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We investigate the properties of a possible low-lying scalar glueball as well as the ordinary scalar-
quark states using an effective chiral Lagrangian which satisfies the trace anomaly and U(1) , anom-
aly of QCD. An interesting mass bound for the lightest particle in the scalar-singlet channel is dis-
cussed. Detailed arguments against the existence of a very light (less than 400 MeV) scalar glueball
are presented. It is shown that the introduction of a derivative-coupling term in the usual type of
linear o model cures the problem of excessively large widths for the ordinary (nonet) scalar mesons.
In fact, chiral symmetry enables one to nicely correlate the widths of the entire scalar nonet. It is
noted that the same derivative-coupling term allows a heavy (1—2 GeV) scalar glueball to have suffi-
ciently narrow width to permit its observation as an ordinary resonance, in contrast with a recent
claim. Our model can naturally explain the unusually large partial width for the 77’ mode of the
glueball candidate G(1590). A symmetrical ansatz for the anomaly terms is suggested which enables
one to successfully calculate the ' mass as the ratio of gluon condensate to pion-decay constant. In
addition, the theoretically interesting limit where the glueball becomes a true dilaton is formulated
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in a new and illustrative way.

I. INTRODUCTION AND SUMMARY

The least understood portion of the low-energy particle
spectrum is the scalar sector. On the other hand, it is one
of the most interesting theoretically. The singlet scalar
particles have the same quantum numbers as the vacuum
and the trace anomaly and they are expected to include
glueballs. Furthermore, the interpretation of the scalars
in the quark model is not straightforward and so far cal-
culations in constituent models have failed to give con-
vincing predictions. Also it is difficult to determine ex-
perimentally' the properties of the scalars since they do
not tend to show up as easily identifiable resonances.

Here we would like to explore the properties of a possi-
ble low-lying scalar glueball as well as the scalar-quark
states using an effective chiral Lagrangian which satisfies
the trace anomaly and U(1), anomaly of QCD. This ap-
proach should enable one to assess the consequences of the
symmetry structure of the underlying theory for the ob-
servable particle states. In this model physical quantities
depend on the vacuum value of the glue-field operator
(FuyFy,) (denoted by H) as well as the vacuum value of
the quark-field combination ggq, which is related to the
pion-decay constant F,. The ratio (H)!/?/F, is in fact
observed to emerge as a characteristic mass scale in the
model.

To start things off we review the simple model of pure
QCD (no matter fields) dominated by a single scalar glue-
ball. When extended to the case where nonderivative in-
teractions with spin-0 quark matter fields are included
(see Sec. II), the mixing between glue and matter scalars is
directly calculable. It is noted that the upper bound previ-
ously obtained on the lightest particle in the scalar chan-
nel, m _2<16(H)/3d*F,? where d is the transforma-
tion scale dimension of the quarkonium field, also holds
when the composite field F,, F,, is effectively eliminated
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from the theory in analogy to the elimination of
€uvapFuyFap in favor of 7'(960) in the pseudoscalar-
singlet channel.

Before giving a detailed discussion of the model we
remind the reader (Sec. III) of the peculiar pattern
displayed by the experimental candidates for low-lying
scalar mesons. We briefly discuss the quark-model treat-
ments which have been proposed for the scalars and also
the attempts to make sense of a usual nonet assignment by
including unitarity corrections. We point out that,
whereas the scalar-meson masses are not simply predict-
able in a chiral-symmetric framework, the decay widths
of the entire postulated scalar nonet are found to be nicely
understood on this basis. In particular the ratio
I'(k—Km)/T(6—mnm), which is relatively free of the am-
biguities afflicting other scalar modes, is correctly predict-
ed by chiral symmetry, in marked contrast with an ordi-
nary SU(3) treatment.

If one chooses the composite field gq to have the canon-
ical scaling dimension three, one finds the mass bound of
Sec. II to be the rather restrictive value 680 MeV. In this
case a scalar glueball would have to be rather light and
probably should have already been detected. The charac-
teristics of such a light glueball are described by the
model of Sec. IV. In particular, the width into 77 is
shown to be only slightly larger than that required? to es-
cape detection. A very strong argument against a light
glueball % is furnished by noting that it would lead to a
partial decay width for I'('—h7) quite a bit larger than
the experimental total 7’ width. Finally in this section a
simple effective-Lagrangian treatment for the two-photon
coupling of a light glueball is given and related physics
discussed.

The theoretically interesting limit where the low-mass
glueball becomes a true zero-mass dilaton is discussed in
Sec. V. Although such models were proposed>* many
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years ago we give an alternative treatment by taking the
limit as the heavy scalar mass goes to infinity of a scale-
invariant linear o model. It is pointed out that the pres-
ence of a dilaton noticeably changes the classic predic-
tions® of the 7 scattering lengths. Furthermore, the true
dilaton cannot be a pure glueball but must contain some
admixture of quark matter.

Next we return to the main track by examining the
more realistic case of a heavier glueball (see Sec. VI). It is
reasonable to choose the scale dimension d =1 in our
model. To be specific we consider the recently an-
nounced® experimental candidate G(1590) to be the proto-
type scalar glueball and attempt to explain’ its somewhat
unusual properties. The most serious problem to be faced
initially, pointed out in Ref. 8 and also in Ref. 9, is that in
a simple model of the present type, the partial widths into
7w and KK are expected to be of the order of several
GeV, rather than tens of MeV, as for the G(1590). Re-
markably the presence of the same derivative-coupling
term in the Lagrangian which was required to fit the
scalar-nonet widths (see Sec. III) also can naturally
suppress the glueball widths to the correct order of magni-
tude.

The most conspicuous experimental property of the
G(1590) is the dominance of the 77’ decay mode. This
feature, as reviewed in Sec. VII, was already expected
from the construction of a Lagrangian to satisfy the
U(1) , anomaly in addition to the trace anomaly. We find
the nm’ partial width to be 66 MeV, which is within the
large experimental uncertainty, but possibly too low. Fi-
nally we note that the Lagrangian satisfying the two
anomaly conditions is still more general than required to
predict the n' mass. A symmetrical ansatz for the
anomalous terms which takes account of the requirement
of periodicity in the QCD vacuum angle!® 6 leads to the
reasonable prediction (m.,)?=~6(H) /5F,>

II. MASS BOUND
IN THE SCALAR-SINGLET CHANNEL

First consider, for orientation, a simple effective La-
grangian'"'? for pure QCD (no “matter” fields present)
designed to mock up the trace anomaly'? equation:

9;1;1,= _[B(g)/g]Tr(vaFyv) ’

where 6,,, is the improved energy-momentum tensor, B(g)
the renormalization-group function, and F,, the Yang-
Mills field strength tensor. A natural choice of scalar
“order parameter” field is the right-hand side (RHS) of
this equation:

=—[B(g)/gITr(FyFy,) .

