)

If we now reinterpret the primed fields as the physical quarks, then the effect of this transformation is to completely
eliminate the surface interaction between quarks and pions and replace it by a new volume coupling interaction. One can
show that

Ut y
' ~ cos( 77/f )—1

Zf l4
r.(&Xd„&), (3.4)

which upon substitution into (3.3) results in the modified cloudy-bag Lagrangian

~ciiM=(&qy &q &)Hv , qq&—s+ ,'(&—„s—r) ,'m—sr+——qy"y'rq 8„1rHv qry". (—eXd„n)Hv, (3.5)

where we have dropped the primes on the quark fields and
kept only the lowest-order terms in the pion field. The
last term in (3.5) gives the Tomozawa-Weinberg result for
zero-energy s-wave mN scattering. '

Eqlla't1011s (2.1) (surface coupllilg) slid (3.5) (voluIIle
coupling) are related by a change of variable and differ by
a canonical transformation. Thus the two theories must
describe the same physics. However, the theories are to be

evaluated in perturbation theory, and the result is two dif-
ferent a proximations to the same theory. In certain
came' ' what is lowest order in one language may be ob-
tained by an infinite class of diagrams in the other. Thus,
similar approximation to the different Lagrangians can
give different results. The surface-couphng model
predicts magnetic moments and charge radii in fairly
close agreement mth experiment. These predictions
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TABLE II. A comparison of the contributions to the magnetic moments of the nucleon octet in the surface and volume versions of
the CBM. The total pionic, baryonic, and center-of-mass contributions (p,pg, p, , respectively) in the surface version are taken
from Refs. 3 snd S. The two new contributions arising in volume coupling which are caiculated here are pc (Fig. 2) aud 5p [Fig.
1{b}].The bag radius R = 1.0 fm. All values are in nucleon magnetons.

Pexpt

Pe
pg
B

Pc.m.

PcsM

pg&

5p

PcsM+~I +pg~

2.79

0.60
1.74

0.31

2.65
—0.209

0.120

2.55

—1.91
—0.60
—1.22
—0.22
—2.04

—0.120
—1.95

2.38+0.02

0.34

1.73

0.27

2.34
—0.111

0.096
2.33

—1.10+0.05
—0.34
—0.62
—0.09
—1.05

0.111
—0.096
—1.04

—1.25+0.01
—0.02
—1.16
—0.18
—1.36

0.0150
—0.02
—1.36

—0.69+0.04
0.02

—0.54
—0.09
—0.61
—0.0150

0.02
—0.61

and the experimental values for the magnetic moments are
listed in Table II for a bag radius of 1 fm. One would
hope that the volume couphng model gives results not too
much different from these. Before going on to show that
this is indeed the case, we discuss some general features of
the modified cloudy-bag Lagrangian given in (3.5).

First notice that in the absence of the pion field, the
quark terms are that of the MIT bag. The pionic interac-
tions occur over the entire volume of the bag and are to be
treated in a perturbation expansion based on NIT-bag
quark wave functions. The absence of surface interactions
means that the complicated boundary condition of Eq.
(2.2b) is replaced by the simple MIT linear boundary con-
dition i n yq =q.. It is therefore legitimate to neglect the
infiuence of the pionic interactions on the quark eigenfre-
quencies, and the perturbation procedure is greatly simpli-
fied. Indeed, the truncation procedure of keeping all three
quarks in the (~= —1) state seems to be far better justi-
fied in the volume coupling version, since the WT term
appears immediately in Eq. (3.5). To obtain this term in
the surface coupling version one must break the trunca-
tion by including intermediate quarks in negative-energy

states ( Z graphs at the quark level}, as found by
Guichon, ' and by Jennings and Maxwell. '7

Another nice feature of (3.5) is that the lowest-order
quark-pion interaction term results in the same mA8 ver-
tex [Eq. (2.14)] as the surface coupling model if the
quarks are kept in their ground-state orbitals. For a proof
of this see Appendix B. This means that the physical pro-
ductions of both versions of the CBM that depend only on
the lowest oder pion-baryon vertex are the same. So, for
example, the physical baryon wave function and the
baryon self-energies are identical to lowest order in both
models. However, due to the presence of the derivative
coupling in the interaction term of the modified Lagrang-
ian, there is an additional contribution to the electromag-
netic current absent from the surface-coupling model.

