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P or CP determination by sequential decays:
Vi V2 modes with decays into 1& l& and/or q&q&
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(Received 1 August 1985)

For application at modern colliders, the PP symmetry tests are generalized to the generic sequen-
tial decay X~Vl V2 where at least one of the vector bosons decays into a lepton and an antilepton,
or a quark and an antiquark. The general decay correlation function 1{8~,8q, (()) and its integrated
distributions are simultaneously characterized in convenient a s, P's, and y s which are simple tri-
quadratic functions of the three sets of helicity amplitudes. From a JJ, 'f"f, or Z Z mode the par-
ity qP or the CP eigenvalue ycp of X can always be determined if the decay is respectively P or CP
invariant, as can (—) of X except in certain circumstances. From a W+ 8' mode, ycP can always
be determined. For modes such as PJ, JT, and PZO, JZ, i)p( —}~, or ycp( —) can be determined
provided certain amplitudes do not accidentally vanish. Generalization to the gZ and gg decay
channels, g =gluon jet, is discussed.

I. INTRODUCTION

It is of fundamental importance to make basic symme-
try tests and symmetry measurements as modern colliders
are used to study higher-energy regions. By further gen-
eralization of the (()|() symmetry tests, ' in this series of
papers we show what can be learned by measurement of
the decay correlation function I(8i,8z,g} for the sequen-
tial decay

X~V) V2

~3292

=A)8) .
Present and proposed detectors at such colliders are able
to detect vector bosons such as J/g, Y, and the Z and
8'+- by their decays into a lepton and an antilepton,
and/or by their decays into a quark and an antiquark.
These new "probes" are especially useful since informa-
tion carried by the vector meson's polarization is carried
forward and displayed kinematically upon the vector
meson's decay into AB, or into a three-body channel. Z
and 8'+- decays violate P and C separately so their decay
distributions provide more information about the first de-
cay X~Vi V2 than does J/Q~Is+is, p~E+E, or
co +@+sr sr . T-his effect is larger when final fermion
masses are small versus the magnitude of the decay
momentum. It is largest for 1V+- decays and next largest
for Z ~qqwhere Q = ——,

' versus qq with Q =—', or
p+)M, because the effect depends on the ratio r of the
axial-vector to the vector coupling coefficients between
the intermediate vector boson and the fermion current.

Besides providing a generic example and formalism for
the study and application of symmetries at high energies
through sequential decays, our analysis shows that the ad-
vantages of the PP symmetry tests are generalizable to
V, Vz modes with /~le and/or q„qe pairs. The tests are
rigorous, the signatures are striking, the P/CP determina-

tion is independent of the production mechanism, the
P/CP determination never fails for X with spin 0 or when
there is a Vi~Vi exchange property, and finally the tests
are normally applicable in semi-inclusive production ex-
periments since many X decay modes yield observed states
with only charged particles.

A Vi V2 decay mode with a sufficient number of events
is of course a nontrivial prerequisite for these tests. On
the other hand, in some searches for new or anticipated
resonance phenomena in domains with complicated com-
peting backgrounds, it may be helpful in excluding spuri-
ous signals to have available knowledge of the simple yet
nontrivial behavior of the associated decay correlation
function I(8i,8z, g} for an actual resonance.

Last, because of the promising future of "jet physics, "
we wish to point out that this same type of P/CP test, for
instance, generalizes to gZ and gg decay channels,

g =gluon jet. While it is difficult to experimentally iso-
late gluon jets, it should be possible to choose an enriched
jet sample with a leading vector meson decaying into a ll
pair which has been most likely produced from the high-z
fragmentation of the gluon. Assuming that this vector
meson arises from g, and that its polarization on the aver-
age follows that of g, then the polarizations of the leading
vector meson and Zo would be the same as those of the
primary gluon and Z . By this factorization argument,
the results of this paper for JZ show that the sign of the
p dIiarameter will be equal to yet ( —) for a gluon jet plus
Z that arises from a source X where X =X, and

ycp CP eigenvalue o——f X and J=spin of X. Similarly,
the results for JJ show that i)t ——sgnP for a gg mode aris-
ing from such a source, s}t ——parity of X.

In Sec. II ~e derive and conveniently characterize the
general decay correlation function I(8„8z,g} for the
sequential decay X~Vi V2 followed by Vi i decays into
lzltt and/or q„qs pairs. Trueman's method is used for
the derivations. Some of the results for J=0 were ob-
tained earlier (see third paper in Ref. 4) by a covariant
coupling calculation and have now been used as checks.
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Parameters familiar to us f«m pp symmetry tests and

here called "the a' s, P's, and y's" are used to conveniently

characterize both I(8i,82,$) and its associated integrated

distributions. In Sec. III for X of any spin we present the
results for P/CP determination for the various decay
modes, and for possible signature determination. Stronger
results for J=1 are given in Sec. IV. In a short Appendix
we enumerate what part of a complete determination of
the helicity amplitudes a~ ~, describing X~V~ V2 is pro-

vided by an "ideal" measurement of I(8i,8z,g). In
several cases with J=0 or 1, complete information can in

principle be obtained.
In the following paper, the stronger results for J=0

are discussed. And in a third paper, we apply this for-
malism to develop simple tests for CP/P violation by
such sequentia1 decays.