With the restriction that terms with at most two deriva-
tives appear, the unique answer is

= —taH¥Y3,H?—+HIn(H/A* , 2.1)

where A is a constant of mass dimension one and a is a
dimensionless constant. Even though it is clearly an over-
simplificiation to approximate the entire spectrum of
QCD by a single scalar glueball field, Eq. (2.1) already
possesses a couple of reasonable features. First, the
second term = — V corresponds to a potential which has a

minimum at a nonzero value of H: (H)=A*/e. This
agrees with the “bag model” picture! of confinement in
which (H) is identified as (—4) times the outside vacu-
um energy density. The QCD sum-rule determination'®

(H)=0.0135 GeV* (2.2)

can be reconciled with the bag model if it is assumed that
the inside energy density, while less negative than the out-
side energy density, is not zero. We shall adopt (2.2) for
purposes of making numerical estimates, though it should
be recognized that this value may be subject to change.

To give a particle interpretation of the model we may
set

H=(H)+Zh , (2.3)

with A being the conventionally normalized glueball field.
(An equivalent alternate approach is to write H = ( H )e*.)
The resulting Lagrangian is completely specified if in ad-
dition to (2.2) we fix the glueball mass m, =Z /2(H )%
Furthermore, a = (H )3/2/Z?. Even though only a single
glueball, rather than an infinite family, is present, the am-
plitudes derived from (2.1) and (2.3) will satisfy the 1/N,
counting rules.!® Specifically, setting a=O(N,) and
Z=0(N,) will give

(H)=0(N.), m,=0(N.%,

as well as a suppression factor O(1/N,) for emission of
an extra glueball. To cubic order in the fluctuation field
h (2.1) becomes

3

1

—5my*h? +— h(d, gL

2 (H )1/2 3¢ H)”2

Clearly the next step is to add matter fields. The natur-
al order parameter for a low-energy description would
seem to be the 3 X3 nonet matrix

h34 -

Mab ESab + i¢ab ~6RbQLa ’ (2.4)

where gq;, is the left-handed quark field of flavor type a,
for example. Under a chiral transformation (U, Ug)

MU MU} 2.5)

while under an infinitesimal scale transformation &x u
= — px wr
SM(x)=—pld+x-0)M(x) . (2.6)

In (2.6) d is the effective (mass) dimension of M. For a
canonical free boson field, d would be unity, but here we
would like to leave d as a parameter which may contain
some dynamical information.

First consider the nonderivative (or potential) terms
which are allowed by chiral symmetry and correct scale
anomaly. Sca]e-mvanant terms like H!'=92Tr(MM"),
H'=Te(MM'MM?), etc., are of course, possible. To
satisfy the scale-anomaly condition one might retain just
the second term of (2.1) or more generally allow a sum of
terms!!

Cpn . Rn(M,H)
Hz——l - 2Ca=1,
m
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where the R, are homogeneous functions of the fields of
order m. Actually it is unnecessary to give the explicit
form of V. All of our results follow from the fact that
scale invariance is broken only through the anomaly term;
this is equivalent to the equation

av

=— S T
H 4V+4H6H +dTr

v AV
Sas %34

Differentiating (2.7) with respect to the fields will yield
the needed relations among masses and coupling constants
of various order. Equations analogous to (2.7) which ex-
press the chiral symmetry of ¥ have been discussed else-
where.!” Initially we shall employ the simplest scale- and
chiral-invariant derivative term for the matter fields

1 (1—-d)/2

) Tr(3,M 3,M") . (2.8)

. 2.7

(H)

Note that this reduces to the ordinary kinetic term only
for d=1. Initially we shall not include the chiral-
symmetry-breaking “quark mass terms.” The potential V
is assumed to be of sufficient complexity to allow for a
spontaneously broken solution

F,
<Sab)='_2—aab ’

with F,~132 MeV. If V were to be written explicitly,
the value of F, would be proportional to the quantity A.
We wish to examine at the tree level the effective theory
defined by

[
£=——aH 3/2(3,H )
1 H (1-d)/2
Y - A Tr(d,M 3,M")—V(M,H)
2 | (H) (2.9)

where V satisfies (2.7). We note at once that the glueball
field h is allowed by SU(3) and parity invariance to mix
with the scalar singlet

O"ET/I_?(S“-{-SZZ-I-S”) .

Differentiating (2.7) with respect to both H and S and us-
ing the nonet symmetry formula (derived e.g., by 1/N, ar-
guments)

3’V AW
(as,,,,sb,, >_8""< 30" >=a,,,,,4 ’

we find the two equations

1_4(H)<62V> VidF,{ 3V >
T Z? \an? 2Z \dhddo'/’

(2.10)

=4(H>< 3’V ) dF1r<62V>
V3Z \dhdo’ 2 \ao?/"

This gives the 0’'-h mass-squared mixing matrix:

—V3Z dF A
4 8(H)
—V3ZdF,A 72 v3zr,d |® | 21D
8(H) oH) | 8(H)

Here A is a bare-quarkonium mass squared [around (1.5
GeV)’] and Z2?/4(H) is like a bare gluonium mass
squared. If one were to arbitrarily delete the trace anoma-
ly the quantity Z2/4(H ) would be set to zero. Then the
determinant of (2.11) vanishes and we have a Goldstone
boson—the “dilaton.” Of course the trace anomaly is in-
trinsic and cannot be deleted. Nevertheless, there is some
reminder of a light particle in (2.11)—we can find an
upper bound for the smallest mass eigenvalue. This situa-
tion corresponds to the limit where 4 and Z are both very
large. One then finds’

2

2 16 (H) , (2.12)

< S 3 szﬂzz

200 gy

m

where (2.2) was used in the last step. If the operator M,
in (2.4) scales, at the relevant low energy, like a product of
two free quark fields (zero anomalous dimension) we have
d =3 and (2.12) becomes rather restrictive. In that case
this model would require a scalar particle (glueball?)
lighter than 670 MeV. On the other hand, it might be ar-
gued that d =1 is a reasonable choice. This is because the
composite field representing a quark-antiquark bound
state is likely not to differ too much in its scaling proper-
ties from a free boson field. In this case (2.12) is not very
restrictive.