IV. THE CORRECTION TO THE
BARYON MAGNETIC MOMENTS

Introduction of the electromagnetic field A "(x) into the
cloudy-bag model is accomplished by minimal substitu-
tion into Eq. (3.5):

WcaM aM(x}=[iqy (8 ieQA)q —8]8v——,'qqbz ——,'rri rri m—PP+ —,'(B„m3) +—[(8" ieA")P ]—[(Bz+ieA„)P]

(4.1)
s+ f [qy"y r3q&„~3 qy"y r+q(d„i—eA„)p +qy"y—r q(d„+ieA„)p] —,F„+"", —

where F„„is the electromagnetic field tensor, transformation

1
(mi(x)+iraq(x))

2
q (x}—+q'(x )=q (x)—+8(x)eQq (x),
P(x)~P'(x) =P(x)+i 58(x)eg(x), (4.2)

is the field that destroys negatively charged pions, Q is
the quark charge matrix, and e the charge on the proton.
Also, the subscript + stands for the usual spherical com-
ponents of a three-vector, V+ = + ( V, +iV2) /v 2. The La-
grangian is invariant under the infinitesimal local gauge

A( )~xA(x) =A "(x)——r}%8(x) .
I 1

The global version of this transformation results in a con-
served electromagnetic current:
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au~,""'"'" = & a(a„y, }@8

=jciiM(x)+jg»(x) . (4.3) N
/

Here jpcnM has the same form as that of the surface-
coupling model, namely,

jcsM(x}=jg(x)+j".(x),
where the quark and pion currents are

j6(x)=eq(x)y"Qq (x)8v,

jj'(x)= ie[—pt(x)a p(x) p(x—)&$ (x)] .

(4.4)

(4.4a)

(4.4b}

FIG. 2. Graphical representation of the near contributions to
the nucleon magnetic moment in the volume-coupling CSM.

so there is a calculation to do. The new contribution to
the nucleon magnetic moment is

The additional current involves both the quark and pion
fields: I g»=&» I I g» "zI »&, (4.6)

js (x)= q(x)y"y (r P (x)+r $(x))q(x}8
2t

(4.5)

where

pg =
2 ~&X)g

The lowest-order pion-nucleon interaction is the same
in both models so we can use the same interaction Hamil-
tonian, and therefore the same physical nucleon expansion
to calculate the lowest-order contributions to the magnetic
moment and charge radii in the volume coupling inodel.
Hence contributions due to j~M are identical to those cal-
culated by Theberge, Thomas, and Miller. ' All that
remains is to calculate the additional contribution due to
the new current in Eq. (4.5).

First consider the contribution of j~ to the nucleon
charge radius:

jr 4g =(N Jd rr j& tr& Nj .

From (4.5) we find we need qp(x)y r+qp(x), where qp is
the quark ground-state orbital given in Eq. (2.10). The y'
operator is odd under the parity transformation, so this
quantity vanishes and hence the baryonic charge radii are
identical in the two models to lowest order.

Turning now to the magnitude moments, we first note
that the quantities qp(x)y yysr+qp(x) are not zero, and

I

with Jg» given in (4.5).
I
Nt & is the spin-up physical nu-

cleon. To lowest order in the re coupling there are two
terms

pg»=zz&&ot Ipg»'&Go(mz)A&Hi I &» &+c c.

which can be represented graphically as in Fig. 2. Insert-
ing a complete set of states we have

vg 2znr g—&&ot lag zI aokj&
Ak)

X &Aokj I Gp(mjv)HI I
Npf & . (4.8)

Equation (2.13) gives

&ApkJ I Gp(mjv)HI I Not &=
AX+ ~k

with a&qs
—=mz —ms.