II. DERIVATION OF GENERAL DECAY
CORRELATION FUNCTION

cay of V2 is (2~—Pz). These angles Pz and Pi are invari-
ant under a Lorentz boost a1ong the V2 three-momentum
to the V2 rest frame (see Fig. 1), in which the helicity am-

plitudes for the decay V2~A2B2 are specified by

(82 0»+i &211~2~v DiI, (42 82 0'2)IV(+1+2),

I(6 @ 8»0i 82 42)

MM'A, ik,2A, ) A,2

rod X
p&M' ps' i. ~ i.' i.'X~ Vi V2)

1 2 l 2

Xp& «(Vi~&iBi)p& &, (V2~A2B2),
1 1 2"2

where v =xi —w2 and 82 and P2 are the polar and azimu-

thal angles of &z in the Vz rest frame.
The general decay correlation distribution in terms of

these six variables is

We consider the following sequential decay of an X sys-
tem of any spin J:

X—+Vi V2

=a,B,

where the three decay density matrices are

(4)

For definitions of the angles, we refer the reader to
Trueman's figures, Ref. 3. In the X rest frame the nine
helicity amplitudes for the decay X~Vi Vz are specified
by

(6,4,A, i, A2 I
JM )» DM'i, (4,6,———4)ai, i, ,

pa~, ~ a&, &,
I 2

with A, '=A, i —A,z,

pi g' y Dih /l(01 8! 01)DI' (((1 81 41)
1 1 1 ~)P

P~P2

where A, =k. i
—A.z and 6 and 4 are the polar and azimu-

thal angles of Vi. Similarly in the Vi rest frame the heli-

city amplitudes for the decay Vi ~A, B, are specified by
and

X T (p tiuz) T (p, ipz)" (6)

( 81 0' i p 1 p'2 I
I~ i & v, =D «",„('(( i, 8i, —4 i )~(p iu p )

where p, =pi —p2 and 8i and Pi are the polar and azimu-
thal angles of A i in the usual helicity coordinate system
in the Vi rest frame. The z axis, labeled z„ is shown in
Fig. 1, and the fixed x axis is not shown in Fig. 1. In this
coordinate system the azimuthal angle of A2 from the de-

pi„ i' g

Distr(42~

82~ 42)ai ' ~('(('2~ 82~ '(( 2)

1 2

X IV(vi&2) W(viw2)' .

We define the important azimuthal angle P between the
A I and A2 decay p1anes by

Yp

Yp

Y) and then holding it fixed integrate over all 0&/i &2m.

which forces k=k' or

Y& rest frame A=X) —A, )
——A2 —12 .

(a)

FIG. 1. An illustration showing the three angles 8&, Hz, and P
describing the decay X~VI V2. A boost along the negative z
axis transforms the kinematics from the V& rest frame (a) to the
V2 rest frame I,'b).

Orthogonality of the D~q(4, 6, —4) can be used to in-

tegrate over all Vi directions (6,4) which gives a factor
of 4m 5srM /(2J + 1). Absorbing the 4m /(2J + 1) we ob-
tain the general decay correlation function for this
sequentia1 decay
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I ( 8 8 P ) (TrpPfOd x)

~1~2~1 ~2AJJ PlP2gl

A I
—A2

l 2 A, l A, 2

1 1 j
X

p—0 &i —A'i —A
J

1 j' 1 1 j'
(10)

where the three angles 8i, 8i, and P are as shown in Fig.
1. That is, I(8i,8t, (()) is a f'unction of the &i,&t accep-
tances 8i, 8z and the angle P between their associated de-

cay planes.
For the case X is unpolarized (or has spin 0), the six

variable decay correlation distribution in Eq. (4) is isotro-
pic in 8, 4, and (bi, hence, full 8, 4, and Pi acceptance is
not required and Eq. (10) follows for any 8, 4, Pi accep-
tance. In other cases, the appearance in Eq. (10) of
(Trpi" ) as a common factor means that the distribu-
tion I(8i,8t, g) is independent of the initial X polarization
which of course is one of the advantages of this type of

decay symmetry test. Nevertheless since the symmetry
tests we develop for J& 1 all follow from Eq. (10), there is
the implicit requirement in their empirical application to
examine the dependence of the signatures and consistency
checks on 8, 4, and Pi cuts when less than full 8, 4, and

Pi acceptance is present in the data sample. In other
cases, e.g., for reactions at e+e colliders, the X produc-
tion density matrix may be sufficiently known or calcul-
able so that full 8, 4, and P& acceptance is not required
for the application of analogous signatures and consisten-

cy checks.

TABLE I. Parameters characterizing the decay density matrices for J, Z, and 8'+ decay into a lep-
ton and antilepton, or into a quark and antiquark. Arrows indicate the limiting values when the effect
of the final fermion masses is neglected. The important normalized parameters, the 9P and W, through
Eqs. (36), appear in the master formula, Eq. (20), for the sequential decay correlation function
I(81,8i, (b). By setting the 98=1 and W=.O, the master formula for I(8~,8i,g) can also be used when

V&, ~A&B& with A& and B& spin-0 mesons, or Vi ——~ meson. In the second column, for Zo decays the
parameter r is the ratio of the axial-vector to the vector coupling coefficients so for Z ~p+p
r =(L„—R„)/(L„+R„)=(1—4sin 8&) ' and for Z ~qq, r =(Lq Rq)/(Lq+Rq) —~3/
(ri —4g~ sin 8s ). For W ~bt, e v, the third column entries also apply except the sign of the T and
W entries is opposite.

Mode

& =
f
T(++)

f

'+
f
T( ——)

f

' 2p
~0

Z ~p p W+ ~Et
—+8 V~

2(ErEb —P )

~0

& =
f
T(+ —)

f

'+
[ T( —+) [

' (1+r )m —4r p
—+(1+r )m

4(EfEb+P )

~2m

&=
i
T( —+) /' —

f
Ti+ —) f' —4rpm~—2rm 2

—4pm~—2m 2

R —2S
R+5

1 m —4p,

m +2p

1

2
1

2

3 2
2+ P

1+r

2p 2

3E,Eh+@2

l

2

2rmp

3 2

(1+ ') 2q'+
1+r

2r
1+r

—0.237 for p+p
0.337 for uu

—0.706 for dd

2@m

3E,Eb+P2
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The 8F, W, +, and P"parameters for V~ 2 ~A ~,28~ 2

Previous work has considered the simpler case where
A&,8&, . . . are all spin-0 mesons or V& 2

——co meson.
%hen V&~A&8& where A~8& are a lepton and an an-
tilepton, i&I~, or a quark and an antiquark, q&q~, as for
JjP, Z, and W — decays, the standard decay, density
matrix elements give a factor summa over j=0, 1,2 in
Eq. (10) of (y, =)u) —tu2)

leads to additional symmetry tests. By CI' invariance for
a final particle-antiparticle pair

T(P)l 2) XCP( Vl )T( P2 Pl)

where y&z ——CI' eigenvalue of V&.

