
PHYSICAL REVIE%' 0 VOLUME 33, NUMBER 2

Comments

15 JANUARY 1986

Comments are short papers which comment on papers of other authors previously published in the Physical Reviews. Each Comment should state
clearly to which paper it refers and must be accompanied by a brief abstract T.he same publication schedule as for regular articles is followed, and page
proofs are sent to authors.

Comment on the 4/3 problem in the electromagnetic mass and the Boyer-Rohrlich controversy

I. Campos
Departamento de F/sica, Facultad de Ciencias, Uni versidad Wacional Autonorna de Mexico,

Apartado Postal 2J-939, Mexico 04000, Distrito Federal, Mexico

J. L. Jimenez'
Departamento de FIsica, Division de Ciencias Basicas e Ingenierfa,

Uni versidad A utonorna Metropolitana (Eztapalapa),

Apartado Postal 55-534, Mexico 09340,
Distrito Federal, Mexico

(Received 24 May 1985)

The Boyer-Rohrlich controversy seems to indicate that there are yet obscure points in the old problem of
the electromagnetic mass. Here we try to clarify the physical content of both points of view, which indeed

are part of two different traditions to approach the physics of classical elementary particles.

I. INTRODUCTION

For nearly a century physicists have pondered the electron
and its self-field, as well as the interaction that may exist
between them. This ill-understood interaction has given
rise to some problems such as the additional inertia associat-
ed with a charged body in uniform motion, ' the structure of
the electron, ' ' and the correct definition of electromagnetic
field momentum~' recently put forward in the Boyer-
Rohrlich controversy. ~' This last problem also involves
questions about the stability of the electron, the nature of
the electron mass (totally electromagnetic or partly nonelec-
tromagnetic'?), and infinite self-energy. The clarification of
these problems is worthwhile since most of them appear
again in quantum electrodynamics. In the present Com-
ment we try to give a physical interpretation of both Boyer's
and Rohrlich's points of view, tracing their differences to
their completely different conceptions of what a relativistic
theory and the electron structure should be. This is then an
effort to clarify the different approaches used to tackle the
problem at hand, and for better understanding we set it in
its historical perspective.

The point at issue is the following: In the four-tensor
formalism in space-time it is sho~n that the energy and
momentum of a mass point constitute a four-vector. How-
ever, the energy of the electric field of a distribution of
charge at rest and the field momentum, as defined by Abra-
ham, ' of the field convected by the charged body in uni-
form motion are not covariantly related. For Boyer9 and
others" this is natural, since the electromagnetic field and
the charge distribution are only a part of an isolated static
system, the other part being the nonelectromagnetic force
necessary to glue the charge distribution. This can be called
the two-field approach. ' On the other hand, for Rohrlich'o
and others this situation must be mended by a redefinition
of the convected field momentum. In the old "electromag-

netic world view" the problem was seen as a discrepancy
between the momentum-defined electromagnetic mass, the
coefficient of u after an integration of g- (1/c')S, S being
the Poynting vector (c/4sr)(EXB), and the rest-energy-
defined mass Ua/c', taking as Uo the eiectrostatic energy of
the charge distribution at rest.

II. PROPOSED SOLUTIONS

The first explanation of the discrepancy between the
momentum-defined electromagnetic mass and the one de-
fined by energy was put forth by Poincare. Having in mind
that' "the laws of physical phenomena must be the same
for a stationary observer as for an observer carried along in
a uniform motion of translation, " Poincare tried to find ap-
propriate cohesive forces that, together with the electromag-
netic forces, would comply with a covariant principle of least
action. Poincare interpreted these supplementary forces as
an internal cohesive pressure, namely,
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with a being the radius of the electron, thus obtaining an
additional energy

Uo
ph V=—

3

~here V is the volume of the electron in the rest frame.
This explanation was further clarified by von Laue, "who

developed a relativistic continuum mechanics and intro-
duced a second-rank four-tensor T"" to represent the state
of energy, momentum, and stress of a deformable body or a
field. By demanding that the electron should be in equilibri-
um in every inertial frame and in order to close the system,
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von Laue took the following condition:

8„(Tg+Tg„, )=0, (3)

~here T,"" is the usual electromagnetic stress-energy tensor.
Since this tensor is not divergence-free for the Coulomb
f"ield due to the presence of the sources, that is,

where T,"" is the tensor of the electromagnetic field and
T»,"„, the tensor of the nonelectromagnetic part, which in-
cludes the Poincare stresses and maybe other fields. Using
the Gauss theorem for space-time, it is easy to show" that
for such a closed system the integral of the total stress-
energy tensor over a spacelike hypersurface v is indepen-
dent of v. Therefore, total energy-momentum as measured
in the rest system at tp= const is covariantly related to the
total energy-momentum as measured in any other inertial
frame at t const.

