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The spin-dependent potentials in the formalism of Eichten and Feinberg and Gromes are general-
ized. Consistency of the observed spin splittings in the J/g and Y systems with QCD imposes

stringent constraints on the type of nonperturbative spin-dependent forces allowed.

I. INTRODUCTION

Quarkonium physics has been extensively studied in the
past decade. ' The effective spin-independent potential
E(r) between a heavy quark and a heavy antiquark is
essentially determined by a combination of theory and
phenomenology. In the region 0.1&r &1 fm, which is
probed by the JjP and the Y spectroscopies, a flavor-
independent potential has emerged which appeirs to be
determined by experimental data. At shorter distances
perturbative quantum chromodynamics (QCD) is applic-
able, and it predicts the form of the potential E(r) at
r &0.1 fm. This prediction depends onlys s on the QCD
scale parameter A~ which is 0.1 GeV & A~ &0.5 GeV,
where MS denotes the modified minimal-subtraction
scheme. It turns out that the available (QQ} data do not
probe short enough distances to unambiguously extract
the precise value of A~. At large distances, i.e., r pl
fm, the potential is expected to rise linearly. Here, the ef-
fects of open channels also become important. These ef-
fects have been studied in detail. '

In contrast, the understanding of the spin-dependent
forces in the quarkonium systems is much less satisfacto-
ry. The htemture on spin-dependent forces in quarkom-
um is extensive. 'o 's A popular approach has been to
start from the Bethe-Salpeter equation and an instantane-
ous kernel with some suitably chosen Lorentz structure,
and to deduce the corresponding Breit-Fermi Hamiltoni-
an. An assumption on the lang-range force must be made
in order to confront the experimental data. Unfortunate-
ly, there is little theoretical understanding of the nature of
this long-range spin-dependent force. The situation can
be illustrated by two recent detailed treatments which use
somewhat different kernels. The approach by Moxhay
and Rosner' (MR} has a kernel with a long-range poten-
tial which is a mixture of scalar, vector, and tensor forces.
The approach by McClary and Byers' (MB) has a purely
scalar long-range potential. The resulting spin-dependent
forces are quite different.

In our opinion, the approaches mentioned above and
other similar approaches are conscientious attempts in
understanding the spin-dependent forces; however, in gen-
eral, they suffer from some of the following problems.

(1) The form of the long-range spin-dependent forces is
arbitrary; in principle, the long-range spin-dependent
forces are completely determined by the dynamics of
QCD. However, at this moment such a determination
turns out to be too difficult. As a result, the choice of the
long-range spin-dependent forces are based on
phenomenological arguments that cannot be substantiated
on theoretical grounds.

(2) The value of the running QCD coupling constant as
used in spin-dependent forces is taken from the spin-
independent potential or elsewhere. In principle, different
physical processes will have different tree-level coupling
constants; the common parameter is A~, not tzs. In fact,
tzs in the hyperfine splitting and cps in the fine structure,
even in the same quarkonium system, need not have the
same value.

(3) The QCD radiative corrections can be important but
are not included in the many analyses of spin-dependent
forces. They contribute to the spin-dependent forces in a
form different from the tree-level terms.

The inclusion of QCD radiative corrections to the
spin-dependent forces has been carried out by two groups:
the hyperfine structure by Buchmuller, Ng, and Tye"
(BNT) and the fine and hyperfine structures by Gupta,
Radford, and Repko' ' (GRR). In this paper, we shall
reexamine the spin-dependent forces from the viewpoint
of perturbative QCD. By comparing the (cc) and the
(bb) bound systems data with the perturbative QCD ex-
pressions for the hyperfine and fine structures, we extract
eight determinations of the A~ parameter. Consistency
requires a common value for Am, if perturbative QCD
alone is sufficient to explain the data. This consistency
constraint provides us with valuable insights to the pres-
ence (or absence) of other effects in the spin-dependent
forces. Our approach is feasible because of the existence
of the new data on the fine structures in the Y system.
Better data are expected in the future. We bdieve our ap-
proach is meaningful because the effects of light quarks,
or the coupled channel effects, can be ignored in the
analysis of the spin-dependent potentials. Let us give a
brief sketch of our approach as well as our intuitive
viewpoint on the issues.

First, let us adopt the formalism of Eichten and Fein-
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berg' and Gromes' (EFG). They start from QCD and
obtain the form of the spin-dependent potential VsD via
an expansion in inverse powers of the quark mass. This
allows the inclusion of long-range and/or nonperturbative
effects. However, we find that the EFG formalism is
inadequate: for the unequal)-mass case (miami for
quark mass m i and antiquark mass mi }additional terms
must be included in Vsn, for both the m i

——m2 and the
rn i~m& cases, some of the terms in VsD are actually fla-
vor dependent. The spin-dependent potentials must be
generalized to include the quark-mass dependence, i.e.,
V;(r)~V;(mi, m2, r) in the EFG formalism. The new
farmalism will be referred to as the generalized EFG for-
malism. We include the one-loop QCD radiative correc-
tion contribution in Vso.

The inclusion of the QCD radiative correction in VsD
serves three purposes.

(l) Formalism. As mentioned above the one-loop QCD
effect allows us to explicitly show that the 1/m expansion
for the VsD is not valid. There are terms of the form
ln(mi/mq) and in[(mimi)' r] which invalidate the
original EFG formahsm. Such terms also suggest the ap-
propriate generalizations.

(2) Phenomenology Irresp. ective of any other correc-
tions„ the QCD radiative corrections definitely contribute
to the spin-dependent patential VsD. The question is
whether or not such corrections are important; and if they
are important, whether the inclusion of QCD radiative
corrections alone is sufficient to explain the data.

(3j Theoreticol consistency. The inclusion of one-loop
QCD effects allows us to replace the strong-coupling pa-
rameter as by the QCD scale parameter A~. Consisten-

cy requires that the same value of A~ be used in the
quarkonium potential, the hyperfine and the fine struc-
tures.

For simplicity, let us assume for the moment that, to a
good approximation, VsD is completely given by the per-
turbative QCD results (i.e., no long-range, nonperturbative
spin-dependent force). From the J/g and Y systems the
data on the spin-spin, the spin-orbit, and the tensor teiujs
together allow us to make eight independent determina-
tions of the A~ parameter (as more data become avail-

able, more independent determinations can be made}.
Consistency demands that, within errors, a common value
of A~ should be obtained if our assumption is correct.
This consistency requirement allows us to obtain insight
on the long-range spin-arbit term and other nonperturba-
tive terms. If a common value of A~ cannot be obtained,
it means ather effects must be important, such as nonper-
turbative instanton effects, the gluon condensate effects,
the relativistic corrections and/or the light-quark effects
(beyond their contributions to the vacuum polarization),
as well as a long-range spin-dependent force. On the oth-
er hand, if a common value of A~ is obtained, we can
then use it to predict values of the hyperfine and the fine-
structure splittings with better precision than the present
data have.

Our results are summarized in Fig. 1, where A~ is ob-
tained by comparing the perturbative QCD expressions
with the data. We observe that, with the inclusion of the
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FIG. 1. The value of the P Ms parameter obtained by compar-

ing the perturbative QCD expressions {with NF 3) for th——e hy-
perfine (S) term, the spin-orbit (1.) term, and the tensor ( T)
term with the experimental values for the
{IS),g' —g,'{2S), the +„Xi„and the gq splittings. The errors
are experimental only. For details, see text.

QCD one-loop renormalization-group improved contribu-
tion, and with a choice of A~ ——0.30 GeV, the hyperfine
and the fine-structure splitting can be accounted for. (See¹teadded, where A~-0.40 GeV is obtained. ) No
long-range (nonperturbative} spin-dependent force ar any
other corrections are necessary for the Y system (see ¹te
added). For the charmonium system, some additional ef-
fects, such as relativistic corrections, are needed. In gen-
eral, relativistic correctians in the Y spectroscopy are ex-
pected to be substantially smaller than that in the P/J
spectroscopy. As we shall see, the choice of no long-range
spin-orbit is in good agreement with the Y data. Im™
provement in the data will certainly sharpen the compar-
1son.

In Sec. II we present the one-loop QCD radiative
correction to the spin-dependent potential Vsn. This is
essentially a summary of the results in Refs. 15, 16, 18,
and 21—23. In Sec. III the spin-dependent potential VsD
is cast inta the generalized EFG formalism. In Sec. IV we
summarize the data on the hyperflne and the fine-
structure splittings in the J/g and the Y spectroscopies.
In Sec. V we discuss our approach to extracting the QCD
scale parameter A~ from the data. A rather detailed dis-

cussion on the theoretical uncertainties is also included.
In Sec. VI we discuss possible forms for the long-range
spin effects and their implications on the value of A~M.
In Sec. VII we briefly discuss the earlier approaches to the
spin-dependent forces. In Sec. VIII some predictions on
the t-quarkonium system are discussed. Section IX con-
tains the conclusion and some remarks. Our Note added
gives an update of the analysis. Some details are relegated
to appendixes. Appendix A contains a brief review of the
two prescriptions used extensively in the text, namely, the
Grunberg and the Brodsky-Lepage-Mackenzie (BLM)
prescriptions. Appendix B gives the numerical values for
the quarkonium potential used in the text. Appendix C
presents a sample calculation of A~s from the experimen-
tal data.



SPIN Spl, i-i-i-INGS IN HEAVV qUAImONIA

II. PERTURSATIVE CALCULATION
OF THE POTENTIAL

A. Equal mass

g (0) (c)

In this section we present the results of the fourth-order
quark-antiquark interactions in perturbative QCD. The
Feynman diagrams (Fig. 2) and their individual contribu-
tion to the effective Hamiltonian ~ are shown below.
The results for the individual diagrams refer to the Feyn-
man gauge. (Of course, the whole set of graphs is gauge
invariant. ) We use dimensional regularization'9 for ultra-
violet divergences, and a small gluon mass A, to regularize
infrared divergences. For spin-independent interactions
we have kept terms to

(e)

FIG. 2. The Feynman diagrams contributing to the quark-

antiquark potential in order a~ and order aq .

a~ 0
m IQI

(as is the unrenormalized strong fine-structure constant,
as ——gs /4n, Q is the momentum transfer, and m is the
mass of the quark or antiquark). We have treated the
spin-dependent terms more accurately to

Qs I Q I
Qs'

m2

Except for the diagram containing the three-gluon vertex,
all the diagtuins also appear in QED and their results are
known. Let us introduce the following notations for the
hyperfine, the spin-orbit, and the tensor couphngs:

S =t'ai'le g

(ai a2)Q' —3(oi Q)(a'2 Q)T=
2

(2.3}

where n and p, respectively, denote the spin (S=cr/2)
and momentum (in the center-of-mass frame) of the quark
and the antiquark. Referring to Fig. 2, diagram (a) gives
the second-order contributions

~s 4m 4p 2,EH(a) = CF — +2— +—S+ T+6L—
m Q Q2

(2.4)

Figure 2(b} contributes

(Cri+Cr2) Qxp
22

b H(b) =II(Q)~(a),
(2.2)

where

(2.5)

$4 2 2

II(Q)= ( ——,Cg+ , TFNf) ——+y—E—ln4n+ln + —,Cg —, TFNf—31 20

p'. (2.6)

and @=4—D for D space-time dimensions, p, is the renormalization scale, ys ——0.5772. . . , the Euler constant, and Nf
the number of massless quark flavors. T~, C~, and Cq are gauge group factors. Tz is the normalization of generators
which we take to be —,. C~ is the quadratic Casimir for the fermion representation and Cz is the quadratic Casimir for
the adjoint representation. For SU(N), C~ —(N 1)/2N, an—d Cz——N. In QCD the—group factors read T~ —,', Cz ———', , ——
and Cq ——3. The one-loop contributions from Figs. 2(c}—2(fl are2'

ir Qs
4H [(c)+(d)+(e)+(f)]=(Cp. )

Q Q

,S+,(T+12L) +5H(d)+5H(e),
3PFl 3' (2.7)

where

5H(d) = ——,
'

CpCg
Qs Q2

ln
m2 AZ

4m 2 1 Ij Qs+—S+—T+6I. Q2—1+—,
'

1n S+T
P7$

(2.8}

age 2 p A,
5H(e) =— dL.H(a) ——ys+1n4n'+ln — + 2ln +4

4m Ptl Pt2

&s'CFC~
(2S+T+12L) .

