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Lepton correlations in gauge-boson pair production and decay
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%e present amplitude and cross-section formulas for fermion-antifermion annihilation to on-shell
8'8' 8'Z, ZZ, 8'y, and Zy pairs in which the 8' and Z gauge bosons subsequently decay into
fermion-antifermion pairs. The expressions include full spin-density-matrix correlations. This exact
treatment yields fermion correlations that differ significantly from those obtained using 8'/Z-
polarization-averaged cross sections foOowed by uncorrelated decay.

The polarization-averaged cross sections for production
of WW, WZ, ZZ, Wy, and Zy pairs are well estab-
lished. ' e A convenient summary ap rs in a paper by
Eichten, Hinchliffe, Lane, and Quigg (EHLQ). Gauge-
boson production is an important test of the
SU(2)L XU(l) electroweak interaction theory as well as a
source of background for new physics. Since W and Z
inevitably decay to massless fermion-antifermion pairs it
is apparent that correlations between the various fermions
and antifermions in the final state will be of importance.
In this article we present concise, fully covariant, and
crossing-symmetric formulas for the processes

fif2 ~ 6 + 6'

~fif4 fsfe ' (1)

fif2 G + ~
Lf-

see Ref. 8. Observe that (p ~
q) = —(q

~ p ). Remarkably
all amplitudes for the processes of type (1) can be ex-
pressed in terms of a single function of these inner prod-
ucts. We define

where we introduce the shorthand notation

(ij)=(k;k, ), (6)

and k;, i =1—6, denote the four-momenta of the various
fermions. Our particle labeling conventions for reactions
(1) and (2) are given in Fig. 1. Note that all momenta and
particles are taken to be outgoing in (5) and the other for-
mulas to be presented: i.e.,

ki+k2+ks+k4+ks+ke ——0 . (7)

F(1,2, 3,4,5,6)

=4(13)(26)+((15)(14)++(35)(34)+), (5)

In addition particles 1, 3, and 5, must be fermions and
particles 2, 4, and 6 antifermions when all are outgoing.
Application to the specific processes of Fig. 1 requires
crossing the 1 and 2 momenta that appear in our formulas
to negative energy. For inner products the procedure is
delineated in Eq. (4). [Suppose we consider the physical
process

which include full spin-density-matrix correlations. We
shall take all fermions to be massless.

The calculations are most easily performed at the am-
plitude level for fixed external-particle helicities. We em-

ploy the techniques outlined in Ref. 8; they are closely re-
lated to those discussed in Refs. 9 and 10. We shall
present results at the amplitude, and amplitude-squared
levels. Because of cancellations required by gauge invari-
ance, numerical programming is generally more con-
veniently done at the amplitude level.

The amplitudes will be presented in terms of the inner
product defined and discussed in Ref. 8,

&p —(q+&= &pq&=(p q+)'"—e ' (p+q )'"e '—-
(p —(q+&+—= &pq&+=fp lq "&'
for po, qo &0. A crossing-invariant extension of these
inner products to momenta of negative energy is defined
by(po qo&0)

(( —p)q) =t&pq&,

((—p)q &+ = t &pq &+,
FIG. 1. Notation and conventions for the reactions of Eqs.

(1) and {2).
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ti(pi)+u(pz) ~ ~ +8'+

L..-(p, r, (p. ) L- „(ps)p'(ps)
'

where all p's have positive energy. To apply our formulas
define ki ———pl and kz ———p, , k; p;, i =3—6. In the
outgolllg sctlsc particle 1 is n (kt } alld particle 2 ls U(k i );
quantum-number assignments in our formula are made
accordingly. The inner product (k i ks ) would be evaluat-
ed as (kikl & =((—pr)pl) =i(pzps &.]