Normalizing by the total V»~A»8» decay rates,
we can express I(8),82,$) in terms of the normalized pa-
rameters

1 1 j
P —Pg ( —)"

I T()ulP'2) I

'
()

P~P2

1 1 j 1 1 j=R 0 0 0
—2[1+(—Vl~

1 1 ()

and

R ——,5
g+S ' 8+5

1

U+V ' U+V
(19)

1 1 j
+2~1 ' "~T

1 —1 0

where we define

R =
[ T(++)

/

'+
/

T( ——) /',
&=

/
T(+ —) f'+

f

T( —+) f',
T =

I
T(-+) I'-

I
T(+-) ~'

(12)

(13)

(14)

Pl P2) lv /1 l2T(P') P'2) (15)

and by C invariance for a final particle-antiparticle pair

T (tu), (u2) = —C„(Vi ) T (p 2,)u 1 ),

For V2~A282 and IV(r)r2) we simply let R,S, T
—+U, V, W.

There may occur circumstances where it would be of
interest to use Eq. (10) to study the decay V, ~A ) B). We
do not analyze this application in detail in this paper, ex-
cept implicitly.

By 8 invariance, for a final /z !2) or a final qz qi)

By setting 9P=1 and W=O, I(8),82, ()I)) can also be used
when V&~A~B& with A& and 8& spin-0 mesons, or
V~ ——e meson. For a three-body mode, 8& labels the direc-
tion of the normal to the three-body decay plane. Like-
wise for k and M. In these definitions, we identify Al
as the 1 or q for Z and 8'+ decays. Note that A and
W, as a function of r, are nonpositive for J/1)'j, Z and
IV+-decays into lqlr) and qzqs. Other quantities in Table
I are specified in the caption except m =mass of Vl,
p =magnitude of final three-momentum in V, rest frame,
@=muon mass, E, b

——final r, b energy in Vl rest frame,
and a value of sin Hli

——0.22 has been used for numerical
values for Z quantities.

The a' s, p's, and y's characterization of I{8),82, (())

The "master formula" for the general decay correlation
function when V, 2~A) 2B, 2 where A),B), . . . are 1&12)

and/or qzqi) can be written as

I(81,82,$)= C(81,82)+ Ao(8), 82)cosp

where C„=the charge-conjugation parity of Vl. So T,
and the important normalized W parameter to be defined
below, vanish when either symmetry is present. For Z
and 8'+- decays this is not the case, see Table I, which with coefficients

+A (81 82)sing+8()(8), 82) cos2(t)

+B„(8),82)sin2(t

B()(8),82) = ,'Mp()sin—81slil 82, (21)

B„(81,82) = —,~p„sin 81 sin 82, (22)

A()(8), 82) = —,'~(acsin28, sin282+a' 'sin81 sin82+a' 'sin28, sin82+a' 'sinH, sin281)

7

=-,'.~g a"'A'"(8, ,8,), a'"—=a, ,
i=1
Odd

A~(81, 82) = —,~(a sin281 sin282+a' 'sin81 sin82+a' 'sin28)sin82+a' 'sinH, sin282)

8
a(i)A(i)(8 8 )

(2)

I =2
(24)
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C(8),Oz)= —,'~Y[1+y" 'Pz(cosO))+y' "Pz(cosOz)+y'"'Pz(cosO()Pz(cosOz)

+1 P((cosO))P((cosOz)+1' P)(cosOz)+1' Pz(cosO))P)(cosOz)

+y" 'P((cosO()+y" 'P((cosO()Pz(cosOz)]

= 9M g y'~'P(cosO))PJ(cosOz), y( '=1 . (25)
l,j=0

The norm for C(8(,Oz) is chosen as —,', instead of —,', so the integrated distributions (see below) have simple coefficients.
The overall normalization is determined by y' '=1 and

where

and

d =(~+~)(V+»= Q I T(v((uz)
I

'
P]P2 tj T2

The a' s, P's, and y's can be simply determined by measurement of the associated integrated distributions or equiualent

ly by measurement of I(8),Oz, g). If the entire 8),Oz acceptance is integrated over
1 1

F(P)—:I d(cosO)) f d(cosOz)I(8(, Oz, ()) ),
(26)

3 lT (3) 3'F(P) =4C 1+ a' ) cos(I)+ a' ) sinP+Pocos2$+P, sin2$

where C =~/9=d &/9. If, instead, the quadrants are separately integrated over
h 2

F (y) C. 1+ ~( )+ ~( )+ ~((11) 1 (01) l (10) 3' {3) 3' (5) 3TI (7)

4 2 2 8 8 8
a + a '+ a cosP

+ a„+ a' '+ a' '+ a' ' sinP+Pocos2$+P„sin2$ (27)

where the upper signs give F» for 0 & 8( z & m /2 and the lower signs give Fzz for n /2 & 8( z & n", and
'2

a(3)+ a(5) — a(7)3m' 3'
8 8

3m

8
a' '+ a' '+ a' ' sinP+Pocos2$+P, sin2$

where the upper signs give F)z for 0 & 8& & n. /2, n. /2 & Oz & m and the lower signs give Fz) for 0 & Oz & m /2, n/2 & 8) &n.
If the azimuthal angle P is integrated over,

2m

C(8),Oz) = 1 dP I(8(,Oz, g)

and so the y"J' are simply obtained from

1 1

y'~'= — (2i+ 1)(2j+1) I d(cos8) ) I d (cosOz)C(8(, Oz)P;(cosO, )PJ(cosOz) .
4 A —1 —1

(30)

The a' s, p's, and y's are simple triquadratic func-
tions —that is, they are quadratic functions of the nine
a~ ~ helicity amplitudes for X~V1 V2, are quadratic in

the T((u(pz) amplitudes for V( ~A)8), and are quadratic
in the JV(r(rz) amplitudes for Vz~AzBz. To display
this in detail, and simply, we write

P=Po=boao-
P„=b„cr„,

CX =—0!0=00P0,
~{i) a {i)—a)p )

(31)

(32)

(34)
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(ij) c C(—Il

where c00 ——1 and C' '=1.