6m
(2.9)

The additional pieces 5H(d) and 5H(e) are due to the non-Abelian property of the SU(3) color group. For Fig. 2(e), the
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Upper vertex 18 glvcn bp
I

Ei(Q )
igT' y2,Ei(Q )+ icr2.„Q"

Ei(0)= (ZCF —Cg ),
4n

z +s 2 p Q2
Ei(Q )= (2CF —Cg) ——yE+ln4n+ln +2ln +4+0

Sm m m

(2.10)

Figure 2(g) contributes

rh, H(g) = dH(a) ——yz+In4s +In +—+3ag Cg p,
2 4 ir (Q( as CFC~ Q2

I+In (2S+T+12L) .
4n m2 3 6 m 6m m

(2.11)

For Fig. 2(g) the upper vertex is given by

E2(Q }
igT' yP'2(Q'}+

2
ia2AP"

X2(Q )= Cg 1+in 2 +0 (2.12)

3a,C~ 2 2 2
I" (Q )= ——y +ln4a+I +—+ +0

8~ 3 6 m m

Figures 2(h) and 2(i) also apptsir in QED.22 Here their contributions are

EH[(h)+(i)]= (I —ln2)CFTFS .
m

Summing Eqs. (2.4), (2.5), (2.7},(2.11),and (2.13) we obtain

ma~(i2)CF

m

4m 2 1 as Q2 Qg

Q2 3 3 2s' p2
+—S+—T+6L I — ln (+Cg ——,

'
TFNf )+ (31Cg 20TFNf )—

3&r

2~a~(p)CF 2p2 n asCF+
2

«F 2C~)-
m Q

(2.13)

am'(»CF
+

m

1 7 Q Q2——,
' CF+(I—ln2)TF+ ——+ In Cg S+ —,

' CF+ —I+In C„T
6 12 m

' 6 m'

4Cp+ 2' 1n
2

I. (2.14)

where we have used the modified minimal-subtraction
(MS) scheme to absorb the pole terms as well as the con-
stant [In(4n) —yE] into the definition of the renormal-
ized, scale-dependent coupling constant a~(p), where p
is the renormalization scale. As expected, the infrared
divergences have canceled in the sum of Eq. (2,.14). The
result agrees with that obtained by Gupta and Radford
for the equal-mass case.2 (Of course, the cri rr2 terms
agree with those found' by BNT.)

B. Uneqgl ma88e8

(cri+cr2) QXp
2 2

L (2) ~ i 2 QXp
2 2 (2.16)

for the hyperfine and tensor spin-spin interactions, S and
T, remain unchanged from Eqs. (2.1) and (2.3) but the
spin-orbit t{mn I.noir becomes

To present the unapi~l-mass case we must refine our
notation of the standard spin-orbit coupling. The symbols

L(3)= i-mim2 oi a2 Qxp+ 0

mi m2 Q
(2.17)
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m(mgL(4)= —i
2

CT] O'i Qxp
ml Q

(2.18)

where m] is the quark mass and ml is the antiqua]k mass

[in the limit of m] ——mi, L(1)=L(3)=L]. With this dis-
tinction between the spin-orbit terms we can proceed to
examine the fourth-order q~~k-antiquark interaction for
uneq]]at-mass qu~~ks. Figure 2(a} gives the second-order
contributions

(m]+my)
hH (a)=ma~(p, )C~ — +

Q 2m] mi l +— &+— T+ L(1)+ L(3)
m]mlQ 3 m]mz 3 m]mi m]mz m)mg

(2.19)

The term that renormalizes the tree-level expression is the same here as it ]s in the equal-mass case. The annihilation di-
agrams, Figs. 2(h) and 2(i), do not contribute to this potential, but there are some qualitatively new interactions. Ignoring
contributions that just renormalize the potential, we list below the results from each diagram for the spin-dependent po-
tential. 's Figures 2(c) plus 2(d) give

EH[(c)+(d)]= CF Cp
2m )mg

4m )mg
ln S—mg

+—Cg —T+ 1n
l Q

2 3
m)mg

m(+my
m )

—7Plg

8 S
3

(2.20)

Figure 2(e} gives

EH(e) = C~(C~ ,' Cq—) —I
—', (2S+T)+4[L (1)+L(3)]j .

2m]m~

Figure 2(g} gives

(2.21)

a~
EH(g) = CpCg

2m )mg
1+in [—,

' T+ —', S+2L (1)+2L(3)]+21n [L (2)+L (4)]
m~

(2.22)

Summing all the diagra]l]s, the fourth-order q]]a]k-antiquark potential for different flavors isl3' "
(m]+ml)i

+
'Q 2m] ml

4 2 1 1
, +— &+— T+ L(1)+ L(3)

m]mlQ 3 m]ml 3 m]ml m]mi m)mp

P

Q 31 20
X 1 — (11Cg 4TpNf )ln —— Cq + TpNf

121r p 3 3

cs Cp m]+my 21r m]ml—Cp
2m]ml [ Q ( (m]+ml) ) Q [

m)+my+ —,(Cg —Cp)+ Cp +(—,
'

Cg —Cp) ln
m)+my m) —mp

Q2——'Cg 1n
m&m&

Cg+2Cp+Cg 1n
m(mg

2 mg—2 2Cr+C~ ln [L(l)+L(3)]—2C& ln [L(2)+L(4)]
m )mp m)

(2.23)
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ID. THE FORM OF THE SPIN-DEPENDENT FORCES

The Nenera1ixed EFG forma1ism

The effective potential is obtained by adding together the contributions of all the diagrams. The result is, of course,
gauge invariant. To express the result we shall extend the standard formalism of Eichten and Feinberg' and Gromes. '
Their classification of the spin-dependent forces is adequate for expressing the tree-level result but we must extend their
formalism to include the one-loop contributions. For unequal masses the result is

V(r) =E(r)+ Si Sz 1 1 dE dVi Si+Sz 1 de
~ L—— (r)+ (mi, mi, r) ~ L— (mi, mi, r)

r 2 r r ' '
mimi r r

1 1 1 Si'Si
(9 SP.Sz——,Si Sz) Vi(mi, mi, r)+ — V4(mi, m&, r)

JVg )N$2 3 mimi

Si Si L+
Nl ) 7tl2

Si —Si
~ L Vs(m i,mi, r),

Pl )Nl2

where E(r) is the static quarkonium potential and Vi, i = 1, . . . , 5 are the various terms in Vsn. Also L is the angular
momentum operator. This is the generalized EFG formalism. In perturbative @CD, including the one-loop contribu-
tion, we have

1 az bp
E(r) = ——Cpa~(p, ) 1+ [ln(pr)+yz]+» bo —

& Ca

2

Vi(mi, mi, r)= ———Cp (Cz —Cg tin[(mimi) r]+yzI ),11 s 1/2

T 2 7T

1
Vz(mi, mi, r}= Cza~—(—p)

T

=1Vs(mi, mi, r)=
3 3CFa~(p)r3

1+ [in(pr)+yz]+ —,', bp ——,'Cq+ —,'(Cz —Cz tin[(mimi)' r]+yzI)

as bp1+ [»(pr)+yz i ]+»—bo i C~— (3.2)

+ ,'(Cq+—2CF—2C~ tin[(mimi)'r r]+yz ——', })

s
V4(m i,mr, ,r) =8m'Cpa~(p) ' 1+ ,i bp 3' ——Cg —+Cz

Nl )
—Pl2 m~+m2 m2

Cr +—,
'

(Cg —2') ln
Pf ) +W2 m& —m2 m]

az bp 1 ln(Pr}+yz, 1 ln[(mimi)' r]+yz+ p2 + —,
'

Cg V
4 2m r 2m-

1 1 s ~22

V5(mi, mi, r}= =i CFC„ ln—
3

Each V;(rn , imrq) is a gauge-invariant quantity. E(r) is the perturbative expression for the spin-independent poten-
tial neglecting relativistic corrections. V, (m„mz, r) is related to the vertex form factor Ki+Ei. V4(mi, mz, r) deter-
mines the hyperfine structure while the other V, (m i, rnid, r)'s contribute to the fine structure. The V5(m i,mz, r) potential
is the new one that we have added to the EFG formalism. We note that, for fixed m „Vi(m i, rnid, r)~ oo as mi~ oo.
The presence of Vi(m „mi,r} precisely cancels this logarithmic divergence, so that V(r) in Eq. (3.1) remains finite. It is
possible that further generalizations are needed to describe higher-order terms in perturbation theory. For the equal-
mass case the V5(m, r} term vanishes and the contribution of the annihilation diagrams must be added to V4(m i,mi, r).
The generalized EFG formalism for equal masses is now
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1 1 1 dE dVi de 1V(r) =E(r)+ (Si+S2}L—— (r)+ (m, r)+ (m, r} + (r.Sir S2——,
' Si.S2)Vi(m, r)r 2 dr dr dr

1 Si.S2+— V4(m, r); (3.3)

r

1 &s bo
E(r) = ——CFa~(p) 1+ [ln(pr)+yE]+» bo 3 cq

11 &s
V&(m, r) = ———Cr I CF —Ca[1 n( mr) +yE] I,2

1
Vz(m, r }=——C~a~(p, ) 1+

r

[ln(pr)+yE]+ —, bo —
3 Cz + —,

'
I CF Cz [ln(—mr) +yE] J (3A)

Vi(m, r)=—&3CFa~s(I4) 1+ [ln()I4r)+yE ——', ]+—,', bo ——', C„+—,
' IC„+2CF 2C&[1—n(mr)+yE ——,]Ir

V4(m, r)=sirCpagg(p) 1+ [—,', bo ——,", Cg ——,
' CF+ —,'(1—»2)Tp] &'(r)

bo 1 ln(pr)+yz, 1 ln(mr)+yz
V2 +—', Cg V

4 2m. r 2m r

The EFG methods start from a 1/m expansion for the
quark propagator and derive expressions for the spin-
dependent parts of the (QQ) potential. A glance at the
perturbative expression for V5(mi, m2, r) reveals why the
EFG method could not include this term. They are pro-
portional to ln( m& ) which is not analytic as m& ~ 00. This
nonanalytic behavior is not confined to V5(rn i,m2, r). All
of the V;(m, r)'s possess this feature.

