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Using Monte Carlo methods we calculate the velocity of sound in both the confining and deconfining
phases of QCD. The results are consistent with the theoretical expectations based on an ideal gas of glue-
balls and gluons, respectively.

In recent years it has become increasingly more clear, that
at sufficiently high temperatures and/or densities quarks
and gluons will undergo a transition from a phase in which
they are permanently bound in color-neutral objects (i.e.,
mesons, baryons, and glueballs) to a new phase in which
they are essentially free. From a fundamental point of view
of QCD, the theory of the strong interactions, one expects
certain observables usually associated with confinement or
chiral symmetry to undergo a rapid change in magnitude
once a critical temperature or density has been surpassed.
These are strictly nonperturbative effects and nonperturba-
tive methods are called for. Most of our knowledge about
QCD at finite temperature therefore comes from lattice
Monte Carlo calculations. (QCD at finite baryon density
remains to a large extent unexplored. ) Early calculations
performed in the quenched approximation indicated that
QCD has a first-order phase transition. The effects of
dynamical fermions has been taken into account only re-
cently, Although there is still some controversy surround-
ing the order of the transition the following picture seems to
emerge from these calculations At a temperature of about
200-300 MeV the theory, in some sense, "deconfines" and
the spontaneously broken chiral symmetry is restored. Both
these phenomena take place at the same temperature.
These results are of course of great importance for the
physics of heavy-ion collisions and the early Universe. Just
from the possible existence of a first-order transition alone
one can speculate about remarkable cosmological conse-

quences. '
It is expected that the high temperatures and/'or densities

needed can be reached in relativistic heavy-ion collisions, 3

allowing one to investigate new interesting phenomena. In
order to obtain a detailed space-time picture of the quark-
gluon plasma produced in such collisions a theoretical model
is needed and one usually employs relativistic hydrodynam-
ics for this purpose. This seems appropriate since in a nu-
cleus such as uranium the quark mean free path can easily
be estimated to be —0.2 fm, which is small compared to
the typical size of such a nucleus, —15 fm. The hydro-
dynamic equations do, however, involve parameters that are
a priori unknown and which contain the memory of the
underlying theory, QCD. One such quantity to which we
address ourselves in this paper is the velocity of sound in
the quark-gluon "fluid. " The knowledge of its dependence
on the temperature is of crucial importance in the solution
of the hydrodynamic equations. It is the purpose of this
Rapid Communication to demonstrate how lattice Monte
Carlo calculations can supply this information. Our study is
in a sense preliminary: %e restricted ourselves to the pure
gauge theory to check the feasibility of the method. We
find it encouraging that our results are in agreement with
naive theoretical expectations.

e simulated the following partition function:

Z = [dU]e-s&&, (1)
aJ

where

S(U) =P X X Xtr[U„(n) U„(n+p, ) U„'(n+v) U„'(n)+H. c.]
n0=0 n. ~0 P„v

Here p is related to the bare coupling constant by p= 6jg'
and n, = (1/T)a, where T is the temperature and a the lat-
tice spacing. The thermodynamics of lattice QCD has been
studied in detail in Ref. 4. We will need the following ex-
pressions for energy density ~ and pressure P:

, [ps Pr+ g'Cs(ps P) + g'—Cr(pr p) ] ~

—(3)—

I

Cs and Cr in (3) are constants that can be calculated in per-
turbation theory. pq and pT denote the average spacelike
and timelike plaquettes, respectively. p denotes the average
plaquette obtained on a n lattice. The quantity b, in (4) is
given by

—2a=isa '~g (ps+Br 2p) . — (5)
Qa

d has been called the "interaction measure. "4 It represents
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the deviations from ideal-gas behavior for which p- ~e. In

our calculation we used the two-loop perturbative value for
a (rig'/8a ):

a= —IS,+g', (Ps+Pr —2P)/a' . (6)

The velocity of sound is in general defined as

2 P

Before we go on to show how we calculated (7) on the
lattice let us shortly discuss what to expect theoretically. As
mentioned earlier, pure SU(3) gauge theory is known to
have a first-order transition with a rather large latent heat. 6

At the transition point T, we expect the velocity of sound to
be zero since P is continuous and ~ is not. In other words,
for a ~hole range of energy densities given by the discon-
tinuity the function P(e) is constant. In the confined phase
we can approximate the thermodynamics at sufficiently
small T by a nonrelativistic, ideal gas of glueballs. In this
case e p, ~here p is the mass density. Taking the deriva-
tive (7) at constant entropy one obtains

2~
Nlg
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FIG. 1. Schematic representation of theoretical expectations for
Vs as a function of T.