In presenting our formulas it is useful to define a
variety of auxiliary quttntities containing various coupling
constants and propagators T.hese appear in Table I. The
invariants appearing therein are defined by

s,j=(ki+k]), sp, =(k;+kj.+kk)

In addition, the final-state W and Z propagators that are
included in our amplitudes are evaluated on shell in the
expressions of Table I. Finally our formulas do not in-
clude any color factors for initial- and final-state quarks;
i.e., they apply to quarks of a given color.

For massless fermions helicity is conserved along a

F( 1,2,5,6, 3,4)],
{~i——+)=Xwwc [P'(2, 1,5,6,3,4}

(9a)

—F(2, 1,3,4, 5,6)], (9b)

where Eww, a, b, and c are defined in Table I;
Eww contains the on-shell pole factors for the two 8"s.
The helicity ampHtudes of (9) are easily squared and
summed, yielding

given fermion line in a Feynman diagram. All Feynman
diagrams contributing to processes (1) and (2) are such
that fermion 1 ts connected to antifermion 2, 3 to 4, and 5
to 6. Thus, in the following, a helicity amplitude is com-
pletely specified by the value of the fermion helicities (A,„
As, and As). The antifermion helicities (Az, A4, and As,
respectively) are determined by helicity conservation.

For 8'8' production there are only t~o helicity ampli-
tudes. In the notation of Fig. 1, A, l and A,s must be minus
while A, i may be plus or minus. We obtain

(~l = —)=&ww[ u +(1»,3,4, 5,6)

(+) ['+
[ A ( —) ['=&ww'11{1,2,»4»6) I

I'+I(1,2, 5,6,3 4)
I
b

—J(1,2,3,4, 5,6)RC(a b ')
+[I(2,1,3,4, 5,6)+I(2,1,5,6,3,4)—J{2,1» 4,»6)] I

c
I
'( (10)

The normalization of
~
M

~

is defined by the cross-
section formula

+ e
1 1 1

fM f dRg2

2s color spin

6 6
(2ir)45~ k, +k,

l {2tr) 2k)

TABLE L Useful constants for cross-section formulas, Eqs. (9), (10), (14)—(17}, and (21)—{24).
U&&

——Cabibbo-Kobayashi-Naskawa-matrix entry as appropriate; r&=+1 is twice the weak isospin;
e&

——fractional charge; i labels the fermion. Mw~ and 1 wz are the masses and widths of the vector bo-
sons. The variables s,& and s&p are defined in Eq. (8}. The fmc-structure constant of @ED is a, and Hs
is t'he %einberg angle.

xw ——sin Hw I.;=sf —2e&xw2 R( ———2egxw e2=4na

2
~ww

S12(S12 ™Z) $12

ww

S12(S12—Mg )

~ dww «1+1)
a =d + +

2s1s6

e' 1
+ww U34 U56

4xw Mw I w

U12 U34e 1
&wz =

Sxw'(1-xw) ~w~w~zI.

g he L2 r12(1 —xw)

s12 —Mw2

I 1 v12(1 —xw)+ .„-M.2
e'

16xw (1—xw) Mz 1 z
U12U34e 3

Xwq ——
2xwMwI w

e 1
Egq ——

xw(1 —xw) Mzrz



TABLE II. The functions I and Jof Eq. (11) in terms of dot products.

I(1,2, 3, 4, 5, 6)=256{kl.k3)(k2. k6)[(k4 k13)(k5 k13)—{k4 k5)(kl k3)]
J( I&2&3s4&5v6) 64(k135) f(ks'k6)I 1243 (k5 k2)~1643+(k5'k4)I 1623 (k5'k3)~1624+(ks'kl )~3624)

—512( k ).k3)(k ).k5)(k2-kg)(k2-k6)
k,p ——k;+ k)+k) k)g ——k;+k)
V]p„——(k;.kj)(k) k )—(k; k))(k) k )+(k;.k )(k~.k))

The quantities I and I are given by

I(1,2,3,4, 5,6)=
I
F(1,2, 3,4,5,6)

I
(1 la)

J(1,2, 3,4, 5,6)=2F(1,2, 3,4, 5,6)F (1,2, 5,6,3,4) . (lib)