The logarithins of the mass are new and unusual terms.
In the equal-mass case V&(m, r} disappears but the other
V&(m, r)'s still contain logarithms of ( q/m) . These loga-
rithms are not present in QED since Cz vanishes there.
They come from the intermediate and the infrared in-
tegration regions of the Feynman diagrams, so the renor-
malization group can tell us little about them. Since
many infrared singularities exponentiate, it is possible that
these logarithm terms also exponentiate. However, not all
logarithms continue to higher orders. Let us recall that
the Bethe logarithm in the Lamb shift of the hydrogen
atom appears only at first order and not in higher or-
ders. Thus one cannot draw any conclusion about the
behavior of the ln(q/m) in the V;(m, r)'s without going to
higher orders in perturbation theory.

The presence of the ln(q/m) in the V;(m, r) proves that
these forces are Aavor dependent. The energy spectrum of
both (cc) and (bb) bound states is well described by
fiavor-independent models of E(r) (e.g., the Richardson
potential). Unlike the V;(m, r}, E(r) does not depend on
the mass of the fermion in perturbation theory to this or-
der. However, it should not be surprising that the spin-
dependent forces are different. Flavor dependence for the
spin-dependent forces appears natural since the fermion
mass is present in perturbation theory at the tree level as

d [E(r)+ Vi(mi, m2, r) —Vi(m, , m2, r)] =0 .
dr

(3.5)

This relation between the spin-averaged potential and the
two spin-orbit potentials follows from Lorentz invariance.
To see this, one starts with the relative coordinate opera-
tor for a two-fermion system correct to order 1/c

Pl+ P2 S1r=r~ —r2+ X
2(m, +m, ) m,

Under an infinitesimal boost

(3.6)

p.~p —pf v

(vXSi) (vXSi)—mr- +
2@i ) 2' 2

(3.7)

Substituting this into Eq. (3.1) or (3.3) and requiring in-
variance under the infinitesimal boost yields Eq. (3.5).
The perturbative expressions for E(r), V, (m, ,m2, r), and

well as at the one-loop level. The EFG formalism defines
the V~(m, r) to remove the known tree-level mass depen-
dence from the spin-dependent forces in the hope that the
V;(m, r) are fiavor-independent like E(r). The one-loop
corrections show that fiavor-independent models for the
spin forces are incomplete.

In Ref. 10, the following relation is claimed:

V4(mi, m2, r) =2V V2(mi, mz, r) .

At the tree level this identity is satisfied, but at the one-
loop level it fails for both equal and unequal masses.

Gromes has derived the relation'i
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Vi(ni i,mz, r) verifies this identity at the tree level and at
the one-loop levels, for both the unequal- and the equal-
Hlass cases.

Invariance under infinitesimal boosts is also pertinent
to V5(m i, rn2, r), the term that we have added to the EFG
formalism. The symmetry of Eq. (3.7) dictates that L(2)
and 1.(4) must be described by the same potential factor.
This also is verified at the one-loop level and we have in-
corporated it into our formalism by defming only one new
potential.

TABLE H. Data (Ref. 31} for the (bb} transition 3'Sl
~2'Pg+y: R =(Mp —Mi)/{Mi —Mo). Here, the systematic
uncertainty of R is not included.

E„(MeV)

84.2+0.3+2
101.4+0.3+3
122.1+0.7+5

8 =0.85+0.04

IV. REVIEW OF FINE STRUCTURE:
EXPERIMENT

TABLE I. Data (Ref. 26} for the (bE} transition 2 Sl
~1 P~+y. E„are the photon energies. The last column gives
the average photon energies.

Group E„(MeV) E& (MeV)

CLEO (Ref. 28)
CUSS (Ref. 27)
ARGUS (Ref. 30)
Crystal-Ball (Ref. 29)

109.5+0.7+ 1

108.2+0.3+2
112.5~1.1+2
108.2+0.7+4
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The ni'Si states of heavy-quarkonium decay to the
n Pz states. This transition is an E1 transition and the
branching ratio is usually quite substantial. In the past
few years the (bb ) states have undergone considerable ex-
perimental scrutiny. The masses of the 1P states have
been determined by CLEO, CUSS, Crystal Ball, and
ARGUS. 2 The masses of the 2P states have been
measured by one group, CUSB.i' There have been many
theoretical efforts over the years to calculate the P-state
masses. With the recent experimental results the stage is
set for a confrontation between theory and experiment.

The P-state data are given in Table I. This table lists
the observed photon energies for the transition
2 ssi ~1 Pq+y. The right-hand column gives the values
and errors that will be used for calculations herein. s

Table II lists the photon energies observed by CUSB for
the transition 3 S~~2 Pq+y.

The charmonium system has bali studied for many
years and the P-state masses are known very precisely.
This system is more relativistic than (bb) and hence pre-
dictions for charmonium have greater theoretical uncer-
tainties. The data for the energy-level splittings due to
spin effects are given in Table III.'

V. A PERTURSATIVE ANALYSIS
OF THE SPIN SPLIT-a INGS

Extracting P~
Models of heavy quarkonium start with a nonrelativis-

tic, spin-averaged, Hamiltonian that is solved exactly for
wave functions and energy levels:s s

2

Ho —— +E(r) .
2ptf

The spin splittings are small corrections to this Hamil-
tonian and hence can be treated perturbatively. To lead-
ing order

M( 'P, )=M, +(—,')&V &+(1)&V &+( ——,', )&V &,

M(n Pi)=Mo+( —,')& Vs&+( —1)& VL, &+( —,
'

)& Vz &,

M(niPo) =Mo+( 4 )& Vs &+( —2)& Vr, &+(—1}&Vr &

(5.1)
M(n'P )=Mo+( ——,')& V &+(o)& V &+(o)& V &,

M(n Si)—M(n'So}=& Vs&,

where Mo is the spin-averaged mass. The potentials are
from Eq. (3.3)

1 1
Vs ——— Vz(m, r),

Pl

VL —— — [—,E(r)+ Vi(in, r)+ Vi(ni, r)], (5.2)
1 1 ]

nii r dp

1 1
Vr ——— Vi(m, r),

1'
&1&= f drr R„i (r)=1,

TABLE III. Data (Ref. 32) for the (cc) spin splittings. E„
refers to the photon energies in the Si ~'S&& transitions.

CLEO
CUSS
ARGUS
Crystal-Ball

CLEO
CUSS
ARGUS
Crystal-Ball

129.0j0.8+1
128.1+0.4+3
132.5 %0.5+2
127.1 +0.8+4

158.0+0.7+1
149.4%0.7+5
156.0+0.7+2
160.0+2.4%4

155+4

(cr) 1'P,
(cc) 1'Pl
(cc) 13PO

State
cc 1S
cc 2S

Mg (MeV)

3555.8+0.6
3510.0%0.6
3415.0+ 1.0

E„{MeV)
113.0+5
92.0+5
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and the expectation values are evaluated with respect to
the appropriate ( n, l) states.

The simple relations of Eqs. (5.1) are not true beyond
first order; but higher orders will be smaller by a factor of
order (v/c) . We shall consistently neglect the contribu-
tion from higher-order nonrelativistic perturbation theory
since relativistic corrections to heavy-quarkonium bound
states which are of comparable sizes cannot be completely
calculated at the present. We are forced to accept a
theoretical uncertainty of order (v/c)t when calculating
any processes involving heavy quarkonium.

Table IV gives typical theoretical values for ( Vs},
( VL, },and ( Vz } using the perturbative calculations. For
the P states, 5 functions in Vs give no contribution so
(Vs} is second order in as.

For the hyperfine structure the situation is simple.
Only one perturbation contributes to the observed mass
splitting Vs. The size of the measured fine-structure
mass splittings depends on two quantities: ( Vt, } and
(Vr}. The dependence on Mo and (Vs} cancels out
when we look at mass differences. To extract A~ from
the fine-structure energy-level splittings we first invert
Eq. (5.1) to get experimental values for ( Vt, }and ( Vr }.
These quantities are extracted from the data because we
want to keep the two perturbations separate. The spin-
orbit and the tensor terms have different angular depen-
dences and probe slightly different scales. Nonperturba-
tive contributions should be smaller for the potentials that
probe shorter-distance scales.

To simplify the analysis we shall first consider the spe-
cial case where the nonperturbative contributions are tak-
en to be zero. By using the one-loop perturbative expres-
sions to describe the V we reduce the number of unknown
parameters to one, namely, A~, the @CD scale parame-
ter. A~ can then be extracted from the data for the
spin-dependent level splittings of heavy quarkonium. All

TABLE IV. Typical theoretical values for ( Vs },( Vt, },and
( Vr }.The perturbative QCD expressions for the V's are used
mth the patched potential and, where applicable, the Grunberg
prescription. Here Am=0. 30 GeV is used.

State

(cc) 1S
(cV') 2$
(cV') 1P
(bE) 1S
(bE) 2S
(bE) 3S
(bE) 1P
(bE) 2P

(MeV)

101.0
69.0

—3.6
35.0
19.0
15.0

—0.4
—0.3

(MeV)

0.0
0.0

48.0
0.0
0.0
0.0

13.0
9.3

{MeV)

0.0
0.0

46.0
0.0
0.0
0.0
9.0
6.7

other q~~ntitics that the spin splittings depend on, like the
quark mass and the wave function, can be determined
from other properties of the heavy-quarkonium spectrum.
The validity and accuracy of the perturbative expressions
can be checked a posteriori by comparing the values of
Apt) from several different spin splittings.

Using the perturbative expression for V we then have a
quadratic equation in a~(p). The coefficients of a~ de-

pend on p, and the integrals over quarkonium wave func-
tions while the constant part is determined from experi-
ment. After choosing a prescription to specify p and us-
ing a nonrelativistic quarkonium model to calculate
wave-function factors we then solve for a~(Is). A sam-
ple calculation is shown in Appendix C.

The relation between the A~ parameter and the cou-
pling constant is taken to be the integral of the two-loop P
function with three fiavors:

TABLE V. Fitting the fine structure with the one-loop perturbative expression. The fourth column
gives the size of the one-loop correction in the BLM prescription. The long-range contributions are tak-
en to be zero; N~ ——3; + implies that no value fits the data. (a) The BGT potential. (b) The patched po-
tential.

State

BLM

(MeV)

Corr.

(percent)
p

(Gev)

cV' 1P spin-orbit
cV 1P tensor
bE 1P spin-orbit
bE 1P tensor
bE 2P spin-orbit
bE 2P tensor

0.484
0.676
0.868
1.21
1.07
1.49

220.0+3
316.0+4

279.0+ 148
484.0+274
288.0+270

—30.0
+ 18.0

—9.0
—44.0
—22.0

0.704
0.544
1.65
1.46
1.85
1.57

209.0+3
291.0+4
288.0+40
282.0+ 150
379.0+94
289.0

cV 1P spin-orbit
cc 1P tensor
bE 1P spin-orbit
bE 1P tensor
bE 2P spin-orbit
bE 2P tensor

0.476
0.665
0.846
1.18
1.04
1.45

208.023
304.0+5

289.0+ 148

301.0+282

—28.0
+ 18.0

—10.0

0.688
0.515
1.62
1.44
1.82
1.54

200.0+3
272.0+4
297.0+39
292.02151
394.0+95

+294
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TABLE VI. The hyperfine splittings using the order as perturbative expressions. We solve for Asrs;

Sq ——3. The fourth column gives the size of the one-loop correction in the BLM prescription. + im-

plies that no values fit the data. (a) The BGT potential. (b} The patched potential.