FIG. 3. The velocity of sound squared vs ~. The corresponding
range in temperature and coupling constant is given in Table I.

where y= C~/C„and re is the (effective) glueball mass.
In the deconfined phase one has an ideal gas of gluons and
one expects Vs2 to approach its limiting value of ~. These
expectations are summarized in Fig. 1. Contrasting the
solid line depicting them is a dashed line indicating what
one might expect if there were no (first- or second-order)
phase transition at all. It may be remarked here that for a
first-order phase transition the solid curve in Fig. 1 could
have a discontinuity at T,.'

We now proceed to explain how we extracted Vs from
Eq. (4). Differentiating with respect to e yields

Vs = —1
I Bh
3

(9)

To take the derivative in (9) we converted both b, and e to
physical units using the two-loop renormalization-group for-
mula. Since both quantities are then expressed in terms of
physical temperature (in units of AL, ) we can eliminate T to
obtain 5 as a function of e. We display 5 = 5(e) calculated
on a 8'&4 lattice together with a typical error bar in Fig. 2.
The derivative in (9) was then approximately calculated by
taking finite differences. Vs thus obtained is shown in Fig.
3. Our data are summarized in Table I. Before we draw
any conclusions let us summarize the assumptions that went
into the analysis. We assumed asymptotic scaling in (6) and
(9). From Monte Carlo renormalization-group studies and
precision measurements of T, one knows, however, that in
the coupling-constant regime considered here, physical

TABLE I. Summary of our data. Estimates of the errors are
shovrn in the figures.
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FIG. 2. 5 vs ~. Both quantities are in units of AL 10

5.66
5.665
5.67
5.685
5.70
5.705
5.71
5.73
5.75

72.7
73.1

73.5
74.8
76.1

76.5
76.9
78.7
80.4

3.56
6.15
8.73

11.92
15.2
18.72
22.33
26.36
30.38

8.02

12.0

16.4

23.3

23.7

0.08

0.105

0.33



R. V. GAVAI AND A, GOCKSCH

quantities do not yet scale according to the perturbative for-
mula. It is possible, though, that there is nonasymptotic
scaling in the sense that ratios of physical quantities remain
constant. As a matter of fact, the combined data of string
tension and deconfinement temperature are consistent with

a scaling of the form

dga = —2bo
da

(10)

~here bo is roughly one half the perturbative value. If one
accepts this idea of "prescaling" then the value of bo in
(10) parametrizes the systematic error in our quantitative
determination of Vs . Neglecting for the moment the terms
proportional to Cs and Cr in (3) which are small, it is not
hard to arrive at the following approximate formula for
85/8e:

8/J, 2- d(ps+ Jt r 2P)
g &o

d(T s It r)—
(11) shows explicitly how the value of Vs' depends on the
precise form of the scaling function as parametrized by bo.
Since we do not know the true scaling function we chose to
work with its asymptotic form. At small temperatures,
where (M/8e) is large, this procedure may lead to a value
of Vs', which is off by as much as a factor of 2, as one sees
clearly from (11). However, (11) also shows that the quali-
tative dependence of Vs' on the coupling is independent of
the details of the scaling. This explains the nice qualitative
agreement of our data with the theoretical expectations. As
mentioned above, the final derivative was approximated by
a finite difference. This introduces a systematic error which
at this point is hard to estimate, especially since errors from
other sources are perhaps more significant. Clearly, one
should get more statistics and above all more points.

The calculations reported here are very time consuming.
Since the energy density is a wildly fluctuating quantity we

typically ran 3000 iterations for thermalization and 6000
iterations for measurements. The errors sho~n are twice
the naive error which is close to an error estimate obtained
by binning the data. The error on Vs' comes from simple
error propagation. Despite the obvious uncertainties in our
method the agreement with the theoretical expectation is
quite nice. At the critical point Vs clearly drops to a small
value consistent with 0 and approaches T (the ideal-gas

value) very quickly above the transition. It is an amusing
exercise and also a consistency check to assume that the
first point in Fig. 3 already satisfies Eq. (8). We should,
however, drop the factor of y in the comparison with our
measured Vs since the derivative has been taken at con-
stant T. Equation (8) then yields mG= 900 MeV which is

certainly in the right ballpark.
To summarize, we have determined the velocity of sound

in pure SU(3) gauge theory at four points. It is unlikely
that in the confining phase of the pure gauge theory Vs'

exceeds a value of 0.2. At the transition it is negligibly
small and the limiting value of T is approached very rapidly

above the transition. Although more work is clearly needed
both for the pure gauge theory and especially in the full
theory including dynamical fermions we believe that we
have demonstrated that Monte Carlo calculations can be
used to extract quantities desired by phenomenologists.
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