It seems worthwhile to compare the low-lying mass
spectrum in the present 0"+ gluonium channel with that
in the 0~ % gluonium channel. In that channel (corre-
sponding to the operator FF rather than FF) it appears
that the important low-lying particle is the quarkonium
state 7'(960) rather than a gluonium-type excitation. Such
a situation is accommodated in the effective-Lagrangian
framework!® by deleting the kinetic term (and all deriva-
tive terms) for the effective operator G ~FF. Then, by
the Lagrangian equation of motion G becomes propor-
tional to the %’ field. Formally, the 0** and 0~ * chan-
nels look very similar although there is the important
difference that the 0t * anomaly remains in the large-N,
limit while the 0~ anomaly [U(1) anomaly] goes to zero.
Nevertheless, unless there is a hidden scalar glueball at ex-
tremely low energies, the experimental data seem to favor
FF being dominated at low energies by a quarkonium
state. Thus one might also like to explore the possibility
that the scalar channel should be formulated without the
h kinetic term. [A still higher-mass scalar glueball might
be added directly, as was done!® to accommodate the
1(1440) in the U(1) effective Lagrangian.] This situation
corresponds to the choice of Lagrangian (setting d =1)

£L=—3Tr@M3,M)—V(MH), (2.13)
where V(M,H) satisfies (2.7). Remarkably, the mass
bound (2.12) is just the same for the Lagrangian in (2.13).
To see this first notice that the equation of motion
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d
—V(o',H)=0
am Vo H)
determines H as a function of ¢': H=H(c'). Then the

equation

) ’ A P
3H V(o',H(a'))=0

holds for all ¢’. Differentiating it with respect to o’ and
evaluating the result in the ground state yields

JoH v 82V>
— )= . 2.14
<60’> <8H80'>/<8H2 @14
Now we require
o) =57+ o ) 3¢
<d0’2 "\ 90 d0'3H [\ 30’
3*v v \? /] WV
= — . 2.15
(57)-(amr) /(ogz) - @19

The quantities (3*V/0H 30’) and (32V/3H?) can both
be written in terms of (3%V/30'?) by using (2.7) or (2.10).
Then we finally have

< d 2V> _ < 3V >
do” do"?

The bound on the physical ¢’ mass squared is obtained by
letting  the  “bare”-quarkonium  mass  squared
A=(38*V/30'*) go to infinity. It is amusing to notice
that the physical o’ mass is always reduced from the

bare-quarkonium value by taking account of the matter-
glue “duality” expressed above. This is the exact opposite

(2.16)

3F, |y
16(H) <aa'2>

of the situation in the 0~ % channel where the 1’ has zero
bare-quarkonium mass [U(1) problem] and gets a positive
value by matter-glue duality. It is conceivable that this
provides part of the explanation for the unnaturally low
mass of the S(975) scalar singlet.

III. PHENOMENOLOGICAL
PROBLEMS OF THE SCALARS

If, as suggested in the last section, a low-lying scalar
glueball is likely to mix with scalar states formed out of
quark fields, one should examine the existing scalar-
meson candidates with an eye to determining whether a
(small?) admixture of gluonium would improve the agree-
ment of predicted masses and widths with experiment.
Unfortunately, as outlined below, the low-lying scalar
candidates present a pattern which seems very far from
the canonical one (e.g., the vector or tensor nonets). Ex-
plaining their masses seems to require paying attention to
complicated unitarity corrections, as recently discussed by
Térngvist?® and by Achasov, Devyanin, and Shestakov.?!
On the other hand, as we will show, the pattern of widths
may be readily understood using a chiral Lagrangian ap-
proach. We might remark that the general chiral La-
grangian does not predict the scalar-meson mass spectrum
and in fact suggests a pattern which is sensitively depen-
dent on the details of SU(3) symmetry breaking.

In experiments the scalar mesons do not show up as
easily identifiable resonances but have to be obtained
through complicated phase-shift analyses which result in
large uncertainties. The known features' are listed below
(mass and width in MeV):

particle i spin mass width
S 0 975+4  33+6 (mm, 78+3%; KK, 22+3%)
€ 0 ~1300 200—600 (7w, 90%; KK 10%; mm seen)
8 1 980 54+7 for nm; KK seen
K 5 ~1350 ~250 (K seen)

It is noteworthy that the & and the S couple strongly to
KK even though their masses are below threshold.

We will briefly review the interpretation of the scalars
in the simple quark model.?2 In the simple quark model
the scalar is a ¢g state. Its quantum numbers J7€ imply
that the constituents are in a P wave and that S=1.
Since the spin-orbit interaction is small one is led to the
assumption m(0**)=m(2**). The physical scalars
depart appreciably from this result, as one observes that
the tensors analogous to (S,¢€,8,«) are (f',f,4,,K*) with
masses (1525,1270,1320,1430). The tensor mesons follow
the usual rule that particles containing strange quarks are
heavier than those made up out of light quarks. The
lightest scalar meson, however, presumably contains two
strange quarks and also the large splitting between the iso-
singlet € and the triplet 8 remains unexplained in the
quark model.

These difficulties led to the proposal that the scalars
should be regarded as ggqq states.* Since the binding en-

r

ergy due to one-gluon exchange is larger for an Ssiiu state
than for a state containing (5u)(#@s), i.e., two kaons, one
easily concludes that the 8 and the S lie just below KK
threshold and decay strongly into two kaons. But this ap-
proach predicts too many particles. The & and the S be-
long to a multiplet whose lighter members have not been
observed. The € and « have to be part of another multi-
plet whose other states are unaccounted for. What hap-
pened to the scalar gg states predicted by the quark
model?

On the other hand, there is a physical process which
leads to the distortion of the mass pattern—the coupling
of the scalars to pairs of pseudoscalars. For other nonets
this effect will be small since the pseudoscalars have to be
in a higher partial wave leading thus to decay. Following
Ref. 20, we make the phenomenological ansatz for the
coupling constant

g=1’X[SU(3)qcbsch]XF(k) ’ 3.1)
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—k2/k 2

where 7 is an overall constant and F(k)=e is a
form factor (k being the momentum of the pseudoscalars
in the rest frame of the scalar), corresponding to our intui-
tive notion that a pair of pseudoscalars with high relative
momentum will lead to particle decay. The one-loop
correction to the propagator is then

ds

(s) < y? f Fk)—= (3.2)

‘/—.
where s’ =4(k2+pu?) and p is the pseudoscalar mass. (s)
has a cusp at the threshold for pair production. The
physical mass is then identified with the pole of the prop-
agator {s —[m2+4m(s)]} ', which differs from the bare
value m. Since the spin-orbit interaction is small and
since this effect is negligible for tensor mesons the masses
of the tensor mesons can be used as the bare mass parame-
ters. Adding the contributions from all channels one can
fit the scalar masses with two parameters. While this ap-
proach seems reasonable to us, it does not lend itself to a
convincing calculation of the widths and (in common with
most constituent models) does not incorporate the sym-
metries and anomalies of QCD.