Ho~ever, if compared at tp = const and t = const, ihe elec-
tromagnetic and mechanical parts do not behave covariantly

by themselves. Boyer's point is precisely that this is to be
expected, since the electron in the rest system is in a state
of equilibrium and if seen from another reference system it
is in a different state of equilibrium related to the former by
a net transfer of energy and momentum from the mechani-
cal stabilizing forces to the electromagnetic field, such
transfer satisfying the principle of energy momentum con-
servation. Indeed, Boyer has sho~n, ' by analyzing open
multiparticle systems from different inertial frames, that this
transfer of energy and momentum is a consequence of the
relativity of simultaneity; hence such transfer is a relativis-
tic kinematical effect.

Thus, from the point of view subscribed to by Boyer, the
classical electron may be modeled in the rest system as a
spherical shell of charge, stabilized by an attractive pressure
[Eq. (1)] that gives rise to an additional nonelectromagnetic
energy T Up, giving thus a total energy 7 Up. In a reference
system where the electron moves with constant velocity v,
there is a flux of energy through a two-surface perpendicu-
lar to v, and in this case the total energy passing through
the surface in unit time is T Up, thus producing a momen-

tum equal to

4 UpP~ Ty
g

2 (4)

p = J~' Tem &cd ~ ~

in agreement with the Loreniz transformation. In this way

we have an energy-momentum four-vector (T Uo, 0) in the

rest system, which after a Lorentz transformation produces
the four-vector (Ty Uo, Yy(UO/c )v).

Usually this vie~point has been rejected on the following
grounds:

(1) Electrodynamics being a covariant theory, one would
expect the purely electromagnetic energy and momentum to
behave covariantly.

(2) Until now, the origin and nature of the Poincare
stresses have been unknown.

(3) It is strange for a noncovariant electromagnetic energy
and rnornenturn io be compensated by a noncovariant con-
tribution from the Poincare stresses in such a way as to pro-
duce a total energy-momentum that is covariant.

These objections have led some other physicists to look
for a definition of a purely electromagnetic field momentum
for the Coulomb field that is covariani. Rohrlich6 has
achieved this aim by defining the four-vector

T»V P»V~1

c
(6)

the volume integral is not independent of the hypersurface
of integration. For this reason Rohrlich chooses to integrate
over the particular hypersurface

dv„=v„d v,

d'v being the invariant volume d V' of the rest system and
v„ is the four-velocity; that is, the volume element is the
Lorentz-transformed rest element volume: "Physically (this
condition) expresses the rigidity of the charged particle in
the relativistic sense. "

This definition leads to the expressions

po - „dV'y(U —v S) =ym, c',

with

p" - „dVy(S"+viT'" ) =yrn u"

Up
mern c2

where the factor of T does not appear.

III. DISCUSSION

Here we try to give a more physical interpretation to the
previous points of view. First, we note a difference in what
is to be understood as a relativistic theory. For Poincare, 4'
Einstein, ' von Laue, " and others, the content of the prin-
ciple of relativity is that the general laws of physics must be
covariant. "The relativity theory refers to patterns not to
events. "6 So we must not take the trouble to work out co-
variant definitions of physical quantities unless we are trying
to combine them in what we believe to be general laws.
This is the reason why von Laue puts emphasis on the gen-
eral conservation law [Eq. (3)] rather than on a covariant
definition of a purely electromagnetic energy-momentum
four-vector.

On the other hand, for Rohrlich' and others, physical ob-
servables must have definite transformation properties. That
is, for a physical quantity to be relativistically meaningful, it
must be related among different inertial observers via
Lorentz transformations. Faithful to this view, Rohrlich has
constructed a covariant definition of the electromagnetic
field momentum associated with the convected Coulomb
field of the electron.

