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Transverse-momentum distribution of m and its product gamma rays
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%'e study the relationship between the transverse-momentum distribution of m. and that of its
product y rays. A new relationship between the average transverse momenta is obtained by taking
into account the mass of the pion. The correlation between the average transverse momentum and

energy density as observed in the Japanese-American Cooperative Emulsion Experiment is dis-
cussed.

I. INTRODUCTION

Experimental measurements on the distributions of n

often rely on the measurements of the distributions of the
product y rays. Much work' has been done to relate the
moments of these two distributions and the projections of
the distributions onto one of the two transverse axes. For
the case when the pion mass can be neglo:ted, approxi-
mate relations have been obtained3' to relate the energy
spectrum of no with that of its product y rays. The ap-
proximate relation

(p T ) =2(P„T) (1.1)

was used ' to infer the average transverse momentum

(p r) of the primary pions from the average transverse
momentum (prr ) of the detected y rays.

Recently, there has been much interest in the
transverse-momentum distribution of particles produced
in nucleus-nucleus collisions at ultrarelativistic energies,
as the distribution may reveal much about the dynamics
during the collision process and the possibility of produc-
ing a quark-gluon plasma. ' Of particular interest is
the recent experimental data from the Japanese American
Cooperative Emulsion Experiments (JACEE). The
JACEE data' ' indicate a correlation between the aver-
age transverse momentum of the primary m particles
(p r) and the rapidity density in the central rapidity re-
gion indicating the onset of a phenomenon with new
characteristics. In analyzing the JACEE data, Eq. (1.1)
was used. This is a reasonable assumption as the JACEE
measurements involve (p„z) greater than or equal to
about 0.15 GeV/c. It is nonetheless useful to assess the
amount of error by obtaining a more accurate relation be-
tween (p T) and (prT). A more accurate relation may
also help in other types of analysis involving events for
which (p„T) is not large.

In many other problems, it is desirable to know the de-
tailed shape of one transverse distribution if the other
transverse distribution is known, as for example, when the
m distribution is a complicated distribution, or when one
wants to estimate the photon background in the photon
bremsstrahlung of heavy ions. ' In the general case,
this can be obtained by a numerical integration. In the
special case where the mass of the pion can be neglected,
there is a simple relationship between the transverse distri-

bution of n and that of its product y rays. Such a rela-
tionship has been written down and attributed to
Sternheimer. However, the result of Sternheimer and an
even earlier result of Carlson, Hooper, and King3 gave a
relation between the energy spectrum of m and that of its
y rays, and not between the transverse distributions. Ko-
pylov' obtained a similar relation between the projec-
tions of the distributions onto one of the two transverse
axes which are different from the transverse distributions.
On the other hand, in experiments such as JACEE, the
transverse-momentum distribution is measured. It is
desirable to derive the relation between the transverse dis-
tributions of dN /dp z and dN„/dp„T.

In this paper, we study the relationship between the
transverse-momentum distribution of rr and that of its
product y rays. %e discuss in Sec. II a simple analytical
relation between (p r ) and (prr), taking into account
the pion rest mass. A simple relation between the trans-
verse distributions of n and that of its product y rays is
derived for the case when the mass of the pion can be
neglected. As numerical integration of the pion spectrum
to obtain the y spectrum often runs into the difficulty of
false singularities, we would also like to show in Sec. III
and the Appendix how one can integrate the pion distribu-
tion numerically. In Sec. IV we discuss the correlation be-
tween (p r ) and the energy density as revealed by the
JACEE data.

~here N is the m multiplicity. The two distributions are
related by"

dN 1 f~ dN dPr
P~ ~ ln I dP r (p~r p~„)'

and by the inverse transformation

(2.2)

IL RELATION BETWEEN (p r) AND (p„r )

We consider the distribution of the pions in the trans-
verse direction dN /dp T and the same distribution pro-
jected onto one of the two transverse axes dN /dp
They are normalized according to

f (dN /dp T)dp T 2 f (dN /dp ——„)dp,
(2.1)
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dX~
(p r) =m dp p, =m(p ) .

dp
(2.4)

There are similar relations for the distributions of the y
rays in the transverse direction p&T and in its projection
onto one of the transverse axes py„. A relation between
the iy distribution dN /dp, and the y distribution
dNy/dpy„has been given by Kopylov' [Eq. (18) of Ref.
2]. From this relation, it is easy to show that

dN (p +E„)
Pyr =

8 o
dpsx I mx ex

=—&(p,+E„)'/E.„),
8

(2.5)

dN d dN p dp= —2
z zizz '

"p~r dp~r z'~r dp~x (p~ —p~r )

Thus, the expectation values of p z and p~ are related as
follows:

average transverse momenta as shown in Fig. 1. The re-
sult by neglecting the mass of the pion, as given by Eq.
(1.1), is also exhibited as the dashed curve. One finds that
there is a difference of about 15% for (p„r)-0.15
GeV/c, and the difference decreases as &pyz ) increases.