Now let us discuss the width predictions for the scalar
nonet on the basis of chiral symmetry.?* A convenient
way (and the original one) to include the scalars as well as
the pseudoscalars is to use a linear o model with the field
M =S +i¢, given in (2.4). It has been known for many
years that the standard form of such a model described by
the Lagrangian'’

— 5 Tr(3 MM —ViM,M"), (3.3)

V being an arbitrary chiral-invariant function, gives
widths at the tree level much larger than those of the ex-
perimental candidates. For example, the coupling con-
stant for k— K is predicted to be, neglecting the pseu-
doscalar masses,

Cukn=——m2Kx) . (3.4)

Here Fg is the kaon weak decay constant and is very
roughly the same as F, (actually about 1.2F,). Equation
(3.4) leads to a width prediction T'(k ->K7)=~1.7 GeV,
which is very much greater than the experimental one. A
reasonable way out of this dilemma is to mclude chiral-
invariant interaction terms like Tr(3,M 3, M MM in 2.
This will then yield a denvatlve interaction
8k t3,K °3,m~, whose effect should be added to that
of (3.4). (A detailed treatment will be given in the next
section.) Now notice that the derivative interaction will
also yield an amplitude proportional to m%(x). Thus we
reach the conclusion that the general chiral-symmetric in-
teraction for S—¢¢ is proportional to the squared mass
of the initial scalar. Equivalently, we may regard the gen-
eral Séd interaction to be of derivative type with arbi-
trary coupling constant:

Ll Spp)=—y Tr(S3,43,9) . (3.5)

This result, of course, may also be gotten from the general
formulation?® of the nonlinear realization of chiral sym-
metry. A possible term of the type Tr(S)Tr(3,4 d,4)

violates the Okubo-Zweig-lizuka (OZI) rule and would be
suppressed, for example, in the large-N, limit. With (3.5)
the scalar width is predicted to be
2
m
T(S—¢4)=— _lal s

ms 2geff’ 8eff = )

Ceo » (3.6)

where |q| is the magnitude of a daughter particle
momentum in the scalar’s rest frame. Ccg is a Clebsch-
Gordan coefficient equal to unity for k*— K% *. The
use of (3.5) rather than the standard SU(3)-invariant in-
teraction Tr(S¢¢) neatly overcomes one of the puzzles as-
sociated with the scalar-meson widths. Consider the ratio
I'(k— K7)/T(6—nm) which is unaffected by possible
mixing with (isosinglet) gluonium and by the ambiguity of
being close to threshold. Using (3.5) and (3.6) we obtain

2

I'k—Km) ~

3 mik) 9] | 2 cosh. —
(6—ym)

T2 m¥8) |as| | V6 P 1/3

sm0

=3.97, (3.7

where we used a value — 18° for the n-7’ mixing angle 6,.
Taking I'(6—mnm) to be its experimental value, 54+7
MeV yields I'(k —Km)=215+30 MeV, in nice agreement
with the experimental picture in which the total width is
250 MeV and K is the dominant mode. For contrast,
the standard nonderivative interaction would lead to the
bad result in which the ratio in (3.7) is reduced by a factor
[m(8)/m(x)]*=0.28. The quantity ¥ in (3.5) has a mag-
nitude of about 4.0 GeV~! obtained by fitting the §—nm
partial width. Knowing y we can predict the width of €
in terms of the partial width for S*— a7 which is unaf-
fected by the ambiguities associated with the KK thresh-
old. The o-0' mixing, in the absence of a scalar glueball,
is described by an angle Os:

o =¢€cosOs +S*sinb ,
(3.8)
o'=—e€sinfg+S*cosby ,

where o and o' are the SU(3)-octet number and singlet,
respectively. From the experimental value I'(S*—m7)
=26 MeV we find 65~ —32°. This is to be contrasted
with the ideal mixing value 05~ —55°. Using the above
values for ¥ and Og then yields the predictions for the
€(1300) partial widths

I'(e—mm)=357 MeV ,
INe—KK)=13 MeV , (3.9
I'e—nm)=1MeV .

This is in reasonable agreement with the experimental to-
tal width which lies in the range 200—600 MeV and with
the dominance of the 77 mode.

To sum up, it seems that the scalar-meson widths can
be easily understood in a chiral-symmetric framework.
This gives us some confidence that it is reasonable to go
on and add the effects of mixing with scalar gluonium.
However, the manifest uncertainties associated with the
scalar-singlet channel prevent us from claiming that we
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will be doing any more in this regard than presenting
some qualitatively interesting toy models.

IV. IS THERE A VERY-LOW-MASS GLUEBALL?

The simple model of Sec. II does not a priori predict
the scalar glueball’s mass but rather relates the width and
mixing with quarkonium to the mass. Lattice gauge
theory calculations?® indicate a glueball mass in the neigh-
borhood of 1 GeV. Using the mass bound (2.12), this
would seem to be an argument in favor of choosing the
scale dimension d ~1 for a quarkonium bound-state field
rather than d ~3. Here we would like to see if the case
d =3 can be ruled out from the fact that it is only con-
sistent with a rather low glueball mass. If the glueball
mass were between zero and 354 MeV [m(K+)—m(7™)]
it would most likely have been observed in the sensitive
experiments designed to look at K*—7% 4 anything.
Thus it is interesting to investigate glueball candidates in
the mass range of or slightly greater than 354 MeV. A re-
cent analysis® of 7 scattering indicates that a 7 reso-
nance in this range might have escaped detection if its
width were less than about 2 MeV. We shall now calcu-
late the width of such a possible glueball, taking account
of its mixing with an SU(3)-singlet quarkonium scalar o”.
For simplicity we neglect SU(3)-breaking effects and do
not try to constrain o' to be a given combination of S(975)
and €(1300).