(GeV}

BLM

(MeV)

Corr.
(percent) (MeV)

cc 1S
cc 2S

0.848
1.05

335.0+27
420.0+28

—27.0
—10.0

1.25
1.21

320.0224
428.0+28

cV 1S
cV' 2S

0.774
0.970 445.0%28 —16.0

1.23
1.18

358.0+24
451.0+29

a~(g)
p

bop
In = + 2

ln
Axrs' bi1+ p

p

bp= 3 Cg —7TFNf,11 4

S4 2 20
bi ———,(Cq) —i CgTpNf 4CFTFNf—.

(5.3)

The general forms for Cz and Tz are given below Eq.
(2.6) for SU(N). For QCD with three light flavors
(Nf =3), bp —9 and b, =64.

The values of A~ extracted from the spin splittings are
given in Tables V and VI and shown in Fig. 1. Two
prescriptions for choosing p have been used in Tables V
and VI. For the moment, let us concentrate on the results
from just one of them, the Grunberg prescription (see Ap-
pendix A). Each energy-level difference yields one value
for A~s so the fine structure of a state yields two values
while the hyperfine structure yields one. Figure 1 displays
these results with error bars that are the experimental er-
rors from the photon energies. Here we use the quarkoni-
um potential proposed by Richardson, Buchmuller,
Grunberg, and Tye, s and Buchmuller and Tye6 to be re-
ferred to as the RBGT potential. Since only the differ-
ence of energy levels is used in computing Agog some of
the systematic experimental error should cancel out and
the error bars shown in Fig. 1 are probably too large. We
will try to point out the different possible sources of
theoretical errors and their effects.

Theoretical uncerta~~ties

One of the largest potential sources of error is from or-
der (Ule) corrections to the perturbative expressions.
Another source of error could come from nonperturbative
contributions. These corrections should be larger for ( ee )
than for (bb) but it is impossible to completely calculate
them at the present time. Both of the above sources of er-
ror should, in principle, contribute with signs and magni-
tudes that are uncorrelated for the different perturbative
expressions. It has been argued previously herein that

these effects should not be large and we can see this from
Fig. 1. The fluctuations of Am are not large and lie
within the present experimental errors of (bb) data but
not within that of the precise (ec) data. Naively the ex-
pected theoretical fluctuations for (bb) values should be
smaller than those of (cc) values. Improved data on the
(bb) spin splittings are needed before this could be ob-
served.

Besides the fluctuating sources of errors, overall shifts
of the values are possible. The most likely source of any
such theoretical errors will be in the wave-function-
dependent factor. The accuracy of this factor is discussed
in the next section where we estimate the uncertainty to be
15%. Because the spin splittings all depend on just one
power of rrs at the tree level, the relative error in as is of
similar size. The error in A is determined by the P func-
tion

bpp b ip— — (5.4)

L

For the fine structure of (bb ) the average rrs is 0.30. Us-
ing Eq. (5.4) an uncertainty in the wave-function factor of
15% yields a relative uncertainty in A~s of 30% for the

(bb) fine structure. For charmonium the coupling con-
stant is larger and the uncertainty from this source is
smaller. Because the values of the coupling constant are
relatively large the sensitivity to the wave-function-
dependent factors is reduced from what one might naively
expect.

As argued above from Eq. (5.4), when the coupling con-
stant is large, the sensitivity to A is also large. However,
when the coupling constant is 1arge, results are sensitive to
details such as the choice of the renormalization scheme
and the prescription. In order to examine this problem we
have calculated all results with two different prescrip-
tions.

Our first approach is to fix p by requiring the one-loop
correction term to vanish. This incorporates all of the
correction term into the coupling constant and, in effect,
the particular process under consideration becomes a
physical definition of the coupling constant. This ap-
proach has been advocated by Grunberg. The other
prescription that we use is to take the Brodsky, Lepage,
and Mackenzie (BLM) prescription with the MS defini-
tion of the coupling constant (see Appendix A). This
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prescription takes parts of the one-loop correction term
that are known to be present to all others in perturbation
theory and incorporates them in the coupling constant.
The MS scheme is known to be close to a physical defini-
tion of the coupling constant and is convenient for pertur-
bative calculations.

The two approaches yield similar results when the size
of the correction term in the BLM prescription is small,
i.e., less than about 30%. When the BLM correction term
is larger than this the results are dissimilar and there are
two possible interpretations. One is that no expansion in
as can describe the process accurately. The other inter-
pretation is that the MS scheme is not sufficiently close to
the proper physical scheme to judge whether the expan-
sion in as is valid. A different definition of the coupling
constant where the correction term was small might then
be more appropriate. When the correction term in the
BLM prescription is large one cannot always flt the per-
turbative expression to the data (see Table U). To avoid
these problems we have plotted, in Fig. 1, A~ using the

Grunberg prescription. The success of perturbation
theory can then be judged by the fluctuations of the re-
sults. This method is not sensitive to the correct defini-
tion of the coupling constant.

The eight values of A~ in Fig. 1 are consistent with

each other within the experimental and theoretical uncer-
tainties. Nonperturbative effects are expected to cause
some fluctuations. The chartnonium values fluctuate
around the mean by about 75 MeV while the (bb) fluctua-
tions should be smaller and are all within the present ex-
perimental errors. Overall shifts of the values from un-

certainties in the wave function are possible. These
should be largest for (bb) where we estimate the corre-
sponding uncertainty in A~ to be 20—30%. From the
above considerations we obtain (to be discussed later)

A~=0.30+0.06 Gev .

This value is consistent with other, independent deter-
minations of A~. (See Note added where the analysis is
updated. )

Accuracy of perturbative coefficients

The nonrelativistic models of heavy quarkonium allow
one to calculate the wave functions of the bound states.
This gives us the factors needed in the spin splittings.
However, it must be noted that most phenomenological
potentials will not accurately describe the QCD static po-
tential at the distance scales that contribute most to the
spin splittings. The phenomenological potentials are de-
fined to fit the spin-averaged energy-level spectrum of
heavy quarkonium and are most accurate at these longer-
distance scales.

Since the spin-averaged potential is only known
phenomenologically at the scales of the bound states there
will be some error in the potential and consequently also
in the wave functions. Theoretical uncertainties can be
large for some processes that are sensitive to small
changes. An example of this is the El transition ampli-
tude which is proportional to the overlap of two different
wave functions often with differing numbers of radial

nodes. In some cases this overlap changes drastically
when small changes are made in the wave functions. ' '
On the other hand, the expectation values of Eqs. (5.1) are
between the same wave function. Errors in the energy lev-
els from using these wave functions in nonrelativistic per-
turbation theory will be the square of the error in the
wave function. This fact is used in the variational method
to obtain accurate energy-level estimates from crude wave
functions. Applied here, it shows that the size of ( V)
will be sensitive to what one uses for V, not to the wave
function.

The BGT potential incorporates the QCD perturba-
tive expression for the potential at short distances and is
numerically equivalent for the (cc) and (bb) systems to
that proposed by Richardson. This RBGT potential fits
the energy spectra extremely well (within 10 MeV) and a
priori is a prime choice for yielding good wave functions
and accurate values for the wave-function-dependent fac-
tors. Unfortunately, the BGT potential is consistent with
a value of A~ ——0.50 GeV at short distances which is
larger than the data indicate. To remedy this we have
constructed a potential by patching the perturbative ex-
pression for E(r) [Eq. (3A)] with A~=0.30 GeV onto
the RBGT potential (see Appendix 8). The BLM
prescription is used to fix p and Eq. (5.3) is used to find
the size of the coupling constant. By requiring the poten-
tial and its first derivative to be continuous the patching
point is determined to be 0.14 fm. The wave-function fac-
tors necessary for the spin splittings, as calculated in the
BGT potential and in the patched potential, are given in
Table VII.

The accuracy of the wave-function factors can be tested
empirically using experimental data from quarkonium de-
cay rates. The hyperfine splitting depends on the wave
function at the origin in the tree level and heavy-
quarkonium decay rates also have this same wave-
function factor. Table VIII compares experimental
widths to the predicted widths using the one-loop correc-
tions and the wave functions calculated from the RBGT
and patched potentials. Instead of trying to extract a
value for the A parameter from the data, the accuracy of
the wave function at the origin will be assessed.

The data for the leptonic widths are the most precise
and provide potentially the best information on the wave-
function-dependent factors. At the tree level the expres-
sion is independent of QCD but a large order-as correc-
tion enters at the one-loop level:

r("s, i+i )=4-8„(0)i a ( )

~2 3

The size of the coupling constant to take in this correction
term is unknown since the next-order corrections have not
been calculated but p must be chosen in a consistent
manner. Table VIII shows the comparison between
theory and experiment.

The theoretical wave-function factors from the BGT
and patched potentials flt the experimental datai if we
choose the Grunberg renormalization points appropriate-
ly. In choosing the relation between p and the bound-
state mass, errors from overall shifts of the wave-function
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TABLE VII. Some wave-function&ependent numbers inent to the spin sphttings as calculated in

twa different potentials. We use the normalization (1}= dr r R„(r}=1.(a) The BGT potential.

g}The patched potential.

1.48
1.48
4.88
4.88
4.88

30.0
30.0
40.0
40.0
50.0
50.0
60.0
60.0

P states

1

r 3

(GeV )

0.0987
0.0862
0.525
0.406
0.356

11.8
7.05

20.9
11.9
32.9
18.1
48.2
25.7

ln(mr)
r 3

(GeV )

(a)
0.0699
0.0415
0.690
0.451
0.354

24.2
13.2
44.6
23.5
72.5
37.0

109.0
54.0

S states

/
R„(0)f2

{QeV )

0.791
0.514
6.13
3.05
2.33

266.0
81.4

513.0
145.0
861.0
231.0

1320.0
340.0

S states

(
ln(mr)+ yE

21T r
(GeV )

0.435
0.500

—1.75
0.133
0.442

—324.0
—80.7

—687.0
—164.0

—1232.0
—282.0

—1980.0
—442.0

1.44
1.44
4.84
4.84
4.84

30.0
30.0
40.0
40.0
50.0
50.0
60.0
60.0

0.0947
0.0828
0.504
0.388
D.339
8.15
5.40

13.0
8.95

19.1
13.6
26.7
19.4

(b)
0.0659
0.0389
0.673
0.438
0.344

17.9
10.8
30.1
19.0
45.8
29.9
65.5
43.7

0.689
0.456
4.66
2.50
1.96

156.0
68.0

310.0
119.0
537.0
180.0
85D.O
251.0

0.294
0.400

—2.48
—0.385

0.027
—228.0
—82.9

—482.0
—159.0
—875.0
—257.0

—1433.0
—376.0

factors are partially absorbed. The wave-function factors
calculated fram the patched potential are consistently
smaller because we have made the potential shallower by
decreasing A~. Such overall shifts are the largest
theoretical uncertainty in the value of Am that we extract
for the spin splitting data. As an estimate of the magni-
tude of the theoretical uncertainty of our spin splitting
analysis to overall shifts we take the shift of the (cc} S-
state wave-function factors in Table VD. These are the
largest shifts that are pertinent to extracting A~ and are
between 10—15 %.