The functions I(1,2, 3,4,5,6) and J(1,2, 3,4, 5,6} appear
in Table II. From the simple structure of Eq. (9) we can
easily see the rather intriguing cancellation mechanism at
high energy (E~&2M36) required by gauge invariance.
We find complete cancellation between the y and Z con-
tributions in the coefficient c while they cancel only
partially in the coefficients a and b . In the helicity
amplitude A ( —) the cancellatian becomes complete,
due to a further cancellation between the two terms of Eq.
{9a). This can be easily seen assuming some particular
collinear configuration for ks, k6, and ks, ks (allowed in

the high-energy limit).
We einphasize that the second cancellation is not made

manifest analytically in Eqs. (9a), (9b), and (10); this could

potentially lead to numerical difficulties. However, the
problem is not significant at the amplitude level of Eq.
(9). [In practice Eq. (9) and, for many purposes, Eq. (10)
can be used up to Superconducting Super Collider ener-
gies. The number of decimal digits lost to inaccuracy in
the cancellation computation for Eq. (9) is -ln(s/4M36 ),
while it is -In(s/4M' ) for Eq. (10); s is the subprocess
center-of-mass energy squared. If necessary the cancella-
tions in Eq. (10}can be made analytically by algebraically
converting to a minimal set of independent invariants over
a common denominator. ]

It is an interesting exercise to reproduce the standard
polarization summed formula for WW pair production;
for a convenient farm see (4.48} of EHLQ. We integrate
Eq. (10) over the fermion-antifermion angular variables
for the two W decays {as def»ed in the respective 8' rest
frames). We define

Xz appear in Table III. The cross section
do/dt (1+2~W+ 8') is directly obtained from Eq. (10}
(up to various spin, color, and other normalization fac-
tors} by replacing I and J by Xt and XJ, including the
product (5rm 341 34)(5rm56156) ( =5r M16 I it in the
present case), and summing over a complete set of decay
channels. These last two steps serve to cancel the on-pole
(Mti I u ) factor present in

I Elt.tt I

Turning to FZ production there are, again, only two
helicity amplitudes. For all diagrams it is necessary that
A, s ———and A, i

———,whereas 1,5 may be + or —(see Fig.
1 for notation). As before, the antifermion helicities A,2,
A,4, and 1,6 are determined through helieity conservation
by A, i, A,3, and A, s, respectively. We obtain

A ~(A,5= —)=I(.'ivzL5[a F(1,2, 3,4,5,6)

+b ~F(1,2, 5,6,3,4)],
(14)

A (){5——+ ) =E~R5[a F(1,2, 3,4,6,5)

+b F(1,2,6,5,3,4)],
where I{.'~, I., R, a, and b appear in Table I. The
amplitude squared is computed as

(15)

and may be written in terms of the I and J functions de-
fined in Eq. (11). As discussed for WW production the
two terms in the formulas of Eq. (14) tend to cancel at
high subprocess energy, (s)'~ . Thus far greater numeri-
cal accuracy is obtained by first computing the ampljtudes
numerically using Eq. (14) and then squaring and sum-
ming as in Eq. (15). Finally, we note that by using (11),
(12), (14), and (15), according to the procedure outlined

TABLE DI. The functions Xt and Xz of Eq. {12).

t =s~~ u =s~56

Xt(t, u, m34, mss }= I d{()34dl))56'(1,2, 3,4, 5,6),

Xg(t, u, m34, m56 )=—I dlt136dpssJ(1, 2, 3,4, 5,6),
K

where

3r= —,'(5r/2), t =(kl+k34), u =(ki+k56)

(12)

{13)

H(t, u, m3q, m56 )= —2 + (t +u)tu 1 1

m34 m56 m~ m56

m 34 56

m342 2

Xy(tsusm34, m56 )= —4m~ m56 +t(3t +u)

+t H(t, u, m3g, m56 )

XJ(f,u, m~, m56 )=8(m34 +m56 ) —8(m34 +m56 )(t +u)

«nd we have defined k;J =k;+kj. The functions Xt and
—6tu —2tuH(t, u, m~, m56 )
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for the WW case, we algebraically reproduce the unpolar-
ized WZ cross section, Eq. (4.60) of EHLQ.