A suitable effective Lagrangian for the present purpose
is

(1—-d)/2
7= 7;17] Tr(@,M 3,M")— faH ~/43,H
H 1/2—-d
_ éﬁ ' ] Tr(d,M 3,M'MM")—V(IM,H) .
4.1)

The matter-field derivative terms, with coefficients e and
[, differ from the derivative term in (2.9) in order that one
obtains, as indicated in Sec. III, the correct value of the
width for k— K, etc. This necessitates a wave-function
renormalization for M. Now we should write [instead of
(2.4)] Moy =X, Sap +iYapap =Grpqra- For simplicity we
shall work in the nonet limit X, =X and Y,=Y
=(gq)/F,, where (gq)=—0.012 GeV® from current-
algebra arguments. Furthermore, in the case of (4.1) (but
not in general’’) one has X =Y. The correct normaliza-
tion of the kinetic terms implies then

2
{qg) | 4 Liggyt =1 4.2)
F, 4
The value of f can be gotten from k—>K:
—~ \4
geff(K+'—‘>K°ﬂ'+)_T_ F +§—ql:g‘)_
~+3.65 GeV , (4.3)

where g is defined in (3.6).
fields o}, and A, by

We define the “physical”

o' =0,c080+ h,sinb ,
4.4)
h=—0,sin6+h,cos6 .

0 is obtained by diagonalizing (2.11) as in Ref. 9. The
relevant hp,mm and o, terms from (4.1) are found to be,
usmg chlral invariance and broken scale invariance,

b,
52"—;,,,<a,,) h1r2+——ap(a,;n') ~Zopmt, @45

where

cp=c¢ cos@+ b sin, [ =& cos@+b sind ,

4.6)
bp=—csin0+bcos6, 5,,=—é'sin6+goos9,
and

Z (gq) ||d—-1 (gg)z
= r2 || 2 [Tl 2
. d.z4 ,_  _f (gg)*
= 4—~< X b= VA 4.7)
5= 24

V3F,

Recall that A is the bare o’ squared mass in (2.11) and Z
is defined in (2.3). From (4.5) we notice that the effective
coupling constant for hp—>1r+1r‘, for example, is

geff(hp——>17'+7T_)‘—‘ —Cp+¢p (4.8)

This results in the following pionic widths for 4, in the
mass range of interest (4=1.5 GeV?):

305 MeV, 2.2 MeV
333 MeV, 4.0 MeV
m(hy)= 1358 MeV, 6.1 MeV =T'(h,) . 4.9
381 MeV, 8.3 MeV
402 MeV, 10.7 MeV

These numbers correspond to taking the plus sign on the
left-hand side of (4.3) (which implies f=—2.48%10°
GeV~1%; they do not change much if the minus sign is
taken and do not depend sensitively on 4. The corre-
sponding o, masses and widths are around 1.47 GeV and
290 MeV, respectively. The o, mass is somewhat high.
From (4.9) we see that a low-mass scalar glueball is im-
probable since the widths are predicted to be greater than
2 MeV. However the widths are small enough to make it
reasonable to pursue the analysis of low-energy =m
scattering data in more detail. An amusing point is that
the light-mass glueball is not pure h but contains a sizable
amount of “quarkonium” field o’; the angle 6 ranges from
29° to 41° for the masses in (4.9). This feature persists
even to the exact dilaton limit, as we will see in the next
section.

Another way to rule out a low-mass glueball makes use
of the unusual feature that it should have, in our model, a
very strong coupling to the 1 and 7’ mesons, as will be
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discussed in Sec. VII. The coupling constant is given in
(7.3). This leads (remembering that Z ~0.1 for a low-
mass glueball) to rather large partial widths for ' —n+h.
For example, taking m;, =300, 360, and 400 MeV yields
partial widths of about 22, 15, and 7 MeV, respectively.
These are almost two orders of magnitude larger than the
experimental total width of %’ which is 0.29 MeV.

Still another means of detecting a low-mass glueball
would be through its two-photon coupling. Although, of
course, the glueball does not have a direct electromagnetic
interaction, virtual quark loops can, in analogy to the case
of the #° mediate such an interaction. Actually, the
two-photon coupling of any object which is postulated to
dominate the energy -momentum tensor at low energies
was computed®® a long time ago based on the electromag-
netic trace anomaly. This can be formulated easily in the
present case by constructing a suitable effective Lagrang-
ian. It is only necessary to replace the anomaly term in
(2.1) by

-—%(H+H,,,,)1n—f; , (4.10)
where
Hem=mNc l; 0% |ay.a,, (4.11)

is the electromagnetlc contribution to the trace anomaly.
Here e?/4m~+, Q, is the electric charge number for
each relevant quark, and a@,,=d,a,—0,a, is the elec-
tromagnetic field strength tensor. A more general interac-
tion obtained by replacing InH /A* by

(1—p)InH /A*+(2p/d)In[Tr(MM ) /A%]

with p an arbitrary constant, for example, also satisfies
the trace anomaly but would not correspond to complete
glueball dominance. For simplicity we will use (4.10) and
interpret the result as an upper limit. Thus we have the
effective h2y interaction

R eZNc my 2
(hyy)= 2802 ()72 ; Qi*hay,ay, , 4.12)
which by a simple calculation yields* the width
Sn7 2
2N,
Ih—2y)=
T 16 3<H) [2 o’
s
~0.88 [—2' | kev (4.13)
e 1 GeV ’ ’

For a glueball mass of about 350 MeV the two-photon
width would be at most about 5 eV. One might hope to
see a particle of this type produced by the Primakoff
mechanism. It might also be seen in a “two-photon” ex-
periment like the one used to see 77(560) at the Crystal
Ball detector. A simple estimation®® shows that the pro-
duction rate e te ~—e e ~h for A about 350 MeV could
be as high as 0.07 that of the production rate
ete~—e*e 7 in that experiment.

Y. NONLINEAR MODEL OF PIONS PLUS DILATON

The situation discussed in the last section, where the
gluonium scalar is much lighter than the quarkonium
singlet, is, though probably unrealistic, related to the
theoretically interesting modification of the model in
which the gluonium state has zero mass. This case must
be achieved by deleting the anomaly term so that scale in-
variance is exact; then the “glueball” will be the Gold-
stone boson (dilaton) associated with the spontaneous
breakdown of scale invariance. Lagrangians containing
both zero-mass pions and a dilaton were discussed>* a
long time ago. Recently this approach was updated by
Ellis and Lanik® to include the terms (2.1), thus consider-
ing the trace anomaly as a kind of perturbation. The re-
sulting model is similar to the present one with neglect of
gluonium-quarkonium mixing.