The value of
~
%~(0}

~
is 2.3 times greater when calcu-

lated from the Coulomb plus linear potential with the pa-
rameter set of Eichten er al. [Ref. 3 (1980}]than from the
RBGT potential. In Table IX, the wave-function factors
for P-state decay are given for the two models. The
models disagree less for P states since the centrifugal term
in Schrodinger's equation dominates at short distances
where the two potentials differ. Because of the centrifu-
gal term the P-state wave-function factors are more model
independent than the S-state factors and probably more
accurate. The S-state factors were accurate within the un-
certainties so the P-state factors should also be accurate

within an uncertainty of 10—15%%uo.

The hadronic decay widths of the P states have been
calculated " in Table IX from the RBGT wave-function
factor using A~ ——0.30+0.06 GeV and the Grunberg
prescription. For the 1++ snd 1+ states the one-loop
correction is not known sa the coupling constant was tak-
en to be as ——0.24+0.05. This number is the average, and
the deviation is half the difference af the coupling con-

%'idth Expt. (keV)

Theoretical {keV)
BCiT Patched

@=2Mj3 @=2M

r (bE iS)
I' + (bE 2S)
I + (bE 3S)
I + {cV' 1S)
I + (cc 2S)

1.10JO.12

0.507+0.051

0.362+0.050
4.60+0.39

2.05+0.21

1.13

0.36

2.1

0.94
0.45

0.33

4.7
2.3

TABLE VIII. Partial vridths of the 1 states (Ref. 32).
Testing the vmve function at the origin. p is chosen to fit the
data. P~ ——300 MeV, NF ——3.
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TABLE IX. ( bE) P-state decay. ~s= 300%60 MeV; XF——3; s implies these numbers were not cal-

culated in Kuang and Yan (Ref. 3). Misprints in Table III of Ref. 3 have been corrected.

State

i
R„'(0)

i
(GeV')

Cornell (Ref. 3) Richardson
potential potential

BGT
potential

Gluon annihilation width (keV)
Cornell (Ref. 3) RBGT

potential potential

1 P2
1 Pi
1 Po
1 'P)

1.47 1.42
160.0
60.0

600.0
40.0

135.0+15
80.0+50

1250.0+250
70.0+40

2 P2
2 3P

2 Po
2'P,

1.62
200.0

80.0
760.0

130.0+15
80.0+50

1250.0+250
70.0+40

3 P2
3 P)
3 Po
3'P,

1.75
130.0+15
80.0+50

1250.0+250
70.0+40

stants predicted for 2++ and 0++ hadronic decay by the
Grunberg prescription. Table IX also contains the older
predictions of the Coulomb plus linear potential.

Comments on coupled channel effects

The light quarks profoundly influence the heavy-quark
spectrum. Above the threshold energy for producing
heavy-light mesons, the heavy-quark states are very broad
because of the strong decay (QQ)~(gq)+(qg). At-
tempts to incorporate this strong decay process into the
potential model for heavy quarkonium usually go under
the title of "coupled channel analysis. " Here we wish to
express our viewpoint on what these analyses accamplish
and their relevance to our calculation.

Coupled channel analyses usually start with free, un-

coupled quarkonium states and then add an interaction
term to the Hamiltonian that couples the (QQ} states to
the (Qq)+(qg) hadron-hadron states. This allows the
decay of the heavy-quark states but also, at second order
in perturbation theory, this additional term produces
corrections to the masses. After folding these mass shifts
in, the new heavy-quarkanium states contain a small
light-quark content in the form of virtual (Qq}+(qg)
states.

Coupled channel analyses typically suffer from several
problems. There is little theoretical input from QCD on
the proper form of the interaction Hamiltonian that cou-
ples the (QQ) and (Qq}+(qg) states. Also the light-
heavy states are relativistic states and hence not accurately
described by the Schrodinger equation. Because of these
problems different coupled channel analyses usually agree
only to sign and magnitude of mass shifts. After renor-
malizing the IS states to fit the data, the resulting mass
shifts for states below threshold are very small (&10
MeV) and different analyses do not even agree in the sign.

In our viewpoint, for the spin-averaged heavy-
quarkonium states far below threshold, adding a virtual

(Qq)+(qg) content to the (Qg) states is equivalent to
adding light-quark pair effects (i.e., vacuum polarization}
to E(r), the heavy-quarkonium potential. Perturbative

QCD can accurately tell us the light-quark behavior of
E(r},far below threshold. At and above threshold pertur-
bative QCD is not valid and coupled channel analyses
provide the best indication of light-quark effects. For the
spin-dependent forces, the light-quark pair vacuum polar-
ization is included.

Some simple observations can be made that support this
viewpoint. Introducing a continuum of (QQ) states into
the heavy-quark model without introducing light quarks
can be simply accomplished by setting the potential equal
to a constant at the threshold. Doing this for (bb) and
(cc ), the discrete states belaw threshold are shifted by less
than 1 MeV. The farm of the potential is such that states
far below threshold are very insensitive to threshold ef-
fects. What causes the large mass shifts of these states in
coupled channel analyses is probably not the existence of
thresholds but the addition of light quarks.

Further insight can be gained from perturbative QCD.
Equations (3.4) tell us that the addition of light quarks
makes the potential steeper at short distances. With an
increase in flavor, states far below threshold will decrease
in mass and the size of the change will be of the order of
tens of MeV. This is qualitatively in agro:ment with the
predictions of coupled channel analyses. 9

In summary, coupled channel analyses attempt to in-
clude effects of light quarks into the heavy-quark model.
For our purpose, we feel that this can be done most accu-
rately for states far below threshold by including vacuum
polarization effects into the heavy-quarkonium potential.
For our spin-splittings analysis we use the experimental
data involving states below threshold, and a potential con-
sistent with perturbative QCD and three light flavors.

VI. DISCUSSIONS

A. Scale of the spin-dependent forces

Bound states depend on more than one length scale.
The two physical scales pertinent to properties of heavy
quarkonium are A~~ and the mass of the quark. These
two scales are apparent in the perturbative expression for
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the V&(m, r)'s since m and as appear explicitly.
The renormalization point p appears in the perturbative

expression for the V~(m, r)'s. If the V&(m, r)'s were known
to all orders in perturbation theory they would be in-

dependent of p, . Since we are forced to work to finite or-
der in as we must choose a sensible value for p, . To mini-
mize the contribution of higher orders in as we should
choose p such that the p-dependent teems in the coeffi-
cients of as are small. This means choosing p, roughly
the typical scale of the process, so that the ln(qjp)'s are
of order l. Various prescriptions for choosing )u have
been proposed and here we use the Crrunberg and the
BLM prescriptions. The prescriptions provide a frame-
work to judge the validity of perturbation theory for the
spin sphttinss.

To judge ei priori the validity of a perturbative expres-
sion we can use the prescription to determine the typical
scale and compare this to A. As an example let us apply

cV 1S
cc 2S
bE 1S
bE 2$
QQ 1S
QQ 2$
QQ 1$
QQ 2S
QQ 1S
QQ 2$
QQ 1$
QQ 2$

Quark
mass
(Gev)

1.48
1.48
4.88
4.88

30.0
30.0
40.0
40.0
50.0
50.0
60.0
60.0

PBLM
(GeV)

0.211
0.150
0.407
0.256
0.683
0.492
0.814
0.573
0.937
0.648
1.06
0.720

0.329
0.234
0.635
0.399
1.07
0.767
1.27
0.894
1.46
1.01
1.65
1.12

TABLE X. The scree of the bound state as given by the
prescriptions. The BGT potential is used.

TABLE XI. Predictions for the spin splittings of ( bE) states. The one-loop perturbative corrections are used to calculate the fine
structure and hyperfine structure. In the perturbation we take P~——300%60 MeV, Nr ——3. The fifth column gives the one-loop

correction in the BLM prescription. R is given by 8 =(Mq —Mi)/(Mi —Mo). (a) The BGT potential. (b) The patched potential.

State

bE 1P spinwrbit
bE IP tensor

Mg ——4.88 GeV
bE 2P spin-orbit
bE 2P tensor

Mg ——4.88 GeV

0.868
1.21

1.07
1.49

0.690

0.720

BLM
M) —Mp

(Mev)

(a)
25.2+1.6

19,1%1.2

Carr.
(percent3

—39.0
—9.0

—29.0
—2.0

p
(GeV)

1.65
1.46

1.85
1.57

0.763

0.753

M) —Mp
(MeV3

26.5+1.9

19.6%1.3

State

bE 1S
Mb ——4.88 GeV
bE 2S
Mb ——4.88 Gev
bE 3$
Mb=4. 88 Gev

p
(GeV)

1.84

2.17

2.33

(Mev)

41.0+2

22.0+1

17.0+1

Corr.
(percent)

—35.0

—25.0

—21.0

p
(GeV)

4.41

4.29

4.24

(Mev)

46.0+3

23.0+1

18.0+1

bE 1P spin-orbit
bE 1P tensor

Mg ——4.84 Gev
bE 2P spin-orbit
bE 2P tensor

Mg ——4.84 GeV

0.846
1.18

1.04
1.45

0.682

0.716

(b)
24.8+1.5

18.8+1.2

—41.0
—10.0

—31.0
—3.0

1.62
1.44

1.82
1.54

0.751

26.2+1.9

19.3+1.3

State

bb 1S
Mb ——4.84 GeV
bE 2$
Mb ——4.84 Gev
bE 3S
Mb ——4.84 Gev

1.61

1.95

2.12

30.0+1

18.0+1

14.0+1

Corr.
(percent)

—43.0

—31.0

—26.0

4.46

4.33

35.0+2

19.0+1

15.0+1,
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this test to the spin-independent spectrum. From Table X
we see that values of p for E(r) are comparable to A~
for (cc) and (bb) states. Thus, to describe these spin-
independent splittings, the range over which E (r) must be
accurate extends heavily into the region where the pertur-
bative expression is no longer convergent. Perturbation
theory alone is inadequate in describing the spin-average
potential. To remedy this, one adjusts by hand the long-
distance behavior of E(r) until it does successfully
describe the energy levels. Strong-coupling theory tells us
that at long distances the quarkonium potential should be
linear in r. Spin-independent potentials proportional to
1/r at short distances and r at long distances successfully
describe the heavy-quarkonium spectrum

For the spin-dependent farces, the perturbative expres-
sion has a better chance of succeeding alone. From Tables
X and XI we see (from the p's) that for (cc) and (bb) the
typical distance scales of the spin splittings are much
shorter than the scales of the spin-independent spectrum
and A~. For the fine structure this is because the tree-
level distance dependence, 1/r3, weights short distances
more heavily in the ln(mr} terms than does the tree-level
dependence 1/r of the spin-averaged potential. The same
is true for the hyperfine splitting, shorter distances are
more important. The spin-dependent forces are relativis-
tic corrections to the spin-averaged forces and because of
this probe shorter distances. Thus, to describe the (bb)
and (cc) spin-dependent splittings, the range over which
the V, (m, r)'s must be accurate lies more in the perturba-
tive region than it does for the spin-independent splittings.
We expect long-range effects to be less important.