To evaluate the matrix element of the magnetic-
moment operator, first insert the expression (2.7) for the
pion field into (4.5) to obtain

z= — e' g I r'gq, (r)yy (riap2 r2api)e' 'q,—(r)8vd r
p 0

with the sum over quarks now given explicitly. After substitution of the quark wave functions one finds

2 l3
'i&&'0&l»g. 'Xi~0&, &=& 4 3,gg

+0't zx + (~X+l~j2 +PlÃ +Ol[( 2}'2,]'"

(4.9)

(4.10)

Sd(k) J r&e&k rJ 2 . ~l

The angular integration yields

(S' —S ')(k) =4m i (k Xo ).zf (k)

with

(4.1 1)

+ j& cr.roar r Had r .Mf f(k)= f r (jp j i ) ji(k—r)dr .
0
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+ ('Ss~, 1/2 2 'Ssg, 3/2)(~Tg, 1/2 2 'STD, 3/2)

k Q R
tet (teak+~x)

the contribution due to the intermediate baryon A. For
the nucleon intermediate state teq~ ——0 and the k integra-
tion can be done analytically. The result is

mN 25

f ~R 432m '

4

(t0 —1}Sin t0

X, e I(a)p~,j. +e (4.14}
J

where }uN ——e/2m~ is the nuclear Bohr magneton,
a=m~8. , and

I(a)= f, g(j 0' j)2)(a)g)—(i+(a)e &dg

must be calculated numerically. This result has the same
functional form as the calculation of Bartelski and Szy-
macha. s However, they treat the pion classically and
therefore do not handle the intermediate state energy
denominators and wave-function renormalization proper-
ly.

The generalization of (4.12) to the other long-lived
baryons is simply

B ~ BAPg~= ~Pg~
with

The main reason why this contribution to the magnetic
moments is small is that jo —j ~

——0 at r =R, and the in-

tegrand goes as r .
Inserting (4.10) into (4.8}, use the expression (2.14) for

the pion creation vertex
tenez

——Uz~"', perform the angular
integration, and sum over j. This gives

~a = X&a (4.12)
A

with

eZX+1, —1 fQ
2

54tr f m

fBA

Ze(R)= 1+ g m~
—1

k~u 2(kR)

~k(~k+~~e)

0.25 l I I
I

i I

0.20-

The results for p~ with 8 =n, X,:" are plotted as a
function of bag radius in Fig. 3. The double integrals P"
are done numerically with the standard values for the
baryon masses'. The other moments are given by

pg&= —pg~ pg& = —pg&,P N

APg~= —Pg~ ~ Pge=o ~

as a consequence of the isovector nature of this term.
The results of these computations are summarized in

Table II. But there are terms other than j~ that must be
included. These are'discussed in Sm. V and included in
Table II in the row 5p.

As can be seen from the table, the old surface-coupling
CBM predictions are quite good, differing from the exper-
imentally measured values by roughly 5—10%. They
have actually improved since publication of Ref. 3 be-

cause new measurements of }tt* obtained from fine-
structure splitting in X exotic atoms have brought the
value much closer to the CBM prediction. 20 The basic re-
sult of adding p~ is to lower the total pionic contribution
to the magnetic moments. This effect is almost canceled
by the terms of Fig. 1(b) (see Sec. V). The new results in
the last row of Table II are not distinguishable from those
of Ref. 3 and the good agreement with experiment is
maintained. Theberge and Thomas include a center-of-
mass correction to the quark term due to Donoghue and
Johnson'' but other prescriptions exist and currently there
is no consensus on how to make these corrections see
Sec. IV of Ref. 3 for a discussion of the ambiguities. Un-

Pg~= —ZB
m+ AC Q7

18m'f ~ to —1

BA

s (A)t (A)g"
(4.15)

0. I 5—

in nuclear magnetons. Here the isospin factor is'5'9

4(A)=[&~~(ta —1)1+1ITBtB)'

—(Tg(te+1)1—1
~
Tste)'] (4.16}

with the spin factor ss(A) given analogously (T~~
t~s) and

y
~ k f(k)u (kR)

dk (4.17)4r o COk (COk +Cage )

in units of fm ~. Note that we use massless quark wave
functions in f( k) since the pions do»««pie «s«ange
quarks at the photon vertex.