In the present section we will give an alternative formu-
lation of the old nonlinear model of zero-mass pions plus
a dilaton. Our formulation has the advantage that it per-
mits a more direct calculation of the =7m scattering
lengths. Indeed we note that the presence of a true dilaton
has a nontrivial effect on these quantities. Several other
related points are discussed.

First let us review how the ordinary nonlinear o
model’! may be obtained from the linear one. The latter,
working for simplicity with SU(2) rather than SU(3), is
described by the Lagrangian
2

, (5.1

2

m+ol— F;

where ¢ is a positive constant. Clearly the field o
develops a vacuum value (o)=F,/V2 and its mass
squared is 4cF,2. Physically the nonlinear model corre-
sponds to this mass going to infinity (¢ — oo ). In this lim-
it the potential part dominates the Lagrangian equation of
motion for o which becomes the constraint
F 2

1r2+o ) =
We regard (5.2) as an expression for o in terms of =:
o=+(F,’/2—#")!%. Substituting this back gives the
nonlinear Lagrangian

L=—50,m*— 53,0 —c

(5.2)

172712

) (5.3)

Ev_i,,,z

A point transformation can be used to present .Z in the
form —(F,*/8)Tr@®,U 3,U", U=exp(V2i¢-r/F,). The
Lagrangians of Eq. (5 1) and therefore also (5.3) are not
scale invariant. In order to modify (5.3) to achieve scale
invariance one may introduce an additional field and also
require 7 to have scale transformation zero, as noted by
Ellis,* who studied the Jacobi identity of the dilaton
operator, axial charge, and pion field. Then the quantity
(F,2/2—a*)1"? will transform homogeneously under scale
transformation and

&L =—3(3,9)

1 __lw_z_ {(a ,”.)2

£=—3@,m7— |2,

1T
_1r2

T2 () O

17212
. oo
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where ¢ is the dilaton field with scale dimension 1, is
properly scale invariant.

Although it appears peculiar that the pion should have
scale dimension zero it is well known® that one can make
an equivalence transformation to a new field 7' =m¢/{(¢)
which has canonical scale dimension one. Thus, in a sim-
ple theory of type (5.4) the actual pion scale dimension is
irrelevant, at least for computing the tree amplitudes. On
the other hand, in the model of Sec. II the observable
masses were clearly related to the choice of dimension d
for M=S+i¢. For example, the mass bound (2.11) de-
pends directly on d. This dependence arises’? from the
fact that the field S mixes with the glueball field H as
dictated by Eq. (2.7).

Instead of introducing ¥ to make the nonlinear La-
grangian (5.3) scale invariant, it seems natural®® to directly
obtain a nonlinear model from a scale-invariant linear
model containing ¥. Evidently the most direct analog of
(5.1) is the following:

L =—3(3,m)?— 53,0 — 1(3,9)?
—c(RY—o?*—7)?, (5.5

where ¢ and R are positive dimensionless constants.
Equation (5.5) is manifestly scale invariant. The vacuum
values (¢) and (o) will obey

R{YY*=(0)*=F,*/2, (5.6)

although the numerical value of (o) cannot be found by
minimizing the potential. For this purpose a scale-
breaking piece could be added. Note that for making con-
tact with Sec. II, we should set ¢=4a'/2H'/*. Equation
(5.5) is diagonalized by the rotated fields & and ¢

o=(14+R)""¥&+R"*)),

(5.7)

Y=(14+R)"VA—R2%5+9) .

1'[; is the massless Goldstone field while & has a squared
mass

m2§)=4c(14+R)F,2 . (5.8)

As in the treatment of (5.1) the constraint is gotten by
sending ¢ — oo. This yields

Ry —o?—7*=0. (5.9)

We must eliminate the heavy field &; substituting (5.7)
into (5.9) yields,** after choosing a sign convention,

5‘"2:$)=1—_1§{—R"2$+[R$2—(1—R)72]1/2; _

(5.10)

The nonlinear Lagrangian is then given by

L =—7@um)— (3,
_.l__l_* 123
2(1_R)2(a#{—R '/’

+[RP2—(1—=R)m?]' %)) |

(5.11)

The vacuum value (%) should be chosen to be

(1+R)2R~2F_/v2. One may see the physical signi-

ficance of the ratio R from (5.6): it measures the ratio

“(matter condensate)/(glue condensate)” in the toy model;
explicitly

F,?

"~ 32a(H)'”?

where we used the typical value a ~0.06 and (2.2). Notice

that (5.7) shows the dilaton state ¥ to contain about an

R'2=0.27 admixture of “matter.” To extract physical
amplitudes at the tree level from (5.11) we may expand

b=(P)+X . (5.13)

Substituting this into (5.11), we find the interaction terms

up to quintic order in the fields

1

4F,*(14+R)
R12

+ \/iF,,.3( 1 +R)3/2

=0.075, (5.12)

L im=— (8,m)(3,7)

(@[3, X7+ - - -
(5.14)

Notice that the Xm* terms have all canceled out in agree-
ment with the result of Ref. 9. In fact every interaction
vertex must have at least four pion fields.

The tree-level 77 scattering amplitudes can be read off
from the first term of (5.14). We observe the new feature
that the canonical results’ are multiplied by a factor
(14+R)~1~0.93. It is interesting that this deviation by it-
self is perhaps large enough to suggest that the existence
of a true (zero-mass) dilaton is ruled out experimentally.
In the equivalent presentation of the pion-dilaton theory
(5.4), the deviation from the canonical scattering lengths
may not be immediately obvious. However, inclusion of
the dilaton pole diagrams together with the predicted
X 9,3, interaction (which gives zero X —»mm on shell)
is easily seen to result in the same factor (14 R)~!. Actu-
ally, there exists a point transformation of the field vari-
ables which transforms the Lagrangian (5.4) into (5.11).

We remark that the model (5.11) is consistent with the
Jacobi identity of the dilaton operator, axial charge, and
pion field even though 7; has the canonical scale dimen-
sion one.

A possible different application of the toy model
presented in this section might be to discuss the response
of the Skyrmion** to scale instabilities.