S. The spin-orbit interactions

At present there does not exist a comprehensive, a
priori calculation of long-range terms in the spin-
dependent splittings. For the spin-orbit interaction we do
have some clues as to the long-range behaviar. There the
EFG formalism and the Gromes relation provide us with
a framework for making some quantitative estimates. We
take several types of long-range contributions and calcu-
late the spin-arbit A~M for each case.

The EFG formalism includes the spin-independent po-
tential E(r) in the expression for the spin-orbit interaction
[Eq. (3.3)]. Since the long-range contribution to E(r) is
known phenomenologically, this gives us some input as to
the long-range behavior of the spin-orbit interaction. The
spin-dependent potentials are proportional to 1/r at
short distances. The presence of E(r) implies that the
long-distance behavior should be proportional to 1/r,
larger by two powers of r from the short-distance expres-
sion. These iong-range corrections to the static potentials
are only part of the possible nonperturbative contributions
but have been the subject of much discussion. Here we
wish to discuss the effects of such contributions and what
the data imply (a review of other analyses is given in Sec.
VII).

The size of the long-range part in the V;(m, r)'s is un-
known but we do have one constraint. The Gromes rela-
tion [Eq. (3.5)], which follows from Lorentz invariance,
tells us that V, (m, r) and/or V2(m, r} must contain some

2 s
VL (m, r) = a~M(p, ) 1+ A

m r m'

A = ,
'

ho[in(pr)—+yE —1]+—,', bo —2

+ I —,
' —2[in(mr)+yE —1]I .

(6.1)

By using Eq. (6.1) for VL, we are left with a~(p) as the
only unknown parameter.

Case (2): Vq ——0 so that V& —— E. This ca—se is
equivalent to the assumption that the spin-averaged con-
fining potential comes from an attractive scalar ex-
change. "2 A phenomenological expression for E(r)
(which is consistent with A~ ——0.30 GeV at short dis-

tances) is used to add a long-range part to the interaction:

l l E
VL(m, r)= —— (r)

2 ~ p dl'

8 l CXg+», ~mrs(~) 1+

C = ,
'
bo[ln(pr)+yE 1]—+—,', b, —

—2+ —,
'

I —,
' —2[in(mr)+yE —1]I .

(6.2}

%e extract A~ from the remaining perturbative, non-
phenomenological part of the expression. The results are
shown in Fig. 3.

long-range contribution similar to E(r). For the spin-
orbit force the interaction depends on the three potentials
that appear in the Gromes relation. With E (r), the non-
perturbative part of E(r), approximately known, we need
one assumption in order to fully determine the long-range
part of the spin-orbit interaction. We will discuss the fol-
lowing four representative cases (other cases can be con-
sidered in a similar manner): (1) V, = —3Vz ———,E—
such that there are no nonperturbative spin interactions
(the superscript N denotes nonperturbative, EN=E —E);
(2) V2 ——0; (3) Vi ——0; (4) Vi ———Vi ————,E~. For each
case, three independent determinatians of the A~ param-
eter can be made from the current data on the fine struc-
tures from the J/4 and Y systems. Irrespective of which
type of lang-range spin-orbit interaction one considers, the
current data on the Vs and Vr terms provide five more
determinations of the A~ parameters. Consistency
demands that for one particular type of long-range spin-
dependent force we obtain a common value of A~s
(within errors). We emphasize that, in contrast with the
usual approach which assumes a certain form of the
long-range spin force and then confronts experimental
data, we use the data to extract the A~M parameter and
deduce the lang-range spin-dependent potentials.

Now we consider the four types of long-range spin in-
teractions separately.

Case (1}: Vi ———3V2 ———,'E suc—h that VsD is taken
entirely to be the expression given by the perturbative
QCD calculations. For this case the spin-orbit potential is
given by
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S S L L L T T T

FIG. 3. %'e extract P~ with several possible long-range

forces added to the spin-orbit potential, as explained in the text.
The X stands for the data from the Crystal Ball Collaboration
(Ref. 29) and the C stands for the data from CUSS (Ref. 27}.
The spin-spin, spin-orbit, and tensor terms are denoted by S, L,
and T, respectively. The spin-independent potential [E(r)]
used is consistent with ~=0.30 GeV at short distances.

Case (3): Vi ——0 so that Vz ——E . For this case

tal errors. Better data will be able to distinguish the
model of short-range spin forces froin the model of scalar
long-range forces and other models.

VII. REVIEW OF OTHER MODELS
OF SPIN SPLIiTINGS

All models of heavy quarkomum agree on the spin-
averaged energy-level spectrum even though many dif-
ferent quarkonium potentials are used. Consequently the
wave functions and masses that are contained in these
models are not identical but are all very similar. Since the
factors needed in the spin splittings are relatively insensi-
tive to the wave function, variations here should not give
rise to large differences in the models. To compare the
various theoretical calculations we look at what they use
for VL, and Vr. At short distances the forms of Vi, and
Vr are predicted by QCD from perturbation theory:

ag
VL, =2 2, [1+0(as)]

(7.1)

VT ———
z 3 [1+O(as)] .4 as 1

VI, (m, r)= 2 [—', E+( E+Vi+—V2)] .
m'r « (6.3)

But the combination ( E+Vi+—Vz) is already of order
as2. To extract A~ we need to calculate E, Vi, and Vi
to order aq .

Case (4): Vi ———V2 so that V, = —V2 ———,'EN.
The assumption, made in Ref. 10, that only the color-
electric field contributes to the long-range part of the stat-
ic energy is phenomenologically equivalent to this case:

VL, (m, r)=—, (r)+—,, a~(p) 1+ 81 1 dE 4 1 as
2mr dr 3mr

8 = —,
' bp[ln(pr)+yE —1]+—,', bp

—2+ —',
I —,

' —2[in(mr)+yz —1]I .

(6.4)

The results for A~ are shown in Fig. 3 with the other
cases.

The nonperturbative contributions are what cause the
fluctuations in Fig. 1. Positive nonperturbative contribu-
tions cause the value of A~ extracted from the data to be
larger than the proper value, negative nonperturbative
contributions shift it down. We naively expect the non-
perturbative contributions to come with different signs in
different physical processes so that the mean of Fig. 1

should correspond to the physical A parameter of QCD.
The size of the shifts in Fig. 3 depends on how we choose
to include long-range contributions.

Figure 3 shows that the electric confinement model is
disfavored. Although we have not extracted A~ for the

V, =0 case, this model gives values of A~s below those

of the electric confinement model, and is probably ruled
out. For the spin-orbit force in (cc ) the data indicate that
the net nonperturbative contribution is negative; but the
size of the shifts in (bb) is comparable to the experimen-

The expansion parameter hxomes large at long distances
so Eqs. (7.1) break down there. AB models based on QCD
must agree with Eqs. (7.1) at short distances but the vari-
ous models differ in the numerical values used for as.
The models also differ in the long-distance behaviors of
VL and Vr, since this cannot be determined by perturba-
tion theory.

The predictions of the various models are sensitive to
how the parameters such as as, etc., are chosen (usually
from charmonium data). To minimize the sensitivity to
the parameters and to elucidate the importance of the
long-distance terms we examine the quantity R, the ratio
of the fine-structure splittings:

R=- =2-M2 —M) 3{)

Mi —Mp (VL, )
10 +15

T

(7.2)

Using just the short-distance terms from Eqs. (7.1)

R =—', +O(as) .

Since as, m, and ( 1lr ) essentially cancel out in this ra-
tio, it should be useful for comparing the models if the
short-distance contribution is significant. The order-as
corrections to this ratio are small.

Figure 4 shows the consistency between the long-range
behavior of the V's and the value of R. The Buchmuller
(BG) (Refs. 11 and 12), MB (Ref. 14), and GRR (Ref. 16)
models have ratios smaller than the tree level since they
have a long-distance term in VL that is negative, making
VL, smaller [see Eq. (7.2)]. The EF (Ref. 10) and
Gottfried (G) (Ref. 38) models have a ratio larger than the
tree level since they have a positive 1ong-distance term in
Vl. The G model has a larger ratio than the EF model
because G takes the EF model and reduces the size of as
in it—making the long-distance term more important.
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MR have positive long-distance terms in both VL and VT.
They obtain a very small ratio so the contribution of the
long-distance part of Vr must be quite substantial.

In the models of MR and MB some relativistic correc-
tions are taken into account in the zero-order wave func-
tions used for computing Eqs. (5.1). As noted previously,
the fine-structure energy splittings should not be sensitive
to such corrections. %'e should expect, and Fig. 4 seems
to confirm, that the dominant difference in the tabulated
models should be their choices for VL and VT. The MB
and MR models have (bb) ratios that are very small—
only slightly bigger than the ratios they predict for char-
monium. Both of these models take the size of the short-
distance contribution from the spin-independent potential
and then weaken it with exponential damping factors. Be-
cause ( bb } probes shorter distances than charmonium, the
ratios are slightly larger and hence closer to the tree-level
predictions but not as large as one would expect if the
tree-level terms were undamped.

The GRR model includes the order as corrections to
the tree-level terms to get a better expression for Vt and
VT at short distances. These corrections also lower the
value for R. However, GRR choose their short-distance
parameters consistent with the rather small value of
AMs ——108 MeV. As in the G model, by making the cou-

pling constant small the importance of the long-distance
terms is increased (and the effect of the one-loop correc-
tion is decreased). Thus their values of R are very similar
to those of BG.

From this comparison of many dissimilar models we
can dra~ some conclusions.

(1) The perturbative @CD piece is the largest part of
the Vl's.

(2) The importance of the long-range part depends on
the magnitude of the parameters, as, etc. The coefficient
of the long-range part of VL is usually chosen to have the
same magnitude as that of the spin-averaged potential.
The size of the short-distance contribution is determined
by the choice of as. This is usually taken to be the same
as the spin-average force or put in by hand. The smaller
the value of as that one puts in, the larger the effect of
the nonperturbative, long-range part.

(3) Most models treat the spin-dependent forces the
same way as they treat the spin-averaged forces. For both
forces, they start with the perturbation @CD short-
distance expression (usually the tree level) and then add an
ad hoc, long-range, nonperturbative terin (the assumption
is usually flavor independent); next they fit parameters
with charmonium data and then try to predict the (bb)
values.

(4) The vector long-range case is probably ruled out.

Dota

!
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!.2

IO-
L58

0.8 ~
I. EQ

0.6

0.4

02 . I I

Hl lbb
Eg 2bb
g3 Icc

GRR BSG MB
I

Tree-level prediction of R

G

I

WMfff~
M

i-

FIG. 4. Comparing different theoretical predictions for 8,
the ratio of the energy level splittings„with the data:
8 =(Mq —M~)/(M~ —Mo). Two values of R for (bb) 1P state
are included. The larger value is that quoted in the text. The
lower value is that quoted in the Note added. Group I are those
models that have a negative long-range term in the spin-orbit
potential and no long-range term in the tensor potential; GRR
(Ref. 16), BG {Refs. 11 and 12), and MB (Ref. 14). Group II are
those models that have a positive long-range term in the spin-
orbit poteatial and ao long-range term in the tensor potential;
EF (Ref. 10) and G {Ref.38). Group III is the model with posi-
tive long-range terms in the spin-orbit and tensor potentials; MR
(Ref. 13). Since the results for the 2P states have not beea in-
dependently verified the experimental uncertainty of 8 for the
2P states has been chosen to match the uncertainty for the 1I'
states which comes from Table I.