The a' s, b's, and c's, and the p*s, o's, and r's

(3S)
1

C(20)

C(02)

C(22)

1 1
1 4 2

1

2

1 —1 —1

(3) (40)

Using the M~, u, . . . defined by Eqs. (18) and (19), we
find the a' s, b's, and c's and conversely from, say, empirical C"J's

bo b, =——ao ——a, =c22 ——9F+,
coo ——1, c20 ——A', c02 ——+,
a3 ——a4 ——C~~

——WM,

(2g ——(26 ———c21 ——97M,
a7 ——(2() ———C)2 ——M k,
C0) = —rr, C)0 = —M

when we define the p's, (T's, and r's to be

(36)

1 1
1 2 2

&(2)

~(3) 9
(4)

1

9

1 1 1

1

C (20)

1 C(02)
2

C(22)

(41)

(To ——2Re(a++a' )/N,

(7, = —2 Im(same)/&,
(37)

I'+
I
~+- I' —

I
~-+ I')/~

&'"=(
I &++ I

' —
I
~

I

' —
I &+-

I

'+
I ~-+ I

')/~,
~'"=2(

I a+. I' —
I
~ o I')/&,

~"'=2(
I ~0+ I

'—
I ~0

Consequently the magnitudes of all the
I
az 2 I

's can be

obtained from the data when one can obtain a11 the ~"s.
The y"J's appearing in C((9)82) depend on these ~'s

through the C'~' of Eq. (3S). We obtain

po ——Re(a++(2(m+aoo(2' ——(2+oao ——(20+a' 0)/N,

p„=—Im(same) /&,
p("=Re((2++a()0+(200''--+ ~+0(2o-+ao+ ~'-0)/~
p'~) = —Im(same)/S',

(38)

p = —Re((2++a 00
—aooa +a+oa 0 —ao+ a 0)/&,(5)

p' '= +Im(same)/N,

p = —Re(o++(200 —aooa —a+0&0-+&0+& o)/(7)

p'" = + Im(same)/N,

and

&'"=( I&++ I'+ I&-- I'+ I&+- I'+ I&-+ I')/~
r("=4 a

~( '=2( fa+0 I
+ fa 0 I

)/&,
r"'=2(

I ao+ I

'+
I
~0-

I

')/~
r'"=( I&++ I'+ Ia-- I' —I&+- I' —Ia-+ I')/~

(6) )
( 4( (10)+2C(12))

r(7) 1

( 4C(01)+2C(21))

r(()) 4 (( (10)+C(12))

r(9) & (( (ol)+C(21))

(42)

Inserting these values for the a' s, b's, and c's, the in-
tegrated distributions appear in a form convenient for see-
ing by inspection which of the p's, o's, and r's can be in
principle measured in a chosen decay sequence. Con-
currently, by Eqs. (31)—(3S), the associated a' s, P's, and
y's are obvious. These integrated distributions are

Nonvanishing amplitudes

Case I
a+p ——a p

———ap+ ———ap

'9~ or 3'cr

Case II
p = —ap+ =ap

Case III

Case IV

TABLE II. Relations among the helicity amplitudes for the
decay X~VV which follow from invariance under parity or
under CP, and from Bose statistics. gp and y~p are, respective-

ly, the P and CP eigenvalues of X. J is the spin and ( —) the
signature of X.
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'2

F(((})=4C 1+ WM(p' 'cos(t)+p' 'sin())))+A'4'((Tpcos2(II+IT sin2$)
8

(43)

F„„((())=C 1+-,'~mC""+-,' mC(0" +-,'~C()0)

2

+ 9P+pp+ gamp("+ SF mp(5)+ W+p(7) cosy
3~ (3) 3' (5) 31T

8 8 8

9p+p„+ W&p(4)+ 9F&p(b)+ W kp(s) sin(()+IFFY'(opcos2(N)+(T„sln2$)3m {4) 3K {6) 3K

(44}

F, , (P)=C 1 ——,'WMC("'+ —,
' Mc' "~—,'Wc" '

+ —9P +Pp+ ~ ~P")+ SP mP("+ W+P(7) cosy
8 8 8

2

—A kp„+ WKp( '+ SPY p' '+ W kp' ' sin())+98 k((Tpcos2$+o, sin2(t))
3m (4) 3K (6)—3K

(4S)

and for the C(81,82) distribution

(20) ~( (20) (01) ~C(01)
7

(02) @C(02) (21) ~~C(21)

(22) ~@C(22) (10) ~C()0)

( 1 1 ) ~~c()I ) y(12) ~@( (12)

(46)

Note that when the Vl and/or V2 decays are both P
violating and C violating so M&0 andi'or P"+0, the
F,b(p)'s can also be used to determine some of, or all of,
C{11) C{01), C(10) since y(11) y{01) y(10) appear 1n the
F,b((t))'s.

Remarks

(i) Relative to the results obtained previously in the case
that A),8), . . . are spin-0 bosons, this I(8),82, (l) ) is com-
plex, though actually, not complicated since a simple
basic algebraic structure remains. The choice of Vl and

V2 determines which of the p's, o's, and ~'s can be ob-
tained from, or conversely usmi to predict, an empirical
I (8),82, It) ), and so it is convenient to organize the
symmetry-test applications according to the specific type
of X—+V) V2 decay mode. Once a mode is chosen, the
different ways of determining the a' s, P's, and y's from
the integrated distributions can be evaluated using Eqs.
(43}—(46). This organization by V, V2 modes is also prob-
ably the most useful one to readers interested in applying
the results.