For the case when the mass of the pion can be neglect-
ed, as in the case when (p r) is much greater than m,
we can prove that

"=—2 dpmx
dpyr dpyz yr dpsx

X(p~x —pyz. )
2 21/2 1

5'mx
(2.12)

%e can rewrite the m transverse-momentum distribution
dN /dp~r of Eq. (2.3) in the following form:

d=&P~T
eT' dpi' T

where E~ is defined as

E =(m +p )'~

dP (P Pr )—2 2 i/2

P~x Pox

(2.6)
By comparing Eqs. (2.12) and (2.13), we obtain

(2.13)

To proceed further, we need an explicit form of the mo

distribution dN /dp . We note that the low-pr distribu-
tion of pions in nucleon-nucleon or nucleus-nucleus col-
lisions follows an exponential behavior as '

dN /dp z ~exp( —p z/a ) (2.7)
1.0

Thus, the projected distribution of zy along one of the two
transverse axes is given by

0.9
dN /dp p Ei(p /a )jara (2.8)

where Ei is a modified Bessel function. The distribu-
tion dN /dp~ is finite at p „=0and has an exponential
decay. We approximate the distribution (2.8) of
dN /dp „by

dN /dp -zrexp( —m ~p~ ~
/(p r))/2(p z) . (2.9)

With this approximation, Eq. (2.5) gives a relation be-
tween the average transverse momenta of m and the pro-
duced photons as follows:

&Pyr) =—1+—z[H, (z) —r, (z)]
(p r) 4 2
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where z is

——z [Ho(z) —Fo(z)] (2.10)

(2.11)

0.2

0.1

H is the Sturve function, and Y' is a Bessel function.
One can easily show that Eq. (2.10) has the proper limits.
As (p z) approaches infinity, it gives Eq. (1.1). As
&p z) approaches zero, it gives &pyz)=am /8, as it
should.

From the tabulated values of the Sturve and Bessel
functions, we can obtain the relation between the two

0.1 0.2 0.3 0.4 0.5

(Pyr& (GeVjc)

FIG. 1. The relation between (p z) and (p„y) as evaluated
from the new relation (2.10) is shown as the solid curve. The
dashed curve is the approxiinate relation (p r) =2(p„y) of Eq.
(1.1).
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dN„= —5' T'

dPyr dPyT l„y=l y

(2.14)
III. NUMERICAI. INTEGRATION TO OBTAIN

THE PHOTON DISTRIBUTION

which is the desired formula for transverse-momentum
distributions. This equation is similar in form to those of
Carlson, Hooper, and King, Sternheimer, and Kopy-
lov'I but differs in substance. The relation obtained by
Carlson, Hooper, and King and Sternheimer relates ener-

gy spectra while the relation obtained by Kopylov relates
the projection of the transverse-momentum distribution
onto one of the transverse axes.

In the general case when the mass of the pion cannot be
neglected or when the pion distribution is a complicated
function, the distribution of the product y rays can be ob-
tained only by numerical methods. The momentum dis-
tribution of the photons from the decay of the lr particles
EydNyldPy can be obtained in terms of the mo momen-
tum distribution E dN /dp„by

EydNy dp E dN dp 5(E —m /2)
(p„)=M (p ) — 5(p„—L(p, p ))E„.

dPy
" E dP E 2lrm

(3.1)

Here, M =2 is the photon multiplicity for each n decay,
(E,p) is the four-momentum of the detected photon in the
pro rest frame, and L is the Lorentz transformation of p
from the Iy rest frame to the frame in which py is studied
(which we choose to be the laboratory frame). After mak-
ing use of the identity

give the plateau rapidity density dN/dy and the quantities

yll and yr need to take into account the slowing down of
the nucleons as they traverse the other nuclei. The rela-
tionship between (pyT) and (p z) is independent of C
and is not sensitive to y~ and yT.