VIII. PREDICTIONS

Not all of the spin splittings observed in (cc }have been
observed in the (bb) system. Table XI contains the pre-
dictions for the hyperfine splittings of the S states of
(bb). It also contains predictions for the fine-structure
states since the experimental errors for the fine-structure
splittings are still quite large.

The value of Am used in the perturbative expression
for the V's has been taken to be the average obtained
from Fig. 1, namely, AMs

——300+60 MeV. (See Note add-
ed. ) The extracted value of A~ may be used with the
RBGT potential to give accurate predictions of the (bb)
splittings. Overall shifts of the wave-function factors will
cancel out in the predictions for the fine and hyperfine
splittings of ( bb }. The only uncertainty in the predictions
is taken to be due to the uncertainty in A~.

Besides the unknown splittings of ( bb) we make predic-
tions for the spin splittings of the t-quarkonium energy
levels in Tables XII and XIII. For this system the relativ-
istic and nonperturbative corrections should be negligible.
The largest uncertainty in our predictions for t quarkoni-
um will be in the wave-function-dependent factor. No en-

ergy levels in the t-quarkonium system have yet been mea-
sured so we cannot yet test the accuracy of the
phenomenological potential here. However, since (t t)
will probe short distances (Table X) the form of the poten-
tial is known from perturbation theory. The BGT poten-
tial incorporates these short-distance predictions into its
definition; unfortunately it uses a value of A~M that is too
large, i.e., A~ ——0.50 GeV. This will have little effect on
the value of R in the fine structure since here the nonper-
turbative factor cancels out, but it will effect the size of
the energy-level splittings.
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TABLE XII. The hyperfme splittings using the one-loop perturbative expressions. %e take P~ to be 300%60 MeV, for N~ ——3.
The fourth column gives the one-loop correction in the BLM prescription. (a) The BGT potential, N~ ——3. (b) The patched potential,

Np ——4. (c) The patched potential N~ ——5.

(G".V}

BLM

(MeV)
Corr.

(percent)
p

(GeV)
EE

(MeV)

QQ 1S
Mg ——30.0 GeV

gQ is
Mg ——40.0 GeV

QQ 1S
Mg ——50.0 GeV

QQ 1S
Mg ——60.0 GeV

7.10

8.90

10.6

12.3

29.520.6

30.3%0.6

31.3%0.6

32.3+0.6

—35.0

—35.0

—34.0

—34.0

29.3

39.5

60.0

32.9%1

33.8+1

34.8+1

35.9+1

QQ 1S
Mg ——30.0 GeU

QQ 1S
Mg =40.0 GeU

QQ 1S
Mg ——50.0" GeV

gQ is
Mg ——60.0 GeV

6.28

7.98

11.2

16.7+0.2

18.0+0.3

19.2+0.3

20.6+0.3

(b)
—42.0

—40.0

—40.0

—39.0

33.9

45.7

57.7

69.8

19.8+0.7

21.0+0.7

22.4J0.7

23.9+0.7

QQ 1S
Mg ——30.0 GeV

QQ 1S
Mg ——40.0 GeV
QQ 1S
Mg =50.0 Gev
gQ iS
Mg ——60.0 GeV

6.28

7.98

9.62

11.2

16.8+0.2

18.0+0.3

19.3%0.3

20.7+0.3

(c)
—42.0

—41.0

39.2

53.2

67.4

20.0+0.7

21.3+0.7

22.7+0.7

24.2+0.7

IX. CONCLUSIONS

In this paper we have shown the importance of the
one-loop perturbative QCD contributions to the spin split-
tings of heavy quarkonium. These terms have been in-
cluded previously by GRR but we use these teiiiis to qual-
itatively influence the theoretical nature of our work. We
verify to one loop a relation among the spin-independent
and spin-orbit forces [Eq. (3.5)]:

[E(r)+V~(m~, m2, r) —V2(m&, m2, r)]=0 .

L+
PB 7?T1 2

Si-Sz
L V5(m ~,mz, r}

PB )Pl2

This relation was proposed by Gromes'~ and follows from
Lorentz invariance. The one-loop contributions have
determined our formalism for the spin-dependent forces
since they force us to modify the EFG formalism by add-
ing [Eq. (3.1)]

for the unequal-mass case. Lorentz invariance tells us
that only one potential V& is necessary above and this is
verified by the one-loop contributions. For equal- or
unequal&-mass heavy quarks, the one-loop contributions to
the spin forces depend on powers and logarithms of the
heavy-quark mass —the spin forces are flavor dependent.

The one-loop terms are crucial to a qualitative analysis
of the experimental data. They allow us to relate the data
to the fundamental parameter of QCD, the A parameter.
Each of the eight measured spin splittings yields a value
for A, the typical value being AMs

——0.30+0.06 GeV (see¹teadded). Fluctuations about a A value are caused by
effects not included in the perturbative QCD expression,
such as long-range effects and relativistic corrections. For
(cc) we see some evidence for these effects in Fig. 1, but
for (bb) all the values for A extracted from the data are
so far consistent within the experimental errors. Concen-
trating on the spin-orbit force, we see that some previous-

ly proposed models for long-range effects can probably be
ruled out (Fig. 3}. Better data will certainly provide valu-
able hints on the size and form of such effects.

A short version of this work has been published in
Phys. Rev. Lett. 55, 916 (1985).
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TABLE XIII. The fine-structure splittings using the one-loop perturbative expressions. We take Atts to be 300260 MeV, for

N~ ——3. The fifth column gives the one-loop correction in the BI.M prescription. R is given by R =(M2 —M~ )/(M& —Mo). (a) The
BGT potential, E+——3. (1) Thepatchedpotential, N+ ——3. (c) The patched potential, X~——4.

State

QQ 1 P spin-orbit

QQ 1 P tensor

Mg ——30.0 GeV

QQ 2P spin-orbit

QQ 2P tensor

Mg ——30.0 GeV

QQ 1P spin-orbit

QQ 1P tensor

Mg ——40.0 GeV

QQ 2P spin-orbit

QQ 2P tensor

Mg ——40.0 GeV

QQ 1P spin-orbit

QQ 1P tensor

Mg =50.0 GeV

QQ 2P spin-orbit

QQ 2P tensor

Mg ——50.0 GeV

QQ 1P spin-orbit

QQ 1P tensor

Mg ——60.0 MeV

QQ 2P spin-orbit

QQ 2P tensor

Mg =60.0 MeV

QQ 1P spin-orbit

QQ 1P tensor

Mg ——30.0 GeV

QQ 2P spin-orbit

QQ 2P tensor

Mg ——30.0 GeV

QQ 1P spin-orbit

QQ 1P tensor

Mg ——40.0 GeV

QQ 2P spin-orbit

QQ 2P tensor

Mg ——40.0 GeV

QQ 1P spin-orbit

QQ 1P tensor

Mg ——50.0 GeV

QQ 2P spin-orbit

QQ 2P tensor

Mg ——50.0 GeV

QQ 1P spin-orbit

QQ 1P tensor

Mg ——60.0 GeV
QQ 1P spin-orbit

QQ 1P tensor

Mg ——60.0 GeV

P
(Gev}

2.57
3.59

3.05
4.25

3.13
4.37

3.69
5.14

3.67
5.12

4.29
5.99

4.18
5.84

4.87
6.80

2.20
3.08

2.67
3,73

2.62
3.65

3.19
4.45

3.02
4.21

3.69
5.15

3.41
4.76

4.17
5.82

0.776

0.781

0.781

0.785

0.784

0.768

0.773

0.775

0.780

0.784

BI M
M( —Mo

(MeV}

{a)
8.6+0.2

5.2+0. 1

8.1+0.2

4.6+0. 1

7.7%0.2

4.3+0.1

7.6+0.2

4.0%0.1

(b)
5.9+0.1

4.0%0.1

5.0+0. 1

3.5+0. 1

4.5+0. I

3.2+0. 1

4.2+0. 1

3.1+0.1

Corr.
{percent}

—33.0
—21.0

—29.0
—16.0

—32.0
—21.0

—28.0
—17.0

—31.0
—21.0

—28.0
—17.0

—31.0
—21.0

—27.0
—18.0

—38.0
—25.0

—32.9
—19.0

—37.0
—26.0

—32.0
—21.0

—37.0
—26.0

—31.0
—21.0

—36.0
—26.0

—31.0
—21.0

6.76
7.04

7.46
7.47

8.60
9.13

9.40
9.62

10.3
11.1

11.3
11.8

12.0
13.1

13.1
13.8

6.22
6.69

6.92
7.14

7.77
8.59

8.68
9.17

9.29
10.4

10.4
11.2

10.8
12.3

12.1
13.1

Grunberg

0.809

0.804

0.812

0.806

0.812

0.807

0.812

0.805

0.816

0.808

0.817

0.811

0.819

0.812

9.1+0.3

5.3+0.2

8.5+0.3

4.8+0. 1

8.2+0.2

4.4+0. 1

8.0+0.2

4.2+0. 1

6.5+0.2

4.2+0. 1

5.4+0.2

3.7+0. 1

4.9+0.1

3.4+0. 1

4.5+0. 1

3.2+0. 1
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TABLE XIII. ( Continued).

QQ 1 P spin-orbit

QQ 1P tensor
M~=30.0 GeV

QQ 2P spin-orbit

QQ 2P tensor

Mg ——30.0 GeV

QQ 1P spin-orbit

QQ 1P tensor
M~=40.0 Gev
QQ 2P spin-orbit

QQ 2P tensor

M~ =40.0 Gev

QQ 1P spin-orbit

QQ 1P tensor

Mg ——50.0 GeV

QQ 2P spin-orbit

QQ 2P tensor

Mg =50.0 GeV

QQ 1P spin-orbit

QQ 1P tensor

Mg =60.0 GeV

QQ 2P spin-orbit

QQ 2P tensor

Mg =60.0 GeV

2.20
3.08

2.67
3.73

2.62
3.65

3.19
4.45

3.02
4.21

3.69
5.15

3.41
4.76

4.I7
5.82

0.773

0.775

0.778

0.778

BLM
MI —Mo

(MeV}

(c)
6.0+0. 1

4.0+0.1

5.1+0.1

3.5+0. 1

4.5+0. 1

3.3+0.1

4.3+0.1

3.1%0.1

Corr.
(percent)

—39.0
—26.0

—33.0
—20.0

—38.0
—27.0

—31.0
—21.0

—37.0
—27.0

—32.0
—22.0

—37.0
—27.0

—32.0
—22.0

6.75
7.12

7.47
7.52

8.48
9.19

9.40
9.72

10.2
11.2

11.3
11.9

11.8
13.3

13.1
14.0

Grtj, nberg

0.808

0.801

0.812

0.805

0.813

0.807

0.816

0.809

M) —Mo
(MeV)

6.6+0.2

4.3+0.1

5.5+0.2

3.7+0. 1

5.0*0.1

3.5+0. 1

4.7+0. 1

3.3+0.1

Note added

After the completion of the above work, new data have
been published by the Crystal Ball Collaboration [R.
Nernst et a/. , Phys. Rev. Lett. 54, 2195 (19S5)]and by the
ARGUS Collaboration [H. Albrecht et al. , Phys. Lett.
1608, 331 (19S5)]. From their results, we obtain for the
1P splittings in the Y system:

M(1 P2) —M(1 P()=21.0+1.0 MeV,

M(13Pi) —M(1 Po) =30.7+1.2 MeV,

R =0.68+0.04 .