The bare-bag probability is obtained from the normali-
zation condition on the physical baryo~, (& ~&)=1,
which is

0.05—

Q I ~ I

0.4 0.6 0.8 I.Q l.2
R (fm}

FIG. 3. The baryon-magnetic-moment corrections (p,~z), as
associated anth the neer processes shown in Fig. 2, which arise
in the volume coupling CBM, are sholem as a function of R.
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til better center-of-mass corrections are available and oth-

er effects such as recoil and nonstatic corrections are in-

cluded, one can say that both the surface and volume cou-

pling cloudy-bag models give good predictions for the
electromagnetic properties of the baryons.

(N iHwT i N, p(m)k(1))
5J)'(r) = 2 d3p d3k

im
—(~) +~k)

X(Wp( ),k(I)
~

j"( )
~
N), (5.1)

V. p-MESON-LIKE EXCHANGES

The Weinberg-Tomozawa term (HwT) allows for the
emission of two pions which together carry the quantum
numbers of the p meson. This virtual "p meson" can con-
vert into a photon. There is then another contribution to
the expectation value of j&(x), as shown in Fig. 1(b).

The appearance of a closed pion loop indicates that the
virtual pions can have quite high momentum. Such terms
are beyond the scope of the cloudy-bag model which uses
a long-wavelength approximation. Here such a treatment
is not justified, since that approximation leads to infinite
values. However, we shall show that including the effects
of the pions' small but finite extent leads to finite (and
small) values for the terms of Fig. 1(b).

Turn now to the evaluation of the nucleonic expectation
value of the electromagnetic current j)' for the terms of
Fig. 1(b). This is (5j ), with

where p(m), k(l) are the quantum numbers of the inter-
mediate pions. The factor of 2 is inserted to include the
term in which the order of HwT and j"is reversed.

The expression for j" in terms of pion creation and de-
struction operators has been given in many places (e.g.,
Refs. 1, 3, and 5). Here we relate the term relevant for the
present computation:

d Qd3keiii —q) r
j"(r) -=- — e 3

(27K) (rogcipk )

X k"a~'( —Q)ai(k) (5.2)

with g = 1, g"= —1. The relevant piece of the
Weinberg- Tomozawa term

A wT ——
2 ry„q(x) (QXPQ)(x),4f2

(5.3)

is obtained by using the m mode sum (2.7) along with Eq.
(2.10) to describe the quarks. That procedure gives

(5 4)

2
COX . NX

m(x) = ' 2(o Xx)jo j) —=p(x)(o'X x) .

3 3

4 wT
---=

2 i ai (k)a~(p)e ' i'+ '~k[icopp(x) i p m(—x)] .+1 d Pd k &ink t t ( +),).~
4f 2cok 2'~(2n )i

The term A ~++ is the one in which two pions are created. Its adjoint destroys two pions. The functions p(x) and m(x)
are given by

2

p(x) =

It is worthwhile to compute the corrections to charge radii and magnetic moments separately. Thus first choose )u =0.
The use of (5.2) and (5.4) in (5.1) gives

(
3 3 2x J'd"s'(). '~ x)= '' x x "x jd' (*~. '~ f'' ''~+~''

8(2m )3f~
a)~ ~(

i p+q i
)(r0(

i p+q i )+r0(p) )

(5.6)

The evaluation of the change in the mean square charge
radii (5r ) is our concern here. Thus we take the small

q limit and obtain the coefficient of the leading term. It
1s

mass shell. All we can do is make a rough guess at how
the finite size enters. One way is to assume a nonlocal
pion quark coupling. That is, make the replacement

&n is" ix&= ', , (x x ' x)
a

m(x)~ I d'x'ir(x') f (
i
x—x'

~

) . (S.Sa)

x Jd'p P
QPp

(5.7)

As expected, loop integrals lead to divergent terms; in
this case there is a logarithmic divergence. To evaluate
the integral, the influence of finite size of the n in the
quadratic pion interaction terms must be included. This
is a difficult problem, since the two pions are far from the

in the quadratic pion interaction terms. For those terms
the pion destruction operator ai (p) is replaced by
ai(p)f(

~ p ~
) where f is the Fourier transform of f. The

substitution (5.8a) renders loop integrals finite, but does
not affect (by definition) the simple pion quark interac-
tion.