VI. PROPERTIES OF A HIGHER-MASS GLUEBALL

Most theoretical calculations?® lead one to expect the
mass of the lowest-lying scalar glueball to be in the 0.8 to
2 GeV range. There are a number of experimental candi-
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dates; perhaps the one for which the most forceful claims
have been made is the G(1590).%7 This particle
(mass=1592+25 MeV, width=210+40 MeV) has an in-
teresting signature—the dominant decay channel appears
to be 7n’ and the 77 and KK widths are rather small
compared to usual expectations. Specifically

G—mm GoKK o6, G211 37408,
G—nm G- G—mm

6.1

Note, however, that the 77 coupling of the G(1590) can-
not vanish since it is produced in the reaction
7~ +p—G(1590) + n.

It seems natural to try to accommodate this particle in
a simple effective Lagrangian of the present type. The
large partial width of the order of 100 MeV into %%’ can
easily be understood when the Lagrangian is modified to
satisfy the U(1) anomaly as well as the trace anomaly.
More discussion of this feature will be given in the next
section. What at first seems harder to understand is the
small partial width into 77 (and KK). For example, in
their analysis of a similar model containing only a glue-
ball, Ellis and Lanik® find a pionic partial width of about
6 GeV for a 1.59-GeV glueball. A similarly large width
was found in Ref. 9. Now recall from Sec. III that the
problem of very large widths also exists for the quarkoni-
um scalars when no derivative-interaction terms are in-
cluded. A simple choice of derivative term was found
sufficient to explain the quarkonium-nonet scalar widths.
We will point out here that this same derivative-coupling
term also reduces the glueball widths into 77 and KK to
the appropriate order of magnitude.

One can roughly understand this effect in the following
way. By scale symmetry one finds the ratio of the
nonderivative-coupling  constants  g,44/8ckr t0 be
—ZF,/(4(H)). For d =1 the only contribution to the
derivative-coupling constants for these processes comes
from the third term of (4.1) and yields for the analogous
effective ratio —ZF,/(4(H))X(my%/m,?). Since the
strength of the derivative-coupling term has been chosen
to reduce the k— K7 width to its physical value the width
of the bare glueball state is similarly reduced for compar-
able masses. This effect is further modified by the mass
difference of the physical singlet particles and their mix-
ing.

Since our goal is to demonstrate a qualitative result, we
shall simplify the model by representing the scalar-
quarkonium states by a single SU(3) singlet, o, (ie,
neglect of 0g-0¢p mixing). One would expect the mass of
this effective singlet to be very roughly around 1.1 GeV
and its with into 7 to be rather substantial (in the 200-
MeV range). The glueball-bare singlet mixing should re-
sult in a o, with these properties as well as another—
physical glueball—state, 4, whose mass is around 1590
MeV and whose 77 and KK widths [see (6.1)] are of the
order of 20 MeV rather than several GeV.

The Lagrangian is taken basically to be Eq. (4.1). In or-
der to more accurately model the quarkonium-gluonium
mixing we shall introduce a chiral- and scale-invariant
term which yields “kinetic”’ mixing in addition to the usu-

al kind. This term turns out not to change the qualitative
nature of our results but it can be used for “fine-tuning” if
desired. Thus we write

£ =[Eq.(4.1)]
<H> (d+1)/2
+K |~ 3,H3,TrMM")y, (62

where K measures the strength of this new term. The
treatment of (6.2) is similar to that for (4.1). Notice that
the additional term makes no contribution to the axial-
vector currents, as one sees by a partial integration. How-
ever, the existence of both kinetic and mass term mixing
results in a nonorthogonal mixing matrix. Furthermore,
we will use the scale dimension d =1 here, which gives
more realistic masses. The parameters e and f are found
from (4.2) and from (4.3) (where the + sign is required on
the RHS to get acceptable results). The parameters which
are subject to variation are Z=(H )*/*/a (Sec. II shows
that Z~0.37 GeV? when glue-matter mixing is neglect-
ed), A= the bare-quarkonium-singlet squared mass and
Q= —V3KZ(gq)*/F, (a convenient dimensionless quan-
tity to be used instead of K).

Diagonalizing the quadratic terms of (6.2) in the SU(3)
singlet channel results in the following relation between
bare and physical fields ¢;:

o Pu pPu ||t 6.3)
h|™ \pu Pn||¥2]’ '
where the p;; are given by
__1 | cosw _sinw
Pi=va |vicg T vise |’
_ 1 | sinw 4 —Cose
Pr=a |\vicg "Vite |’
(6.4)
_ 1 | _cosw 4 sinw
=753 |vice TVire |’
__1 | _sinw 4 080
Pe=g |mvice TVite |
Here the angle o is determined from the formula
2,4 _oM\2
tan2e = \C+B/4—A4)(1-0%) ’ (6.5)

Q(A+C+B?/A4)+2B

where B=V3Z dF,A/8(H) and C=Z?/4(H). In the
limit Q—0, w—60+m/4 [see (4.4)]. Furthermore, the
physical masses are gotten from

1
1—-Q?

1
m,2=5

BZ
A+C+7+2QB

(=D1—0Y)Y%4—-C—B*/4)
+ .
sin2w

(6.6)
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Finally the pionic decay widths are given by
Ty )=3g;2/32mm; ,
Y 8i Tm; ~ 6.7)
gi=(m;*/2—m,*)(cpy+p1;) —&Pr—bpy;

20m;’py;
V3F, '’

where b, b, ¢, and € are given in (4.7). The formula for
I'(y;—KK) can be obtained by a trivial modification of
(6.7).

First let us fix Q =0 and 4A=1.5 GeV?, which is about
what one would expect the bare-quarkonium squared
mass to be in the quark model. Then both masses and all
widths depend only on the single parameter Z. A qualita-
tively good overall fit is found for Z=0.25 GeV>. In this
case, denoting h, as the heavier and o, as the lighter par-
ticle,

m(h,)=1.53 GeV, m(0,)=0.86 GeV ,
[(h,—>wm)=63 MeV, I'(0,—7m)=307 MeV ,
I'(h,—KK)=33 MeV .

(6.8)

This reproduces the desired pattern in which the heavier
scalar meson (glueball) has fairly small widths into 77
and KK while the lighter scalar meson has an appreciable
mm width. For the values in (6.8) the states h, and o, are
close to 50-50 mixtures of bare quarkonium and bare
gluonium. Thus the small width into 77 is not an indica-
tion that h, is “pure glue.” Equation (6.8) gives a better
description of the glueball properties than it does for the
effective scalar singlet which comes out too low and too
wide. The low value for the mass of the lighter particle is
related to the mass bound discussed in Sec. II. By includ-
ing the effect of kinetic term mixing we can raise this
mass at the expense of substantially increasing its width.
Two typical results are (Z=0.26 GeV?, A=1.7 GeV?
Q0=-0.1)

m(h,)=1.56 GeV, m(g},)=0.94 GeV ,

I'(h,—mm)=178 MeV, T(0,—>7m)=465MeV, (6.9
['(h,—~KK)=19 MeV,

and (4=2.2 GeV?, Z=0.25 GeV?, Q= —0.3)
m(h,)=1.57 GeV, m(0,)=1.07 GeV,

[(h,—7m)=6 MeV, @'(o,—>7m)=841 MeV,  (6.10)

I'(h,—KK)=238 MeV, T'(0,—~KK)=546 MeV .