For ZZ pair production, all possible helicity choices for
A. &, A, s, and A, s are allowed, a total of eight helicity ampli-
tudes. Each receives contributions from two diagrams.
We give below the results for the amplitudes
A (A, i,As, l s);

where, up to a phase, (34)+ =M& or Mz for Wy or Zy,
respectively. In terms of 5 we obtain the simplest ampli-
tude expressions.

For the Wy case A, , =A,s= —is required while A,„=+
is allowed. %e obtain

A "(Ar +——)=Kg„Ie2 —rt[sgs j(s)g —Mg )]]5(13)
(21)

( —, , —)=—LsLsLi'Kzz

~zz( + —)=R—sLsL i'Kzz

F(1,2, 3,4, 5„6)
$13

F(1,2, 5,6,3,4)
$156

F{1,2,4, 3,5,6)
$134

Squaring and summing the amplitudes of (19) leads to

I
M

I
wr'= 8

I Kwr I

'Mw'
$15$25

T '2
$2S

$12 ™W
(22)

( —,—,+)=LsRsLi Kzz

Azz( , +,+)=R—,RsL, 'Kzz

+ F( 1,2,5,6,4,3 )

$156

F(1,2, 3,4, 6,5)
S 134

F( 1,2, 6,5,3,4)
$156

F(1,2,4,3,6,5}
S 134

(16)

Note the presence of the well-known radiation zero in (21)
and (22)." The result (22) is in agreement with the for-
mula of Ref. 12. Once again we easily reproduce the
polarization-averaged formula, Eq. (4.77) of EHLQ, by
integrating over the fermion-antifermion decay angle in
the W center of mass, correcting for the on-shell propaga-
tor factor in Kar, performing appropriate color sums,
and color-spin averaging.

For Zy we have allowed helicities A,
~
——+, A, s

——+,
A,„=+. We give the amplitudes A "(A,&, k,s, A,„)below;

~ "( , , +)=—K—roe,L,L, (13&',

F(1,2,6,5,4, 3)
$156

The remaining four helicity amplitudes are obtained by
the replacement

A "(—,+,+ ) =K "5e)L ) R s (14)

Az"(+ —+)=Kz"5 R L (23)'
a'r(+, +,+)=K'me, R,R, (24)'.

(23)

gzz(+, As, ks)=A ( —,As, ks, L)~R),1~2 in F's) .

We obtain the full amplitude squared as

(17)

The amplitudes for A,r ———can be obtained from (23) by
the relation

A (k}13,1,234'5)=e'"Az"(A ~A3 +j2 1 4 3 5)

I
M

I
zz'= (A, i,ks, ks) I

. (18)

2(2)'"(34)+
(»&(25) (20)

A,i-—+,A3
——+,A5=+

A discussion analogous to the WW and WZ cases, re-
garding cancellations and the two means for implement-
mg I

M
I zz computations, applies in this case as well.

Also, by using Eqs. (11},(12), and (16)—(18), according to
the procedure outlined for the WW and R&Z cases, we
algebraically reproduce the unpolarized ZZ cross section,
Eq. (4.69) of EHLQ.

For completeness eve also give the amplitudes and cross
sections for the reactions (2). The notation and particle
labeling is defined in Fig. 1. The reactions (2) can again
a11 be expressed in terms of a single function,

C{1,2, 3,4, 5)= 2 2( 3) (34)
(19)(15)(25)

via argument permutation. However, every amplitude
turns out to have the common dynamical factor

where e'v is an unimportant phase factor, and 5 is un-
changed by the symmetry operation. Squaring and sum-
ming the eight helicity amplitudes yields

SM
IM Izr =Kzr ei l(L& Ls +Ri Rs )(st3 +s24

$12$25

+ (L) Rs +Ls R, 2)

X(s14 +s23 )] .