To procixd one must specify f. From (5.S) we see that
f is roughly related to the pion's internal wave function.
We use the simple form
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f( )
—PiR 2/i2

(5.8b)
TABLE III. Change 5r in proton mean charge squared ra-

dius caused by the terms of Fig. 1(b). The value m R =0.28
corresponds to the favored value of R =0.4 fm.

e p dp —p2R ~/3

p +m

x N (5.9)

with the expectation that E.~ is the relevant mean square
radius of the pion. [We use a —p R i/12 argument since
it is f (p) that would enter into ir-electron scattering. ]

The pion's rms charge radius is 0.66 fm, but the volume
occupied by the qq valence pair is probably much smaller.
For example, Brodsky and Lapagei and others have
shown R &0.4 fm. Furthermore that small value of R
is consistent with the notion of using dynamical rescal-
ing to relate the nucleon and pion's structure functions.

The volume occupied by the qq pair is more relevant
for computing the terms of Fig. 1(b), since that com-
ponent of the pion's Fock-space wave function would
dominate the calculations of the necimsary couplings.

There are two places where quadratic n terms enter in

the evaluation of Fig. 1(b). Thus the expression (5.7) is re-

placed by

0.24
0.28
0.32
0.36
0.40
0.44
0.48

5r2 (fm )

0.032
0.029
0.026
0.023
0.021
0.019
0.017

A final manipulation is the replacement off=93 MeV
by the value necessary to reproduce the physical pion nu-
cleon coupling constant. This multiplies the right-hand
side of (5.9) by 1.48. See Ref. 3.

The results of the numerical evaluation of Eq. (5.9) are
given in Table III. This effect is very small. The two
terms of (5.9) have opposite signs. Even so, a vanishing
value of R would lead to an infinite result.

Now turn to the magnetic-moment contribution, & 5p ),

&5p)= —,
' f d'«x&j(r)) . (5.10)

Using (5.2), (5.4), and (5.5) in (5.10) gives

—(1.48) e dixd rd kd p;~i, +&~.~, ,~, ~,~, , ~~~rX(k —p)p/=
(2n) f 16

(5.11)

with the "renormalization" factor of 1.48 included.
The integrals of (5.11) are evaluated by first replacing the variable k by P =p+k and integrating over r. This gives

g &r'"dr'" ['RX(2p —P)] I)

e 1.48 i i i I (3) (5.12)( p)» Jdpx( )fdtdp iV~5 (p)x(P 2p).
(2n ) 16f ~n~p ~ ~p-~+~~

Proceed by doing the integration of Vz by parts. Only the term Vze ' '* can contribute to the integral on x. Then
one has

, f d'*)d*)f,p X(r,"(&r"'Xx)&(xXp)'.1.48e d p (5.13)

This yields the result

5(1.48) p ~dp
"* =216' '"'

Q)p

for the proton. Here

po ——e f d xxp(x)=1.21mNRId~ .

(5.14)

Once again there is a divergent integral. This is
remedied by the insertion of id (Q), see (5.8) and (5.9).
Thus, e.g.,

l

for the proton matrix element. The results of a numerical
evaluation are shown in Table IV. For m R =0.28, and
R=1.0 fm, 5Idz ——0.12pz. There is not much sensitivity
to the value of R .

It is noteworthy that this term 5g~ has about the same
magnitude and opposite sign as p~ . The sum p, +Sp~
is very small, as shown in Table II.

One can also compute Sp, and Sp=. To do this use

y+ ~ (a) &a) ~+ 40'3 T'3

5p, —:&Pt i', i Pt)

5(1.48) Po p
21&r f 0 (p +m )

e dp (5.15)
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0.24
0.28
0.32
0.36
0.40
0.44
0.48

0.123
0.120
0.117
0.114
0.110
0.107
0.104

TABLE IV. Change in proton magnetic moment (in nuclear

magnetons) caused by the terms of Fig. 1(b).
where

~ q ~
=(v —m )' and o'„+-, '(v) are total cross sec-

tions for n—+p scattering. Any term contributing to the
difference cr„, (v) —o„+, '(v) will change the integral of
(6.1). Since the Weinberg-Tomozawa term is of an isovec-
tor form, gz will be influenced.