Using these results and the analysis discussed in the text,
we obtain the A~& for the tensor part of the 1P state

A~ ——0.41+0.04 GeV .

The A~ for the spin-orbit (L) part of the 1P states de-

pends on the long-range force (with

and values in Table VII):

case 1: A~ ——0.34+0.02 GeV,

case 2: A~ ——0.40+0.02 GeV,

case 4: A~ ——0.02+0.01 GeV .

The results are shown in Fig. 5. It is clear that case 2
(scalar long range) and case 1 (no long range) are compati-
ble with data. The average A~ becomes

case 1: A~ ——0.37+0.06 GeV,

case 2: A~ ——0.40+0.04 GeV,

if we use the data from the Y system only. These values
are somewhat larger than the value determined by other
means. This allows us to predict the splittings in the ex-
cited 2I' states in the Y system. Using values in Table
VII and

0 36 GeV3 =0.25 GeV
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600

500—

300—
(CO

Z00—

I00—
0 I

cC'

IS
S

case 4

ce ce' b8
2S IP IP
S L L

bE cK bS bb
2P IP IP 2P

T T T

FIG. 5. ~ extracted from the various scenarios discussed

in the text. This is the same as Fig. 3 except that the more re-

cent data are used. For details, see the Note added. The data
are consistent with case l 4,

'no long range) and case 2 (scalar long

range). The Atts=0. 40 GeV is obtained.

we predict

M(2ip ) ~(23p )
16 2 MeV case 1

14.9 MeV case 2,

(
'

) — (
' )=

22.3 MeV case 2.
The errors are around 1 MeV.

0.74 case 1

0.67 case 2 .
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In this appendix we explain briefly the BLM prescrip-
tion 6 and the Grunberg prescription3 used in the text.
The difference between the various prescriptions is at
higher orders in as, which have not been calculated.
Hence each prescription attempts to estimate the contri-
bution from higher orders and include as much of these
effects as possible into the formula that has been calculat-
ed.

Let us consider a physical quantity P for which pertur-
bative QCD gives the following form:

~s(P )I' =Co I+Ci(p)
4m 4m

+C2(P), +
(4ir)

where X is a po~er depending on the process considered.
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APPENDIX A

J'=co[p(Q') f" (A2)

where we have denoted as/4n by p and the subscript 6
refers to the Grunberg prescription for which the formula
is exact. For large Q /A, p(Q )G has the asymptotic ex-
paIlslon

1 1
p(Q )G=

Qi
A

bilnln
A
2'2

b ln
A

+ 0 ~ ~ (A3)

If, in a particular scheme, say, the MS scheme, the quanti-

ty I' is given to one-loop corrections by

J'=~o~pKB(Q ) ~ ~I+Ci(Q')pKB(Q') j

we then can identify

(A4)

Ci(Q )
p(Q )G =pm(Q') 1+ pMs(Q')

N

=pgg(p ) 1+ boln ~—(p )
C) Q' z

p2

+ 8 4 ~

where, for the second step, we have expanded p~~(Q ) in
terms of p)(B(p ). The Grunberg prescription requires one
to choose the mass scale p such that

The coefficients C;(p) depend on (a) the renormalization
scheme employed to calculate I', and (b) the choice of
mass scale p. In any finite-order analysis, different
choices of scheme and scale give different results for P.
Here we will not discuss the different renormalization
schemes. Let us just say that we have already chosen a
particular renormalization scheme, say, the MS (modified
minimal-subtraction) scheme. We now turn to the scale-
fixing ambiguity and explain the BLM and Grunberg
prescriptions.

Brodsky er al. argue that, as in QED, the only function
of light-fermion insertions in the gauge-particle propaga-
tor is to renormalize the couplings, and hence all such
terms should be completely absorbed into as. Further-
more, since us is essentially a function of bo= 11—i Np

(Nz is the number of light-quark species) one can use the
light-quark loops as a probe to absorb the necessary
amount of gluonic corrections. In essence, the BLM
prescription requires one to identify the NF terms from
which one forms the bo combination, and then the mass
scale for the process under consideration is fixed by
demanding the coefficient of bo to be zero. Examples
relevant to the processes we consider in this paper can be
found in Ref. 17.

On the other hand, the Grunberg prescription involves
choosing the scale )u for the process under consideration
in such a way that the lowest-order formula for that pro-
cess is exact, i.e., so that the one-loop coefficient vanishes.
Let us consider a certain physical quantity P for which
the lowest-order formula yields
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g2—boln =0.
p2

Up to the second order this choice gives

P =Co[~(~}]"~

One can solve (A5) to yield A~ in terms of A:

bo ln

(A6)

am(~)
p=

p 1 ~1 bop
ln = + ln

p &o' b]1+ p
0

which is the integral of the perturbative P function [see
Eq. (5.3)]. The bk's are flavor-dependent coefficients:

With P given by experimental data, one can use (A2) and
(A3) to extract A and then Eqs. (A4} and (A7) to find
A~. Also see Appendix C. Finally we note that the
Grunberg prescription is very similar in numerical results
to the one proposed by Stevenson.

APPENDIX 8

In this appendix we briefly describe the patched poten-
tial which we have used in the text. The patched potential
is intended to be more accurate than other phenomenolog-
ical potentials at short distances. All phenomenological
potentials which successfully reproduce the (cc ) and ( bb }
spin-independent spectra agree in the range 0.1 & r & 1 fm.
Thus the form of the quark-antiquark potential is essen-
tially known in this region. The spin-dependent energy-
level splittings probe shorter-distance scales than the
spin-independent splittings so, for the calculations in the
text, we want a potential that is accurate at distance scales
shorter than those usually probed. At short-distance
scales perturbative QCD is valid and predicts the poten-
tial. Thus, to get an accurate potential, we patch the
QCD prediction at short distances, onto the known form
of the potential at long distances.

The problem with QCD predictions is that the funda-
mental parameter of QCD, the A parameter, is not accu-
rately known. Reference 6 joined together the perturba-
tive QCD prediction with the Richardson (R) potential"
using three light-quark flavors and a value of A~ ——500
MeV. Recent experimental evidence, e.g., the hadronic
decay rate for Y, suggests that this parameter may be as
small as 150 MeV. In the text the value of 300+60 MeV
emerges from the spin-splitting data. We patch together a
new potential using the value of A~ from the text.

To construct the patched potential we use the perturba-
tive QCD prediction

1 ag bo
E(r)= ——CFa~(p) 1+ [ln(pr)+yE]

2

+ &z&0 —3C~
5 2

(81)

where we have neglected relativistic corrections. The full
two-loop correction term is not known so we have not in-
cluded it. To get the size of the coupling constant for Eq.
(81), we numerically invert

ho= "
, C~ ——', Tz—Nf,

bi ———', (Cg) ——, CgTFNf —4CpTpNf .

For three flavors (Nf ——3), bo ——9 and bi ——64.
We want the patched potential to be accurate over a

large energy range so we must take into account the flavor
thresholds associated with charin and bottom. In the
standard MS scheme, NF is specified to be the number of
quark flavors with mass &p. New flavor thresholds are
treated as step functions in the bk's at @=quark masses,
so that as(p} is continuous but its derivative is discon-

(NF 3,
tinuous at those values. The different Am 's of these
effective theories are

A~i =300 MeV,

A~ ——245 MeV,

A~ ——165 MeV .

We choose to specify }u in FAI. (81) using the BI.M
prescription. Under this prescription, xiii M and E(r)
are independent of N~ and all of the flavor dependence is
in the P function:

1
pBLM

—exp[ —(ra+ 6 }l

1 CKg

E(r)=— Cpa~(pat. M) 1 — (TCg )

(82)

Since the coupling constant is continuous at the flavor
thresholds so is E(r).

At long distances we choose to patch the perturbative
expression onto the RBGT potential. The point where we
cross over from one region to the other is uniquely de-
fined by requiring the potential and its first derivative to
be continuous at the patching point. The point thus deter-
mined is at 0.14 fm.

The patched potential predicts almost the identical
spin-indc~mdent (cc) and (bb) spectrum as the RBGT
potential. The only difference is that the (bb) 1S state is
raised by 20 MeV relative to the other (bb) states. This is
to be expected since the new potential, with a smaller cou-
pling constant, is less steep at short distances than the
BGT potential because the coupling constant is now
smaller there. The accuracy of the predictions of the
RBGT potential is of order 10—20 MeV, roughly the ex-
pected size of spin-independent relativistic corrections.
The shift of the 1S state is thus a small change and will
be ignored.
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The predictions of the patched potential for the spin-
splitting matrix elements are given in Table VII.

APPENDIX C

In the text the ( QQ) spin splitting data are analyzed in
many ways. AMs is extracted from the data for various
forms of the long-range spin-orbit force and two different
prescriptions. Below we present the equations for extract-
ing A~ using the perturbative @CD expressions with no
additional long-range contribution. For simplicity, the
Grunberg prescription is used. The method used for in-
cluding long-range contributions is outlined in the text.

Equations (5.1) and (5.2) relate the experimental data
for the spin splittings to the theoretical expressions for the
potentials. Inverting Eqs. (5.1) we obtain

From the tensor force

aMs(pT}= (nP
~

VT
~

nP),
—:(—,')

in(mr) —O. 7561

)1 r 3

p T ——mg exp —1.0185——
—,')

From the spin-spin force

&ns
~

V, ~ns)
~m(»}=

g
, iR„(0)f'

(C5)

(nP
~

Vr
~
nP) = ——,'s [M(n P2) —3M(n P$)

+2M(n Pp)],

(nS
i Vs i

nS)=M(n S1)—M(n'Sp) .

(C2)

(C3)

Substituting in the perturbative expressions for VL, Vs,
and Vr one can solve for as. ~e evaluate these expres-
sions for @CD with three light flavors. From the spin-
orbit force

(nP
~

VL
~

nP)= —,', [5M(n P2}—3M(n P1)—2M(n Pp)], I'

(
ln(mr)+yE

V2''
pq ——rn~ exp —0.1252—

12 RB(0)
I

The wave-function-dependent factors are given in Table
VII. They have been calculated for different quarkonium
masses using the RBGT potential and the patched poten-
tial (see Appendix B). Using the experimental data and
the wave-function factors one gets a numerical value for
ct~&(p) and p. This is then inserted in Eq. (5.3). For
QCD with three light flavors

am(pz)= (nP
~

Vl ~nP),
2

I'

in(mr) —0.4228

5 r 3

pl ——m~ exp —0.5684——

(C4)

1
A~ ——p exp

2

1 64+ ln
9p 81

9p

1+ 9p

(C7)

+higher-order t.orrectians .
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