As an illustration, we plot in Fig. 2 the distributions of

(3.2)5(py —L(p, p ))E„=5(p—L '(p„,p ))E,
where L ' is the inverse Lorentz transformation, we ob-
tain the result

10

Ca+ C at 100 TeV/N

EydNy dp E dN 5(E —m /2)

dpy E~ dp~ 217 m»

"=M (p) (3.3)
dNy/dpi' T

&p 0 &=0.56 GeV/c

(p )=C[(1—x+)(1—x )] exp( —p r/a ) .
Pe

The light-cone variables x+ and x are given by

(3A)

Many ways of numerical integration of the above would
lead to a false singularity near the origin and a numerical-

ly inatwurate result. To bypass such a difficulty, it is best
to work in a rotated coordinate system in which the
momentum vector p„ lies in the z' axis and the laboratory
z axis lies in the azimuthal plane of P,

' =0. We give in the
Appendix the details of the procedure.

For numerical purposes, we take a primary rr momen-
tulll dlstllbutlon of the forlll

CV

V

O

dN 0/dp~oT
10

R'U

0
QCL

z

and

~eT
x+ —— exp(y —yn )

PIT~
(3.5)

(3.6)

where m T is the m transverse mass, m~ is the nucleon
rest mass, and y~ and yT are the average beam rapidity
and target rapidity, respectively. For C =C~~ ——4. 14
GeV c and u =0.182 GeV/c, such a parametrization
gives the correct distribution of n+ particles for pp col-
lisions at v s =30.6 GeV (Refs. 21 and 22). For nucleus-
nucleus collisions, the constant C needs to be chosen to

30
0

I

0.2
PT

0.6
(GeV/c)

FIG. 2. Transverse-momentum distribution of m and the

corresponding product photons. The solid curve is the
transverse-momentum distribution of n as obtained from Eq.
(3A) arith a =0.286 GeV/c. The dashed curve gives the corre-
sponding transverse-momentum distribution of the product pho-
tons.
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der ldp„T and dN /dp T as a function of pT (p„T or

p T), for the case a =0.286 GeV/c. In this case, (p r)
is 0.561 GeV/c. The data points are those of Ref. 14 for
the collision of Si on Ag at an energy of 100 TeV per pro-
jectile nucleon and the constant C is normalized to the ex-
perimental data at small p T. The experimental data has
an unusual bump at p z -0.5 GeV/c which is difficult to
be accounted for. Depending on the weight one assigns to
this bump, the data give different values of (p r). For
example, Ref. 14 gives (p z ) =Q.7 GeV/c. Clearly, there
is a high degree of uncertainty in p„r for this event be-
cause of the unusual shape of the distribution.

The logarithm of the theoretical n transverse-
momentum distribution has a linear slope, as is expected
from the input distribution (3 4). One observes that the
logarithm of the theoretical photon transverse-momentum
distribution changes its slope as pr increases. The distri-
bution rises for small values of pT because photons with
small values of p„z can come from the same side of the
azimuthal angle and also from the other side. In fact,
from Eqs. (2.14), if dE /dp r~ epx( —p T/a ), then

dEr/dprr ~exp( —p„z/a„)/p„T. For the case shown in
Figure 3, the theoretical distributions satisfy such a rela-
tionship.

IV. DISCUSSIONS

The results of Sec. II show that the approximate expres-
sion (1.1) gives rise to an error of about 15%%uo for
(prr) -0.15 GeV/c and the error decreases with (prr).
As the JACEE data begin with (prz. ) about 0.15 GeV/c,
we can assess the average transverse momenta in the
JACEE analysis to have an error of about 15%%uo for the
low end of the average transverse momenta but a much
smaller error for the high end. However, Sec. III shows
that for some of the high-transverse-momentum events as
in the collision of Ca on C at 100 TeV per nucleon, the ex-
perimental transverse-momentum spectra have peculiar
shapes which lead to a large degree of uncertainty of
about 15% in the average transverse momentum. There-
fore, one can assess the average transverse momenta in the
JACEE analysis to have an error of about 15%.

The JACEE group also gives the energy density in the
central rapidity region. As the average transverse
momentum can be considered as a measure of the tem-
perature 2' it is of interest to compare the JACEE correla-
tion with the quark-gluon equation of state. For this pur-
pose, we use the results of Fig. 1, and calculate the initial
energy density e by using the expression

3 dX (~.'+ &p.T)')'"
E' (4.1)

tears A

where dX/dy is evaluated at the central rapidity region.
We set tc 1 fm/c and ro——1.2 fm (Ref——. 26). The results
are shown in Fig. 3 which has only minor differences
from those of Refs. 14—17.