To find the modification to g„ it is necessary to con-
struct the conserved axial-vector current A&. Consider
the Lagrangian density of (3.5}. It is easy to show that
5&ciiM ——0 (with m =0) under the infinitesimal local
gauge transformation:

q~q — .(ex/)q, f~P+&f . (6.2}

The specific values of Table II are obtained with 8=1.0
fm and R =OA fm.

Another question concerns the influence of the substitu-
tion, (5.8b), on the previously calculated pion cloud terms
(p~) of the CBM. This effect is zero, since (5.8b) is to be
made only on the quadratic terms. The numerical result
is a 5' reduction of p . This can be compensated by a
slight change in the bag radius.

In our treatment of the electromagnetic properties the
anomaly terms, generated by the Wess-Zumino terms in
the usual nonlinear o model, are not included. Such
terms should have only a small influence here. For exam-
ple, the pion —two-photon term involves an extra photon
and must be small. The photon —three-pion term is of or-
der 1/f, a much higher order than any of the included
terms. We expect that it is small. The anomaly terms
generated by the Wess-Zumino term play a significant
role in other theories, e.g., Ref. 15.

The net result of all of this is that the original CBM
computations of the baryon magnetic moments are virtu-
ally unchanged.

Vl. CORRECTION TO gg

The Weinberg-Tomozawa term for pion-nucleon
scattering is expected to play a role in the computation of
gz. As shown by Adler and Weisberger

(6.1)

The corresponding conserved axial-vector current A& is
given to first order in P by the relation

(6.3)

The third term of (6.3) is a new one, define it to be 5A„.
The computation of the corresponding change Sg„ in g„
requires evaluating the nucleonic expectation value of

2f
(6A}

This term is depicted in Fig. 1(c}. One then gets an addi-
tional contribution to the axial-vector coupling constant:

5gz ——f d x (p t
~
253,i ~ p t ), (6.5)

where ~pt) is the physical proton wave function (with
spin up). The influence of virtual pions is included in

~ p t ) so that the expectation value of 5A does not vanish.
To evaluate (6.5) use the pion mode expansion (2.8) and

the ir= —1 MIT quark wave function. The relation

where

cog +8 (6.6)

Uk = —[Hi, a (k)] (6.7)

is also employed [see (2.13) and (2.14)]. To obtain a result
in the lowest nonvanishing order include only the linear
pion-quark term in HI. A standard calculation gives

5' ——
2 gw(Z~Zi—) pe~3 I1 3 d ku(kR)

f2 5 2cok(2m )'

(pt i
~. o; k

i
a)(a

i (o; Xk),~;„ipse)+
cok+ (E~ MN)—

Here g„ is the MIT-bag-model value of gg ———,
' ~/

(~—1}=1.09 and
~
a) is the intermediate baryon state, a

nucleon or b„of energy M~ or M~+coo (coo——297 MeV).
Both

~
p) and ~a) are bare states: the wave function Z~

and vertex Z& renormalization are then required.
The function E(k) is

F(k) =N dr jo ji ji(k ) .
0 R

As usual u (R}=3ji(kR)/kR.
To simplify the algebra we use a closure approximation

and replace E —M~ by 0. This is a reasonable approxi-
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mation. Then one can find that

5g~ =
—g & & kE(k) (k)

dk
1(hr f 0 ~k~k

3

& &= g &pc[(o;Xa, ),(r;XrJ), [pt&= ——", .

(6.10)

(6.11)

ACKNO%'LEDGMENTS

We thank M. Bernstein, M. Betz, G. Crawford, J.-L.
Dethier, P. A. M. Guichon, P. Hoodbhoy, H. J. Lipkin,
and L. Wilets for useful discussions. This work was sup-
ported in part by the U.S. Department of Energy.

