
PHYSICAL REVK% D VOLUME 33, NUMBER 2 15 JANUARY 1986

One-loop-order renormalization of the massless Wess-Zumino model in anti-de Sitter space
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%e apply the renormalization program to the massless W'ess-Zumino model in anti-de Sitter space, using

the version of Bunch and Parker of the adiabatic expansion. %e consider an extrapolation of the dimen-

sional-reduction prescription taking only the momentum of the expansion in D dimensions, while all the

other tensors are kept in D 4, and show that the supersymmetry %'ard identities are satisfied by the

divergent one-loop corrections, but are violated by finite local terms proportional to the curvature of the

space.

Recently attention has been paid' to the Ness™Zumino
model generalized to anti-de Sitter four-dimensional space
(AdS4). In the Axed background of AdSs the simple super-
symmetry group is OSp(1,4). In this Rapid Communication
we are interested in exploring the possible modifications in-
duced from the curved background in the renormalization
of the model, in the case of massless fields.

The adiabatic expansion in momentum space' has been
successfully applied, up to the two-loop level, to the scalar
self-interacting theory in a general conformally flat back-
ground space;3 the one-loop renormalization of grand-
unified models has been considered as well. 4 Since the ul-
traviolet divergences are guaranteed to be local, the adiabat-
ic expansion is sufficient to carry the renormalization pro-
gram at the one-loop level. Actually, expanding the gravita-
tional tensors in the neighborhood of a given point of the
background space allows one to extract all the local correc-
tions (both divergent and finite) in a relatively easy comput-
able way. Ho~ever, one should make sure to maintain su-
persymmetry in computing those local corrections. %'e find
that the Ward identities are satisfied by the divergent one-
loop corrections, but are violated by finite terms proportion-
al to the curvature of the space, indicating either that our
regularization prescription is not suitable to maintain super-
symmetry at the level of those finite terms, or that the ex-
pansion cannot be applied to compute them, for the mass-
less model.

%e consider the following kinetic and interaction Lagran-
gians:5

Lk;„T' (Dn AD„A +&'BD„B+ I /gilt + F + G )

+ a (AF+ BG) + Ta2(A2+ B2)

Both Lagrangians separately transform into a total derivative
under the supersymmetry transformations

8A eiIt, 8B= —I cyst

8$ iesf(A+iysB)+e(F+iysG)

—ieger —ac/, 8G = eysgilt+ iaeysitt

In the above equations a is the contraction parameter
[with dimensions (length) ']. We use the conventions
ys2-I and ( —++) in the notation of Ref. 6. We have
then (yn, y") 2'" and R„„,tt a2(g„g„tt —g»g„).

The next step is the derivation of the Nard identity for
the effective action of the model. %'e must allow for a gen-
erating functional depending on the respective sources J~,
Ja, g, JF, and JG,

t

Z(J)-„~/exp i„dv4 g[W($)+ JzA+—JttB

+ pe) + JFF+ Jo G )

8 ' —iD„(gybe), 8Jtt = —iD„(7ii ysy"e)

8'rt JA e + lJay Se t+P (JFe ) + aJt; e

+ P(Jotyse) aJGtyse

(4)

SJF~ —'g 6, SJG = —g l y5 6

where the J's are supposed to form a supermultiplet in or-
der to maintain the invariance of the generating functional
under supersymmetry transformations. The transformation
rules are easily found to be

L, ,„,- g(A'F B'F 2ABG)+a-(A' 3-AB')-
—gilt(A + iysB)Q (2)

The Nard identity for the generating functional expresses
its invariance under a supersymmetry transformation

—iD„(v]yne) —iD„(v)i ysy&e )SZ . —. „SZ

+ [ Jge+ Jttlyse+ lp( JFe) + QJFe+ lp( JGlys )eQJGtyse j 'rle 'ti lyse =0, (5)SZ SZ . SZ
Sq SJF SJG

and, obviously, a similar identity holds for the generating functional of the connected Green s functions W= —i lnZ( J).
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By performing the usual Legendre transformation

JI

SJ]
I'(4) = B'— dx~ g—'~i&i

and taking into account that SI /5$, = —J,, one can translate the previous Ward identity into the corresponding expression
for the effective action I'($),
.sr „- .sr. „- sr — sr=. .-- sr
i .yi'«B„A +i . iy5y"«S„B — .i'«+ .Qiy5« —if' «
5$ 5$ SA 58 SF

= sr .==- . sr =. sr sr - sr .+a/« .—ipgiy5« .—ailiiy5« .— . «F .—iy5«G=O
SF SG SG 5$ 5$

This is nothing but the statement of the invariance of the effective action with respect to a supersymmetry transformation, if
we assume that the classical fields Q, transform in the same way as their quantum counterparts.