Again the EHLQ formula, Eq. (4.79), can be obtained fol-
lomng the decay integration procedure outlined for the
8'y case.

We wish to emphasize once again that the
I
M

I
forms

presented for the five reactions of (1) and (2) are for fer-
mions of a given flavor and color (if appropriate) includ-
ing couplings for the W and Z decay and including the
W/Z pole(s) evaluated on shell. The branching ratios for
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the fermion decays of the gauge bosons are, thus, au-

tomatically present.
Finally we illustrate the importance of including the

final-state fermion correlations by several examples. As a
first extreme example consider 8'W production according
to Eq. (9). Assume that the fermion —1 is polarized with
A, t

——+. In the center of mass of the WW' system if the
W's decay in such a way that fermion —3 of the $V de-

cay moves parallel to p& and fermion —5 of the W+

decay moves antiparallel to p~+, then the full four-

momenta of fermions 3 and 5 and of antifermions 4 and 6
are, respectively, proportional. In this case

F(1,2, 3,4, 5,6)=F(1,2, 5,6,3,4)

Q

'a
b

lepton+antilepton pair ITIass distribution
t I I

[
I

a) e e+ W (~l) W ( 1)

vs = 200 GeV

pq' & 20 GeV

10-7 l—

solid = exact

dots = uncorrela ted
I

I I

50 100
M, T (GeV}

I

150

and the amplitude of Eq. (9b} and corresponding cross
section vanish. This result is obviously not obtained by
taking the 8'W-polarization-averaged cross section (for
fixed initial fermion helicity) followed by uncorrelated $V

decays.
As further examples, we present three figures which il-

lustrate the correlation between the charged lepton and
antilepton emerging from the reactions

~-+ g — + 8'+
(26)L.,—,

and

0.00008 i i I

[
i I

e e' W{ l)W'( T)

vs = 200 GeV
0.00008 — iT 20 G V

- lyiTI & 3

solid = exact

0 00004

b

0.00002

—dots = uncorrelated

l/1 relative azimuthal angle distribution

pporpp~ 8' + ~
~l ui ~l'ui ' (27}

0.00000
0

P (radians)

I

2 3

In the latter cases full distribution function folding using
EHLQ lV, =2 has been performed. Appropriate spin
averages for (25) and (26), and color sum and averages for
(26) are included. We first define three variables of in-
terest:

Mi 7,=(Pi+~, )
2

tt'i =arc cos(p l™pT ),
~y =yi —yl .

(28b)

(28c)

The first is the effective mass of the l/l' pair, the second
is the relative angle between l and l' in the transverse

plane, and the third is the difference of the l and l' rapidi-
ties. In all the figures we compare the distributions, in
one or more of these variables, as derived from our exact
formula, Eq. (10), to those obtained using the polarization
summed EHLQ formula followed by uncorrelated W de-

cays. Minimal cuts on the l and l' transverse mornenta
and rapidities are made as indicated on t'he figures. Cross
sections correspond to a single l/l' decay channel for the
W /8'+. Integrated cross sections (subject to the indi-

cated cuts) appear in the figure captions.
In Fig. 2 we plot the M&T, and P distributions for reac-

tion (25) at ~s =200 GeV. Substantial differences be-

tween the exact and uncorrelated decay results are ap-
parent. For instance, the exact tI} distribution is much
steeper than that predicted in the approximate treatment.
The integrated cross section of roughly 0.1 pb combined
with a luminosity of 10 /cm sec at a facility of the type
of CERN LEP II implies that such distributions would be
fully amenable to measurement.

FIG. 2. Comparison of exact and uncorrelated decay aistri-
butions in M», and P for e e+ collisions at Vs =200 GeV.
The integrated cross sections, subject to the cuts indicated, are
o~=0.094 pb, cr,~~——0.0S6 pb. Uncut cross sections are
10% higher.