APPENDIX A: PROOF THAT THE CBM
SATISFIES CURRENT ALGEBRA

The net result is

(6.12)

VII. REMARKS

The newer, volume-coupling version of the CBM has
several formal and practical advantages. The linear boun-

dary condition on the quark wave functions is indepen-
dent of the pion field operators. The Weinberg-
Tomozawa term is included automatically; there is no
need to sum over antiquark states. The Lagrangian con-
tains new electromagnetic interactions, Figs. 1(a) and 1(b},
but the influence of these on computed charge radii and
magnetic moments is very small. The inclusion of the
%einberg-Tomozawa term leads to a new axial-vector in-
teraction, Fig. 1(c). For a nucleon bag of radius 1 fm, the
computed value of gz is in excellent agreement with the
experimental one.

Finally we note that this model has also been ap lied
with considerable success to pion photoproduction as
well as to KN (Ref. 29) and KN (Ref. 30) scattering.

TABLE V. Contributions to g~.

5gg 22 (ZttZ 1 ) ~ k'F(k)u (k)
dk

gg 1~ Hf tokk

The (Z~Zi)2 factor is taken from Refs. 3 or 18. The
values of Z&Zi range smoothly from 0.86 for 8=0.7 fm
to 0.93 for 8= 1.1 fm.

The numerical results for 5gz/gz are shown in Table
U. The bag contribution of 1.09 must be multiplied by
Z~Zi to account for that fraction of the time when there
is no pion Zz or one pion (Zi —1)Z~. Thus 1.09 is mul-
tiplied by Z&Zi and the result is shown in the second
column of Table U. The agreement with the experimental
value of 1.26 is rather good for bag radii between 0.9 and
1.1 fm.

The computed pion nucleon coupling constant increases
from 0.23 to 0.27, which is quite close to the experimental
value of 0.28, as a result of including gz. Of course,
center-of-mass corrections to g&Z~Zi could add another
0.1 or so to gz (Ref. 27).

In this appendix we show that the components of the
vector and axial-vie:tor currents given in Eqs. (2.3) and
(2A} satisfy the SU(2)XSU(2) current-algebra equal-time
commutation relations

[V;,VJ ]=i5 (x y—)e"J"Vk(x), (A1)

[&;,AJ ]=i5 (x y)e'J—Vk(x), (A2)

[V,& ]=i53(x y)e—'JkAk(x) (A3)

to the first nontrivial order in f„'. The notation em-

ployed throughout this appendix for commutators is that
the first argument occurs at x and the second at y. The
quark contributions to the currents satisfy (Al) —(A3).
For x inside the bag one may expand the quark field
operators in a complete set of eigenmodes. The complete-
ness of the wave functions, along with the usual fermion
anticommutation relations gives immediately (Al) —(A3).
For x outside the bag one gets 0=0. Next we consider
the pion contributions to the currents. In this appendix
we use a different notation in which the pion field is
denoted by p(x} to distinguish it from the conjugate field
e(x). The conjugate field in terms of p =—B,p and p is

, [P (P P)P]+O(f —) (A4)
aj 3f.'

with the higher-order terms due to the presence of the co-
variant derivative in (2.1}. Postulating the usual equal-
time commutation relations

[4. NJ]=o

[m;„m;]=0,

[n.;,PJ]=i 5;J53(x y), —

(A5)

(A6)

(A7)

we now show that the commutation relations (Al) —(A3)
follow to low order in f

In order to evaluate (Al) —(A3} we first need the com-
mutation relations (A6) and (A7) in terms of P and P.
This is done by plugging (A4) into (A6) and (A7) and
solving self-consistently to a given order. To O(f ) we
find

i5 (x y) . — ~

[0 &J]=, (24'4 20 4, NJ4'+0—;PJ }, —

5'( — )
[p;,pJ]= i5J5 (x —y)+ —

(/JAN; 5JQ ) . (A9)—J l lj
8 (fm)