Finally, we remark that it is possible to construct in our
framework a model which reproduces all the known prop-
erties of the G(1590) if we introduce it as a new field with
a vanishing vacuum value and treat H as an auxiliary
field, as discussed at the end of Sec. II. Then G will not
modify any of the successful predictions for the widths of
the scalar mesons in Sec. IV. The properties of the G can
be accommodated by a suitable choice of additional pa-
rameters, but there are no predictions.

VII. 7" MODES AND AN ANSATZ
FOR THE POTENTIAL

Several years before the G(1590) was reported it was
suggested!! that the 77’ mode would predominate for a
sufficiently heavy-scalar glueball. This prediction was
based on an effective Lagrangian for the U(1) anomaly'®
of QCD modified to include the trace anomaly discussed
in detail here. That model featured the pseudoscalar field

G =(—3ig?/16m)€,,yqpTT(F,,F o) , (7.1

where g is the QCD coupling constant and F,, the field
strength tensor, in addition to the scalar field H. The
U(1) anomaly requires a term in the Lagrangian

%(ln detM —IndetM") , (7.2)

which is evidently scale invariant. In order for the bare
pseudoscalar singlet state 17y to develop a mass, G must
behave as an auxiliary field and get eliminated by its
equation of motion in terms of 7. To lowest order in the
N_.~! expansion a term like G? is required. But G? is not
scale invariant. The most natural way to make it scale in-
variant is to replace it by G2/H, which upon using (2.3)
and the G-7 equivalence leads to an hny7, interaction
proportional to m?*(7n’). Taking account of %-7' mixing
(with an angle 6, ~ —18°) and the o’-h mixing [measured
by 0 defined by (4.4) in the Q =0 case] finally yields the
prediction for the n7' partial width:

2
8h ' l q |
[(h N=—t—o——,
p N 8mm 2(h‘,)
(7.3)
Zm,,'2 .
8= 2WH) cosfsin26, .

For typical values of Z and 6 describing h, =G(1590), Eq.
(7.3) gives a partial 7n’ width3 of about 66 MeV. This is
considerably larger than what would normally be expected
for an OZI rule and SU(3)-violating term and is in quali-
tative agreement with (6.1). The ratio I'(h,—n7')/
I'(h,—n7m) is about 8 if just the hng7o term discussed in
this section is taken into account for the nm mode. How-
ever the 77 mode should receive important contributions
from other terms, as discussed in the last section, so the
exact value of this ratio is sensitive to the choice of pa-
rameters.

In the estimate above we assumed that a term like
GY/TriMM MM *), which (for d=1) could also be a suit-
able modification of G?, is not present. While this as-
sumption appears natural one might like to find a model
in which it holds. In general, the problem of finding the
low-energy QCD effective Lagrangian involving spin-0
matter as well as gluonium fields seems to be a very in-
teresting one. Although chiral symmetry, the U(1) anom-
aly, the trace anomaly, and the 1/N, expansion give im-
portant constraints there is still a good deal of freedom.
Perhaps a useful clue is the similar structure of the terms
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for the U(1) and trace anomalies. The theory of QCD is
labeled by two parameters: the vacuum angle 8 and a
(complex) “angle” ir defined in terms of the scale param-
eter A by A=e”. The U(l) anomaly term gives a piece
like 6G in the effective Lagrangian while the scale anoma-
ly [see (2.1), for example] gives a piece like 7H. If the two
parameters are represented by a single complex number
Z =71+1i0, the extra terms may be written as proportional
to

x W r+i0)H—iGx)+H.c. ,

where x is a real parameter to be determined from a self-
consistency requirement. This suggests searching for a
form of the Lagrangian expressed in terms of the com-
bination®’

¢=H—iGx . (7.4)

One interesting possibility is to choose a potential
V=V(H MM Ht V, where ¥, does not contain G and
does not contribute to either anomaly. V), is postulated to
have the form

V,=f(®,M)+H.c. , (7.5)

where f is some function. The requirement of correct
U(1) anomaly is satisfied with

_ 1 detM
- 4N, FX AdN F

2 @ |In i0 —p¢ln%+H.c., (7.6)

where N is the number of flavors. The real number p is
determined from the requirement of correct scale anomaly
to be

_d—2x

= 7.7
P 16x @7
Eliminating G by its equation of motion yields
G —_— Etan__é__ s
x 8Npxp
(7.8)
——im M5,
detM
which on substitution back into (7.6) gives
__H . detMM") H
V,= WNpx In A“Np —2pH In A¥
Hlncos? |—2— | . :
+pH In cos 8Npxp (7.9)

So far, only the parameter x is not fixed. This can be
done in the following manner. When matter fields are
present they force periodicity®® (with period 27) in the
vacuum angle 6 since a shift of 6 by 27 can be canceled
out by an otherwise harmless redefinition of the quark
fields (or the composite quantity M). But we can require
the Lagrangian to make sense when the field M is deleted.
Then the 8 dependence comes from the last term of (7.9):

pH Incos? . (7.10)

4N FXp

Demanding a periodicity of 27 then determines x from

2Npxp==1. (7.11)

For scale dimension d =1, as indicated by the discussion
of earlier sections, and for Ny =3, we find

x=—2orx=+4. (7.12)

Now that the complete part of the Lagrangian involving
Mo is known we can predict its mass, remembering that

¢~4V3ny/F,+ - - - yields, by expanding the last term
of (7.9),
myt=—H) (7.13)
|x | Fgq

Here the relatively small contribution due to nonzero
quark masses has been neglected.

The choice x = — < gives a reasonable prediction
m,,:2=£ <H2) =(964 MeV)? . (7.14)
5 F,

Notice that m, is not predicted if one just demands
correct trace anomaly and U(1) anomaly. An additional
assumption, like that of (7.5) is required. Notice also that
with the present ansatz the hmmn’ coupling strength is
given by (7.3) without any further assumptions.
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