By taking functional derivatives of this expression, one can obtain successive ard identities relating the different n-point

functions of the model. By differentiating with respect to Q(y) and A(x), for example, and then setting all the sources
equal to zero, we get

y8„5( — ) ()— . . 5(y — ) ()521 1 52I" 1

Sy(y)sj(z) "~—g SA(x)SA(z) +—g

—i . . 5(y —z)P «(z)+a . . 5(y —z)«(z)-0 . (7)
52I I 521 I

5A(x)5P(z) —g sA(x)sP(z)

By differentiating once more the original Ward identity with respect to A (u), we obtain a relation among the three-point
functions of the model,

i . „y"8„5(u—z) «(z)+i . „5(x—z)«(z)
53I 1 . 53I 1

SA(x)SPy)si(-), ~ g, SA(u)5$(y)si( )-
53I' 1 S3I

5(y —z)«(z) —i
SA(u)SA(x)SA(;) 4-g 5A (u)5A (x)sP(z)

1

1 5(y —i)S «(z)
g

+a . „5(y-z)«(z)=0 .
53I 1

SA (u)SA (x)SF(z) &—g

In what follows we will focus our attention on the first of these Nard identities. It can be shown that the local parts of all
the three-point functions of the model are identically zero to the one-loop order (see below), which makes the last expres-
sion trivially satisfied at this level.

The expression (7) can be cast in a more convenient form by making use of integration by parts (after replacing the in-
tegral symbol),

s'r
dz —i «(y)

SiT(y)5j(z)
52I

y„«(z)D,"5(x—z) — . . «(y)«(z)5(y —z)
SA (x)SA (z)

—i«(y)y"«(z)D . . 5(y —z) +3a . . «(y)«(z)5(y —z) 0
52I 52r

SA (x)sP (z) SA (x)SP(z)

where use has been made of the definition of «(z), D„«(z)- —(ia/2)y„«(z) Finally, we g. et

5 I —„52I 52r—i«(y) . y„«(x)D i' —. +3a . =0 .
5j(y)5j(x)

"
SA (x)SA (y) SA (x)SF(y)

It can be sho~n that this expression is satisfied at the tree level in the sense of operators, with

52I . 1=i/ 5(y —x), = ( —0 +3a2) 5(x —y), = a 5(x —y)
s'r , 1 52I 1

5$(y)sill(x) ~ g SA (x)SA (y) ~ g SA (x)SP(y) &—g

(8)

By applying, for example, Eq. (8) to a test function $(x) we get
r

fO
1 1 1

J dx4 g —i«(y)i P—y 5(y —x) y„«(x)D~i"P(x) y(x)( —a„+3a2) 5(—x —y)+y(x)3a2 5(x —yPq X X
g

i i

which is identically zero after integration by parts.
Since (I) and (2) are invariant with respect to the supersymmetry transformations in AdS4 [Eq. (3)], we take the adiabatic
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expansion of the propagators in the four-dimensional background space,

(W (x)W (x'))

1 ki'k" 1 a4

(A (x)F(x')) - —a(A (x)A (x')) = (8(x)G(x')), (F(x)F(x')) =i5{x,x')+ a'(A (x)A (x')) = (G(x) G(x'))

{y(x)y(x') )

ak 'k k"d k a(-x') yku + R 'yka 2R ( )
k~k" ak+i u b c Rm k

+O a
(2~)" k'+ io 12 (k'+ io)' '" (k'+ io)' ' (k'+ io)' k'

with R„„-3a2g„„andR = 12a2. In the propagators (9) the
Feynman boundary condition is denoted by adding to k2 a
small positive imaginary part. This is understood as a
prescription in momentum space needed to make contact
with the quantum model in the flat-space-time limit. It has
no relation with the boundary conditions that the large-scale
features of anti-de Sitter space impose on the Green's func-
tions defined in x space, which are extensively discussed in
the literature. 7 Although the adiabatic expansion cannot re-
flect the global structure of the space-time, the ultraviolet
behavior of a quantum model is not sensitive to these global
features nor to any particular choice of the vacuum in the
curved space-time background. The adiabatic expansion is
then adequate to our purposes as long as we are interested
in renormalization coefficients that depend on the short-
distance behavior of the model.