0.7
0.8
0.9
1.0
1.1

g~ Ãq. «»)l
0.46
0.38
0.30
0.25
0.21

ggZNZi

0.94
0.96
0.98
1.00
1.01

ga

1.40
1.34
1.28
1.25
1.22

Expanding expressions (2.3) and (2.4) for the currents in
powers off

U'= exp+, , y'( jx—y)+O(f. 4), -



M. A. MORGAN, G. A. MILLER, AND A. %.THOMAS 33

A=f P px(fxf)+O(f. '), (Al 1}

i x—
L (A) )=,"

b "e"J(4.4'45.b N. A—b5~
3 2

+0.0.4u4'b 24.4—.0A b»

where we have kept only the O(f ) piece of the CR's.
The second contribution to the LHS of (Al} comes from
the second-order terms in V

~ 3

L('A))=, e 'e '( N.Aa—5a +A.kb5~

and using the commutation relations (CR's) (A5), (AS),
and (A9) we can now check the validity of the current-
algebra relations (Al)—(A3).

First let us consider (Al) which to lowest order is

[(Px P);,(P xp)j]= (5'—(x y)&—' (P x P)»

and can be easily confirmed by using the CR's to lowest
order. The next nonvanishing terms on both sides of (A 1)
are of order f . There are two contributions to the
left-hand side (LHS). The first comes from the lowest-
order terms of Vo

in agreement with the lowest-order CR's. The next non-
trivial order is O(f ') for which the LHS of (A3) has
three contributions. First is the contribution from V and
A to lowest order keeping only O(f ) in the CR's:

i5 (x y—)
(A3)

Xe '[0 ((t)b(t)& 05—bj)

(2'—4. 20.—4J 4)0—.+4.0j)A] .

Then there are two terms involving the CR's to lowest or-
der:

3

L ('A3) =
3

&"(0.0'5bj+4 44'b5.j N. kj4—'b»

3

L('A3)=
3

s '(A 5bj+W~0 4b)

Adding these terms together we find

a b C~ {A3)+~ {A3)+~ {A3)

3

e""[(4»0'+A») 20k0—.].
+4.Ab4 A—.45.b = —i5'(x y)e'j —

P x (p xp)»,
3

proving the validity of (A3) to this order.

having used the CR's to lowest order. The full expression
to O(f 3) for the LHS of (Al) becomes

b (5 (x—y) 3
L'(Al)+L'(Al) 2 0 (4i4j Njk()

3 2

which is identical to the right-hand side (RHS) of (Al} to
this order.

Next we consider (A2}. To O(f 3) the LHS involves

[P(,P;], which is zero by (AS) to this order. The next
nontrivial order is O(f ) for which again we have two
contributions to the LHS. First there is the contribution
from the lowest-order terms of A keeping only the

O(f 3) terms from the CR's:

APPENDIX 8: PROOF THAT THE AB VERTEX
IS IDENTICAL IN BOTH VERSIONS OF THE CBM

From Eq. (3.5) we find the lowest-order interaction
Hamiltonian for the volume-coupling CBM is

Hr' ——— d xq(x)q(x)yy rq(x) Vn(x)8v
2f

f d xIqyy (re)q V8y

+ [(Vq ) yy'(r n )q

+qyy (T.e') (Vq)]8y I, (Bl)
i5 (x y) — ~ ~

L(A3)= (24 0 20 0 —4'j0&+0—0 )
3 where we have integrated by parts to obtain the last ex-

pression. Restricting the quarks to the ground state the
Dirac equation givesSecond, there is the contribution from the next-order

terms in A keeping only the lowest-order terms from the
CR's: y.Vq =i—y'q

R
2i5 (x—y)L (A3) = (A4 j WJ.P 24'ikl+24j—k ). — .

3

The sum
0 0

L (Az)+L (A2) =(5 (x y)(PJA A0&)— —

is identical to the RHS of (A2) to lowest order.
Finally, to lowest order (A3) is

[ (Qxp)(,f pj]=i5'(x y)e'~»f—p», —

Vq y= —)—qyE.

which upon substitution into (Bl) leaves only the first
term. Using V8y ———fbs, we find

f d x qy r ~q.r~s
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and finally, the boundary condition (2.21) —tr.yq =q
gives

the same interaction Hamiltonian as in the surface-
coupling CBM. Since the interaction Hamiltonians are
identical with quarks restricted to the ground state, the
m AS vertices mill also be identical.
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