(ii) Besides the l))0 and p„, for Z Z, IV'+'IV' ', and
I

Z0W+-the a' ' and a' ' can be obtained from the F(It)) in-

tegrated distribution that arises when the entire 81,82 ac-
ceptance is integrated over, unlike the a0 and a„which re-
quire study of the four distributions F,b((t)). So besides
the useful appearance of additional a's and y's in

I(8),82,$) when P and C violating Vl 2~A) 2812 decays
occur, some information about X~V) V2 should normal-

ly be more accurately obtained from a given data sample
than in the comparable case vrhen the decay is P or C
conserving. By Table I, ap alid Pp signatures can be seen
to be not as maximal for vector-boson decays into lz ls or
q„(II). As has been pointed out, this occurs, for instance,
in J~@+p because the muon current in the associated
vector-meson rest frame can couple to vector-meson po-
larizations outside the p, +(M decay plane, unlike for a bo-
son current.

(iii) For neutral X~V) V2, the structure of the p's and
(r's in Eqs. (37) and (38) can often be considerably simpli-
fied by defining (for instance, CP) even and odd linear
combinations of the ai )( helicity amplitudes. This is

I 2

particularly useful for enumerating the signatures for
violation of the assumed symmetry. In this manner, the
magnitudes and the sines and cosines of the relative
phases of the ( CP )even and odd-amplitudes appear alge-
braically in the p's, 0's, and r's This is used .in some of
the following applications (see, e.g., Ref. 7).

(iv) When each of Vl and V2 either decays Cinvariant-
ly and P invariantly into I&I~ or qzqz, decays into two
spin-0 bosons, or is m, then W= M=O so only the first
four terms in C(8„82) appear. These terms can be
rewritten

Cp(81, 82) = —,~1+9PC' 'P2(cos81 ) + k C' 'P2(cos82) +SF k C' 'P2(cos81)P2(cos82)]

s1II 81 sill 82+y cos 81 cos 82+y sill 81 cos 82+y cos 81 slI1 82] (47)
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so

c()(8],82) =C0(]r—8],]r—82) =C0(7r —8],82) =C0(e],1T 8—2) . (48)

These symmetry properties of C0(8],82) can be used to
bin all 8],82 events into the square region 0&8] 2&m/2.
The distinct y'" to y' ' coefficients in Eq. (47), respective-
ly, dominate the C0(8],82) distribution near the four
corners; see Fig. 2.

When A'=+ =1, the y'"=r"', i =1, . . . , 4, and so a
visual inspection of the C0(8, , 82) will directly give the
~'s. Otherwise, they are related to the r's through the
y('j) s by

/J or TT decay mode

%hen V1 and V2 are identical particles, the X~VV
decay helicity amplitudes are related by

(51)

where J =spin of X. When P invariance holds for
X~V& V2, there is the relation

1

(20)

y
(02)

(22)

and inversely

1
1

4

1

2

—1
1

2

1

2

1 1 —1

1

2

(1)

(2)

(3)

(4)

(49)

where rip Pqu——antum number of X. Table II follows
from Eqs. (51) and (52).

When instead, CP invariance holds for a VV mode, or
for a VV mode (i.e., a particle-antiparticle pair),

(53)

1 1 1
1 2

(1)

y(2)

(4)
1 1

1

2
1

2

1

(20)

(02)

(22)

(50)

(v) Stronger results are obtained using I(8„82,{t)) when
J=0, 1 for X because for J=0, a2, 2,&0 only if A, ] ——)].2

and f'or J= 1 az z &0 only if
I
~

I

=
I
~]—41 &I Fi-

nally, for the case of J& 1 the analysis of Ref. 10, which
was to determine the parity and spin of the ri„supports
the idea that an assumption of decay of X~Vi V2 with a
definite J through specific orbital angular momentum
channels strongly constrains the ranges of at least soine of
the a' s, P's, and y's beyond the results presented here,
and, second, simultaneously provides a means to deter-
mine J.

III. I', OR CP, DETERMINATION AND POSSIBLE
SIGNATURE DETERMINATION

Since the a' s, gs, and y's which characterize
I(8],82,$) appear very simply in the integrated distribu-
tions, we will focus our discussion of each of the
X~V~ V2 decay modes around its integrated distribu-
tions. The results in this series of three papers for
X~V] V2 decay followed by decays of V] and/or V2 into
l„li] or q~qi] apply of course to equivalent modes to the
ones listed. For example, P vector meson results also hold
if P is replaced by p or co, and similarly, J/f can be re-
placed by P(3685), Y, Y(10,350), all of which have large
leptonic branching ratios.

In this paper in which we consider arbitrary J and then
J=1 (next section), it is convenient for us to present the
results for the p's, cr's, and r's so as to avoid complicated
formulas. In the following paper we give the stronger re-
sults which apply when J=0 in the a' s, P's, and y's
which directly characterize I(8],82,$) and the integrated
distributions.

a ~, , ]., =-yc~( )a~—
,2,

J (54)

which is of the same form as Eq. (52) and so it is only
necessary to substitute yci for ri~ in order to convert a P
test into a CP test. For instance, here in discussing the JJ
and YY modes, we assume Bose statistics and P invari-
ance holds for X~JJ, YY, and use Table II; however,
should P invariance be violated, but CP invariance holds,
the same results apply when q~ is replaced by ycp.