In what follows we are going to take a regularization pro-
cedure in which only the momenta are analytically contin-
ued to D dimensions, while keeping all the remaining ten-
sors in four dimensions. This is, in fact, an extrapolation of
the usual dimensional-reduction method adopted in a flat-
space-time background, since we have to give now a defi-
nite prescription for the gravitational tensors R„„p, 8„„.
The solution adopted here in which these tensors are con-
sidered in four dimensions, while the momenta are con-
sidered in D, seems to us the closest in spirit to the usual
dimensional-reduction prescription, connecting at the same
time with the classical invariance of the Lagrangian for the

l

four-dimensional anti-de Sitter background space.
The calculation of the Feynman diagrams contributing to

the one-particle-irreducible two-point functions I ~~, I ~~,
and I & to the one-loop order gives the results

I qp (x x') = a (5+2)5(x x') + nonlocal 0 (a ) terms,

2

r»{x,x ) = "" [(o.-3a2)~
16m2

+ 2(z„—4a') ]5(x,x') + O(a4)

r~ q (x,x') - ", [(y;),p(5+2)D„'5(x,x')
o p 16m2

—(y (x)yp(x')) a']+ O(a4),

where g up, '~2 with u dimensionless, ~ =4 —D, and

5= —+2 dI'(z) + ln4m —ln
dz p

with I'(z) being the Euler function. In deriving r»(x, x')
we have used the relation between i~tl„and D~D„ in nor-
mal coordinates, 4

5(y) = (D"D —Tg Pg&"R „)5(x,x')a' i

By By
y.pre

Substituting (10) into (8) and using the relation

ie(x')rq
p

(xx')yb~(x)D„'= '", [(iI+2)5(xx')C„—a'5(xx')+2ia'e(x')(y (x)yp(x'))e(x)]~o~p ' " 16+2

(12)

one readily checks that the Ward identity is satisfied for the divergent part including terms proportional to a'. Equation (8)
is also satisfied for the flat-space-time finite terms, but violated by finite terms, of order a . In fact,

lulc(x )r«(xx')y, .(x)D„'+ [ —r» {xx') + 3al qp(xx') ]5 p= —
2

a 5(x x') + nonlocal O(a ) terms4p 16m2

The corresponding Ward identity for the three-point func-
tions is trivially satisfied for the local corrections at the
one-loop level, since they vanish by explicit cancellation
between the virtual (B,G) contribution and the virtual
(A, F) one, 9

A (xyz) Ii i
= rF (xyz) Il 1 r„- (xy, ) IiOCR

To summarize, wc have carried out the rcnormalization
of the massless %css-Zumino model in AdS4 space using
the adiabatic expansion of the propagators in momentum
space. The expansion allows us to extract all the local con-
tributions (both divergent and finite), and we have shown

l

that it maintains supersymmetry in the results at the one-
loop level for the divergent part including terms proportion-
al to the curvature, using a regularization scheme in which
the momenta in the expansion are taken in D dimensions
and the other tensor indices are taken in D =4. While in
our case it is not obvious that the counting of the fcrmionic
degrees of freedom equals that of the bosonic ones, the fin-
ite terms proportional to the curvature do not satisfy the su-
persymmetry Ward identity (8) between two-point func-
tions, and we believe that a manifestly supersymmctric reg-
ularization scheme is required. This would tell us whether
the violation of the above supersymmetry Nard identity is
indicating here the nonsupersymmetric character of our
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choice of the regulator or rather is a signal that the adiabatic
expansion is inadequate to calculate the finite one-loop
corrections to the massless model. A natural choice seems
to be Pauli-pillars regularization, although one should also
consider the possibility of regularizing by the method of
point splitting. %ork on this is presently in progress and
will be reported elsewhere. '0

From Eq. (10) we can extract the common renormaliza-
tion factor Z that multiplied times Lk;„gives the effective
action for both the divergent and the flat-space-time finite
parts,

4u2Z-1+ " (5+2)
16+2

The vanishing of the three-point functions at the one-loop
level indicates that the statement of the renormalizability of
the model and the absence of renormalization of I.;„t (Ref.
11) are still valid in the anti-de Sitter background.
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