It is difficult to pinpoint the origin of the correlation.
Multiple collisions of nucleons give (p r) nearly indepen-
dent of projectile, target, and incident momentum com-
binations. ' Experimental measurements at low energies
give (p T) nearly independent of projectile and target.

(Ar + Pb (}
HH
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g 08

4 0.6

(He+ C 20)

(Li + C 26)

(He + Ag 71)

(He+ Ag 37)

(C+ C 2)
r
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(C+ C)

l l
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4 6 8 (0 20 40 60 80 KQ

FIG. 3. Correlation of the average transverse momentum of
the produced m and the energy density e for JACEE events.
The label next to each data point specifies the colliding projec-
tile and target and the energy in TeV per projectile nucleon.
The sohd curves give the theoretical correlation based on the
equation of state of a quark-gluon plasma with two or three Aa-
vofs.

%'e shall attempt a model comparison as a way to initiate
a discussion. One assumes that a quark-gluon plasma is
produced and each parton of the plasma (a quark or a
gluon) hadronizes into a detected particle by either pick-
ing up a sea quark in the case of a quark-parton or con-
verting into a qq pair in the case of a gluon parton. In the
idealized case with no transverse flow and no momentum
loss in picking up a sea quark, the detected particle carries
the momentum of the parton and (p T) is related to the
temperature kT by (p T) =2.35kT. We obtain a corre-
lation between the energy density and (p T) from the
equation of state for an ideal relativistic quark-gluon gas
shown in Fig. 3 for the case of two flavors and three fla-
vors. We find that the data points at high energy densi-
ties deviate significantly from the equations of state of a
quark-gluon gas. If the systematics of these high-(p r)
events are real, they are unlikely to arise from the tem-
perature of the plasma alone as the temperature of the
partons would be about 450 MeV and the energy density
would be much greater than that inferred from dE/dy.
In order to have (p T) as high as 1 GeVlc, it is necessary
to have some type of collective transverse flow which may
come from the hydrodynamical expansion of the quark-
gluon plasma or from the collective hydrodynamics of
the shock waves. The large-transverse-momentum
events in pp experiments have also been interpreted as due
to the occurrence of minijets in which many low-x
partons have now enough energy to undergo hard scatter-
ing and produce many minijets of a few GeV each, which
fragment independently from one another. On the other
hand, if there is a phase transition of a first order, we ex-
pect that during the phase transition the plasma tempera-
ture would remain at the critical temperature even for
events with higher-energy densities. This means that
(p~r) should flatten out as energy density increases
beyond a few GeV/fm . Such a behavior may constitute a
signal for the formation of a quark-gluon plasma with a
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sharp first-order phase transition. It is important to accu-
mulate more data points to distinguish the different possi-
bilities.
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APPENDIX

'R=(1,8,',P,') . (A2)

But 8,' is equal to the polar angle 8& in the laboratory
frame, and P,

' =0 by the choice of the rotated frame.
Integrating the 5 function with respect to the polar

coordinates 8, we obtain

We work in a rotated coordinate system in which the
momentum vector pr lies in the z' axis and the laboratory
z axis lies in the azimuthal plane of P,

' =0 (Fig. 4). In this
rotated coordinate system, the momentum vector p ex-
pressed in polar coordinate is

(A 1)

while the unit vector along the laboratory z axis becomes
in the rotated frame

FIG. 4. Coordinate system used in the numerical integration
of the pion distribution. The vector p is the three-momentum

of tt, and p„ is the three-momentum of a detected photon
which is chosen to lie along the z' axis. The unit vector along
the z axis in the laboratory frame is chosen to lie in the x'-z'
plane.

ErdN„
dp„2sr f p„/

p =p (cos&~os8„—sin8~in8rcosg' ) (A4)

p r=(p 2 2 1/2

The lower limit of integration over p' is

p'(min)= ~pr —m /4pr
~

.

(A5)

(A6)

In the above equation, the distribution in p is expressed
in terms of the other quantities of p' and p„by means of
the following:

In Eq. (A3), the integrand is finite in the entire region of
integration and can be integrated numerically without dif-
ficulty.
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