I (8„82,$) and the integrated distributions are particu-
larly simple for X~JJ or YY:

F(p) =4C(1+98 o0cos2{t ),
F,],(p) =C(1+98 p0cos{t)+8' a0cos2$), (56)

with the upper sign (lower sign) for ab =11,22 (12,21),
respectively, and the nonzero y('j's are

(20) (02) ~c(20) (22) ~2C(22) (57)

so v'", ~' ', and ~' '=r' ' are, in principle, measurable.
Versus the P{)) symmetry tests, the JJ and YY signatures

TABLE III. Relations among the helicity amplitudes describ-

ing the decay X~V1 V2 which follow from invariance under CP
for a mode where V1 and V2 are two identical vector bosons,
VV, c,r are a particle-antiparticle pair of vector bosons, VV (e.g.,
W+ 8' ).

Nonvanishing amplitudes

Q+p = —Qp

Qp+ = —Q

Q++ ———Q

Q+p =Qp
QO+ =Q-p
Q++ =Q
Q+,Q +,Qpp

CP eigenvalue

yc~ = —&

and Table III then follows by CP invariance alone. Con-
sequently, for a VV mode when both Bose statistics and
CP invariance hold, from Eqs. (51) and (53)
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are not as maximal, e.g., in the massless final fermion lim-

it 9F = —,
'

versus l.
Using Table II, we find

2rIp la++ I
/N, ( —) =+1,

0, ( —)~= —1,
po=l2Re(a++a~) 2~—p I ao+ I'1/~, (59)

r'"=2(
I a++ I'+

I a+- I
')/~

&(»=4la~ I'/u, r"'=~"'=4lao+ I'/e,
where

&=
I

aoo I
'+2

I a++ I
'+2

I a+- I

'+4
I ao+ I

'
~

(60)

The P/CP determination is conclusive for the JJ or
YY mode. The parity rip of X is given by

Nonvanishing amplitudes

a+p =a
ap+ =ap
a++ ——a
a+ ——a +

gp( —)' or yc, t —~'

a+p= —a p

ap+ = —ap-
a++ = —Q

a+ ———a +

TABLE IV. Relations among the helicity amplitudes describ-

ing the decay X~V& V2 which follow from invariance under

parity, or under CP for a mode where V~ and V~ are each their
own antiparticle, e.g., PJ and PZO.

sgnc70 ',

rip = ~ —sgnPo if 0'() =0;
+ 1 if 0'o =po =0 ~

(61)

PJ or JY decay mode

We assume W= M=O. By P invariance, Eq. (52) gives
Table IV. Should CP invariance hold instead for a mode
where Vi and V2 are each their own antiparticle, Eq. (52)
holds if rip is replaced by pep. Again, we will display the
results assuming P invariance, but they also hold if we let

gp~y~z when only CP invariance holds.
The integrated distributions are (for the ((}J mode
=1)

F((}I'))=4C(1 9+8 4ooc'os2$), (62)

F,&((t))=C(1+St kpo cos(t)+98 4'cro cos2(t)), (63)

with the signs in Eq. (63) as in (56), and the nonzero y'J's
are

The signature ( —} of X can be determined to be posi
tiue if both

I a++ I
and

I aoo I
do not vanish (cf. discus-

sion of Ref. 3 and paper 1 of Ref. 4). The signature can-
not be shown to be negative by these modes by this
method. If o~O (equivalently po&0), then ( —) =+1.
If cro ——0, then

I a++ I
=0. When cro=0 if also po(0,

then it is worthwhile to use the po value and proceed with
a two-parameter fit to C(8„8z) with, e.g. , I a+ I

deter-
mined by

polaoo I'+2(2p()+rip) lao+ I +2pola+ I
=0.

If the fit yields
I aoo I ~0, then ( —) =+ 1. For po= ——,',

I
a+- I

= la~ I
=o «f po= 2 la~I =0.)

o()——2t}p( —)
I a++ I

~/&,

po
——[2Re(a++a()o) —2rlp( —) Re(a+oao+ )]/&,

&'"=2(
I a++ I

'+
I
a+- I

'}/~ r"'=41aoo
I
'/~,

r' '=4
I a+o I /» &' '=4

I ao+ I

where

~=
I
a~

I
'+2

I a++ I

'+2
I
a+- I

'

+2
I a+o I

'+2
I ao+ I

'.
When Po&0 (i.e., oo&0),

r)p( —) =sgnoo.J

(65)

(66)

(67)

(68}

However, when cro 0, the po p——arameter is not sufficient
to find rip( —) . Fortunately

I a++ I

=0 would be an ac-
cidental occurrence (for J =0, (ro ——0 does imply
rip ——+1). The C(8),82) distribution can be used, e.g., via
Eq. (47) and Fig. 2, to deterinine

I aoo I. If
I aoo I

+0,
then rtp( —) =+1.

oZo decay mode

Assuming Bose statistics and CP in variance in
X~Z Z, Table II applies, and the associated integrated
distributions are

(20) ~C(20) (o2) @C(02) (22) ~@C(22) (64)

Versus 9P+ =1 for PP symmetry tests, for (t}J the

I
984'

I

= —,
'

and for JY the
I

A'4'
I

= —,
'

in the massless-
final-fermion limit so the Po and cto signatures are not as
maximal.

Using Table IV, we have

3mF(P}=4C 1+ M p' 'cosP+A oocos2$
8

2

F» 22(P)=C 1+—,M C'"'+ St po+ W p' ' cos(I}+ &Flap' )sinP+9F oocos2(I} . ,

(69)

(70)

2

F)2,2)(((})=C 1 —
4
~'C""+ —A'po+ W'p(3) cog+A'oocos2$ (71)
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and the nonzero y "J's are

(20) (02) ~( (20} (22) ~2C{22) (11) ~2( (11)

Now, unlike for the JJ mode the p's, (T's, and r's are weighted by W and 4'W as well as by 9P so the choice of p+p
versus dd in Zo decay effects the relative magnitudes of these weighting factors (see Table I).