In Fig. 3 we plot 4 and hy distributions for pp col-
lisions, Eq. (26), at ~s =2 TeV. Substantial differences
between exact and uncorrelated decay results appear. (In
contrast the difference in M&7. spectra is, now, minimal. )

However, the integrated cross section, subject to our cuts,
is only 0.03 pb. (Removing the cuts leads to only a
10—20%%uo increase. } This implies that the expmted Fermi-
lab Tevatron luminosity of 1—10 pb '/yr will not allow
measurements of these spectra in the purely leptonic
modes. Even including quark decay channels for the W's

(and the color sum factor of 3 for each quark fiavor} leads
to rather few events. In addition, such hadronic modes
will have substantial QCD backgrounds. '3'

Finally in Fig. 4 we present P and hy distributions for
pp collisions at ~s =40 TeV. [Note that at a luminosity
of I.& 10 /cm sec the integrated cross section of roughly
0.13 pb (with the indicated cuts) at Ws =40 TeV implies
that such distributions can be measured. ] Only the P dis-
tribution shows a significant difference between the exact
and uncorrelated decay calculations. In general the differ-
ence bet%'een the two treatments decreases as the range of
subprocess energies being integrated over increases. This
trend is made particularly obvious by comparing the three

P distributions; the greater steepness of the exact calcula-
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i/1 relative azimuthal angle distribut. ion 1/l relat&ve azimuthal angle distribut. ion

0.000020

g 0.000015
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I I I f
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1 I
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—IyiTI & 3

solid = exact

dots = uncorrelated

I

I

I E
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a

'a

'ci 0.0001

—
Iyiil & 3

solid = exact

dots = uncorrelated

0,0003 — ~-( 1) ~+( 1)

vs = 40 TeV

iTpr' & 50 GeV

1 I 1 I I 1 1

0.000000

P (radians)

I

3 0 0000
0 1

P (radians)

I a a

2 3

i/i relative rapidity distribution
1/i relative rapidit. y distribution

1 I I

I

I f 1 1

I

I 0 f 1

I

\ I

10-5
I I

I

I I 1 I

I

I I l,
10-4

10

Ci

'rj

b"a

10

10—e

10
T I I I I

b) p p W( 1)W'( T)
Ws= 2TeV

pr' & 20 GeV

solid = exact, dots = uncorrelated
I I I I I I j i I 1 L i I I i I I

-2.5 0 2,5
by= Yi

l I I

5

C4
Cl

ph

g

A

c3
"ci

"ci

10

10

10-8

10-9

b) p p V-( 1) W'( T)

vs = 40 TeV

pz' & 50 GeV

IyiTI & 3

solid = exact, dots = uncorrelated
i I L I I i I E I I I I I I I I I I I I I

-2.5 0 2.5 5
by= Yi

FIG. 3. Comparison of exact and uncorrelated decay
distributions in p and by for lip coihsions at ~s =2 TeV. In-

tegrated cross sections including cuts are a~=0.033 pb,
o ~t~ ——0.034 pb. Uncut cross sections are 10% higher,

FIG. 4. Comparison of exact and uncorrelated decay
distributions in P and by for pp colhsious at V s =40 TeV. In-

tegrated cross sections including cuts are u „=0,13 pb,

o, ~,~——0.11 pb. Uncut cross sections are a factor of 10
larger and exhibit less difference between the two treatments.

tion distribution slowly diminishes in going from Fig. 2 to
Fig. 4.

We note that, in the above numerical calculations, we
did not experience any difficulty due to cancellations in
using the amplitude-squared formula, Eq. (10). This is
because the average subprocess energy is modest com-
pared to 2M' in all cases. Applications involving large
subprocess energy could require programming at the am-
plitude level of Eq. (9).

In conclusion, it is clear that an exact treatment of spin

correlations, as incorporated in our formulas, is in most
cases necessary for predicting many of the features of
gauge-boson pair production and decay.
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