Using Table II, we find the p's, (7's, and r's, and &, of Eqs. (58)—(60), plus

(72)

p"'=t2Re(u++&oo)+27'ci Iu+0 I'1~&

p'"=p'"=21m(a „u' )Xa,
(5) C(ll) 2([g [2 /g /

)/~
The CP determination is conclusive, with the CP eigenvalue of Xgiven by

T

sgn&o,'

7'cp= ~ sgnp, alld pO= —p aIld p =0, If (70=0;(3) ~3) (6)

1 lf 0'O=p =p()=0 .(3)

Note if sgny'"' p 0, then (ro&0.
The discussion given above on signature determination using the JJ mode applies here except that Eqs. (73)—(7S) sup-

plement it. From Eq. (75), if sgny""p0, then ( —) =+1. If oO ——0, then pO ———p' ' and p' ' can be used in the analysis
in place of, or in combination with, pO.

Assuming CP invariance in X~W+ W, from Eq. (53) or Table III the relevant integrated distributions are (W is for
8'+ so M&0)

F($)=4C 1— 3m'
W2p{3)cos((}+SF2oocos2(()

({t))=C 1 ——'W C'"'+ —'S C' "+—'WC" '+ 9t p—
'2

3' g {3) 3KW2p{I)+ 9PWp(5} cos(t+9t2oocos2y (78)

P (y) C, 1+ ( ~2C() 1)—1 ~C(0))—( ~C(10)+ ~2p
2

3m ~ p{2) cos(t}
8

+ WA p s1 $n+ 9P vo cos2$

and the nonzero y"J's are

(20) (02) ~C(20) (22) ~2( (22) ( 1 1 ) ~2C()1}
7

(21) ~ (10} +~~C(21} {12) ~ (01) ~~C()2)

~en the final fermion masses are small, the parameter W= —I so the a( ' and y"" terms are weighted at the "maxi-
mal" level of the (t}(() test which means that usually they will be more reliably determined than the other parameters.

Using Table III, we obtain

and

~0=2rc~
I ~++ I

'~,
p"'=(2R«++&00)+)'cp(

I &+0 I
'+

I &0+ I
')] l~

po= l2Re«+p&(')0) r'c~( I
a+—0 I

'+
I &0+ I

')l~~,
P'"=-P"'=-~-(

I ~+0 I'-
t "+&')~~,

p'" =p"'= +2 Im(a++(2~)/&,
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'r'"=(2
I a++ I

'+
I a+- I

'+
I
a + I

')/~ 'r"'=41 aoo I

'/~
~("=r("=2( I

a„I

'+
I a„ I

')/&
'r"'=(2

I a++ I

'—
I a+- I

' —
I
a-+ I

'}/~
'r "=—r"'=(

I a+- I

'—
I
a-+ I

'}/~
'r(s) &(9) 2(

I
a

I

2
I
a

I
2)/~

(86)

~ =(
I aoo I

'+2
I
a i+ I

'+
I a+- I

'+
I a-+ I

'

+2 I a+o I
'+2

I ao+ I

'} .

The CP determination is conclusive, with the CP eigen-

value of Xgiven by

sgn0 o

from Eq. (52) or Table IV the integrated distributions

E( (tp ) =4C ( 1 +9F 'k oo cos2$ },

F» 22(P)=C 1+9P+pocosg+ SPY( )sing
8

+9P 4' o o cos2$

(88)

yet —— sgnp ~ po
———p ~ p =0, tf (ro ——0;(3) (3) (6)

1 if rro=p =po= —p =0 .(3) (5)
(87) E)z z)(P)=C 1 —9F%'pocosf+ 9P&p' 'sing

8

There are several consistency checks that can be used
here: If the sgny""~0 which is one of the terms with
max™level weighting, then (ro~O. When oo——0,
yap ——sgn(p' ' —p' ') and ycq ——sgn(p' '+p' ') with the
corollary that t I

p' '
I
=

I
p' '

I I ) I
p' '

I
. Also C(8),82)

can be used to show either
I aoo I, I a+ I, or

I
a + I

to
be nonzero which would imply ye&

——+ 1. When oo——0,
knowledge of p' '= —po and of p' ' means

I ao+ I
/~N

and
I a+o I

/v & are known if a choice for ycp 1s made,
and so a three-parameter fit to C(8(,82) can be attempted
and assessed for each choice for ye&, i.e., vary I

a oo I,
I
a+- I

and
I a-+ I

.

PZo or JZo decay mode

+SFNero cos2$ (90)

and the nonzero y'J's which are

(20) ~C(20) (02) @C(02)

(22) 9I' @C(22)
(91}

The weighting for terms with an 9P k factor is the same
as for the PJ and JY case considered above, and the 9P M
term will also not be as maximal as in (()(() symmetry tests.

Using Table IV, we find p's, o's, and r's, and &, as in

Eqs. (65)—(67}except r)p~ycp, plus

p =I+21m(a++. app)+2ycp( —) Im(a~oa()+ )]/~.

By CP invariance for a mode where V( and Vz are
each their own antiparticle and where W=O, we obtain When Pc~0,

yap( —) = sgn(To .

(92}

(93)

VT

2 When oo——0, the remarks following Eq. (68) apply with

9P YCP

Summary

0
0

(2) y(3)
Table V compactly reviews previous results on P/CP

determination from an X~V, V2 decay which is, respec-
tively, P or CP invariant followed by the decays V( 2~A

& 28 & 2 with spin-0 mesons A ~,8&, . . . or V& 2
——co

meson. For comparison, Table VI summarizes the results
obtained in this section.

6),

FIG. 2. An illustration showing the distinct coefficients
which, respectively, dominate the first four terms of the
C (8&,8q ) distribution near the four corners. The C (81,8q ) dis-
tribution is obtained by integration over the entire ( azimuthal
acceptance. When only the first four terms occur, symmetry
properties of C (8I,82 ) (see text), can be used to rebin events out-
side the displayed region into the displayed square region
0&8& 2&m/2.

IV. STRONGER RESULTS FOR J= 1

For J = 1,
I a+ I

=
I
a + I

=0 so stronger results fol-
low.

JJ or TT mode

Only one amplitude a o+ &0, so Po=0 and ao
= —rIp9F /2 (or when CP is good (zo ———ycp9P /2}. The
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TABLE V. Summary of results for P, or CP, determination from an X~V~ Y2 decay which is,
respectively, P or CP invariant followed by the decays V1,2~8»B&,~ with spin-0 mesons A~, B~, . . . or
V~ q ——co meson. For convenience we frequently let P=Pq and a =ao, i.e., simply suppress the zero sub-

script, in the tables and text.

X neutral

a,P~

Case have
V&~V2 exchange

property

'gp if P good

ycp if &P g

Case no V&~V2
but Vl ——V& and

V2 ——V2

qp( —)J if P good

ycp~ —}J if CP good

Case no Vl~V2
with

Vl & V~ and/or Yq& V2

gp( —}~ if P good

X charged
a,P~ gp if P good g ( —) if P good

4.t( p'p'
z "X'"sc'+x'-
it.'+X' "D'+D "

0 po ~y PE,PK,coE

PP 4'P ~P
and others K ~a~

Never fails J=0 never fails; J &1 inconclusive if both

) a++ (
=0 (accidental) and

~
aoo )

=0

integrated distribution

C(8„8z)= —,'M[1+ —,
' 9F[P2(cos8i)+P2(cos82)]

—2' Pt(cos8&)P2(cos82)) . (94)

PJ or JT decay mode

$V+ 8' decay mode

By Eqs. (81)—(83), we obtain

&o+p i po= —1 if ycp= —1(3}

l)(oo+p"' —po)&0 if ycp=+1 ~

(95)

(96)

Now, r'"=2~a++
~

/N so the parity tip —— oo/r'"—
when r"' and oo are each nonzero, and otherwise
7'"=cro——0. (When CP is good, t)p~ycp here. )

ZOZO decay node

so if ycp ——+1, r' '=4~coo
~

/&=4(& —o'0 —p' '+pc)
provides a consistency check. When oo ——0, only a one-
parameter fit (i.e., vary

~
aoo

~
) to C(8„82) is needed [see

discussion following Eq. (87)].

Besides the above results for JJ which apply here when

tlp~ycp, now y'"'=0 and a'3'=ycpS /2. Unlike for
arbitrary J, p's' p's' =0.

Pzo or JZ0 decay mode

Remarks above for PJ or JY apply when t)p~pcp.

TABLE VI. Summary of results for P, or CP, determination from an X~V& Vq decay which is,
respectively, P or CP invariant followed by decays of Vi and/or V2 into a lepton and antilepton or into
a quark and antiquark. For the case IV+8' the equally informative a"' parameter should often be
more reliably obtained from data than ao, since a'3' is about four times larger in the approximation that
final fermion masses are zero, and since a' ' but not tzo survives when I(8„8i,g) is integrated aver the
full Hi and 8q acceptances.

Case have
V&~V2 exchange

property

Case no V~~V2
but Vl ——V~ and

Y2 ——V2

Examples

&0 Po~

gp if P good

JJ, f"f

p cp if CP good

z'z', w+e-

Never fails

qp( —) if P good

(()J, JY

ycp( —) if CP good

yZ', JZ', TZo

J=0 never fails;
J &1 inconclusive if
both

~
a++

~

=0 (accidental)
and

~

0.00
~

=0
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APPENDIX: EXTENT OP COMPLETE
DETERMINATION OF a g,g BY MEASUREMENT

OF I(8),8g, g)

For modes Hke Z Z, 8'+8', and Z 8'+-, it is in
principle possible to obtain the eight p's, two cr's, and nine
~'s, so it is of interest to enumerate what part of complete
knowledge of the aq ~ helicity amplitudes could be ob-

tained from I(8~,82,$} and to point out cases with J=0
or 1 where complete knowledge can be obtained. The nine
magnitudes follow from the nine ~'s since

and

~aoo( =&a' '/4 ~a+o
~

=&(v' +w )/4,

) o, ['=u(~"'+~"')/4,

I &++ I

'

ln+- I'

I &-+ I

'

1 1 1 1

1 1 —1 —1

1 —1 1 —1

1 —1 —1 1

~(5)

~(6)

~(7)

The two 0's and eight p's provide

oo——2
) a++ ( ~

a
~
cos(8++ —8 )/&,

o, = —2[at++ (
(a (sin(8++ —8 )/&,

(A 1)

(A2)

(A3)

~ a++
~ ~

aoo ( cos(8oo —8++ )

[ aoo
/ f

a
/

cos(8 —8oo)

f a+o
f f

ao
/
cos(8o —8+o) 4

QO+ ) [
0 —0 /

cos(8 Q 8Q~)

1 1 1

1 —1 —1

—1 1 1 —1

—1 1 —1 1

po
(3)

(A4)

Equation (A4) also applies for the sines of the listed an-

gles, i.e., insert sines in place of the cosines in Eq. (A4), if
po, p' ', p' ', p' ' are, respectively, replaced by p„, p' ', p' ',

(8)

So, we see that tTo„ together provide the phase dif-
ference (8++—8 ) and provide the product

~ a++ ~ ~

a ~, i.e., one constraint on the ~'s. The eight
p's provide the four phases of Eq. (A4} and also, through
the products

~ a++ ~ ~aoo ~, etc. , of Eq. (A4), provide
four constraints on the r's. When both oo „and the eight

p's are known, there is a consistency constraint from
8++ —8 = (8++—8oo) —(8 —8oo) so one knows
four relative phases, of the eight physically meaningful
ones. For J=0, one has only three amplitudes and com-
plete information can frequently be obtained from
I(8&,8z, ttp} as is discussed in the third paper of this series.
For J=1, by Bose statistics, X~Z Z has only two am-
plitudes and complete information can in principle be ob-
tained from I(8&,82,$).
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