Let us now see what the differences are with respect to
the physical meaning of both definitions of electromagnetic
field momentum.

The conceptions of Poincare, von Laue, and Boyer go as
follows.

(I) Relativity theory is a field theory that presupposes
classical electromagnetism. Therefore, every force field is
transformed as the electromagnetic field is.' It is precisely
this assumption that renders the nature of the electron mass
ambiguous, since then there is no way to distinguish



between the behavior of different kinds of mass.
(2) The electron cannot be a purely electromagnetic ob-

ject. Earnshaw's theorem compels us to introduce cohesive
forces that stabilize the distribution of the finite quantity of
charge that constitutes the electron.

(3) Because of the postulated equilibrium in every inertial
frame, for the electromagnetic and cohesive forces the
volume integral of every total stress must be zero (von
Laue's theorem). A necessary condition for this to be the
case is that Eq. (3) is satisfied with

2'fat - 2"em + 2'co"»

In the rest system and for a spherical shell of charge, the
stress-energy tensor of the cohesive force takes the form

p 0 0 0

Op) 0 0
7 $Lv
~ coh 0 0 c 0

0 0 0 po

where p is the energy density and p$ is an internal cohesive
pressure, the Poincare pressure given by Eq. (1). In other
words, the nonelectromagnetic subsystem can be modeled
by a perfect fluid. In fact, Bialynicki-Birula'9 has explored
the model of a perfect charged fluid with some detail and
his conclusions fall in line with the two-field approach.

Applying a Lorentz transformation to the total tensor" we
find'

2
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does not take into account the cohesive stresses, concluding
that "we seem to have a relativistic but unstable electron. "

(2) This rest energy is Lorentz transformed to any other
inertial frame, so that the field momentum is the only one
that corresponds to the flux of this energy, and therefore
the associated mass is simply m, . As a justification of this
treatment, Rohrlich uses the fact that the stress-energy ten-
sor of the field is divergence-free outside a sphere that sur-
rounds the charge, while the interior of the sphere is nor-
malized to zero. This is akin to Dirac's ' phenomenological
approach, in which he treats the electron as a point charge.
Therefore, Rohrlich's approach eliminates the analysis of
any interaction between the electromagnetic and nonelec-
tromagnetic subsystems and simply postulates its stability,
as corresponds to a theory of a point electron.

As another justification of this treatment, Rohrlich has
invoked the possible relation between classical and quantum
electrodynamics, since the latter also postulates a point elec-
tron, as a phenomenological theory should. However, any
constructive classical theory of the electron would have to
be explored through the methods of Poincare, von Laue,
and Boyer. It must also be noted that we can get a factor of
1 in the total mass, i.e., taking into account the mechanical
cohesive stresses. %e simply define the cohesive mechani-
cal rest energy as zero (i.e., U'

» = 0) and from Eq. (13) we
get

U» y —"2 pIiV'= —Ty —2mo c
e e

So V'
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then, instead of Eq. (14) we have

2

U~» y U,',»+pIiV' —",

G»-y(U'. »+sfV')
(13)
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(14)

Again we note a covariant energy-momentum with a rest
mass ~m, because of the inclusion of ~m, , which corre-

sponds to the energy of the cohesive stresses.
Rohrlich's outlook, ho~ever, is founded on the following

assumptions.
(1) The rest energy of the electron is only the electrostat-

ic energy, Uo= m, c'. The energy associated with the Poin-
care stresses is normalized to zero. Maybe it is convenient
to point out that in his book Rohrlich, as Fermi once did,

but we have already seen [Eq. (3)] that for the shell model
of the electron poV'= —~ Uo.

Now, if we define the field momentum to be completely
electromagnetic, as in the old electromagnetic world view,
i.e., G»-0, then obviously U,',» = —p)V'=DUO. There-

fore, the total quantities will be

U„,= y ( Uo + U,',» ) = y ( Uo+ f Uo) = y ~ Uo,

Gtot &gmem ~ ~'V mern v —'Vmem v0 i o o
(16)

IV. CONCLUSIONS

As we can see, from the perspective of the traditional
view, there is no trouble with the famous ~ factor. The
electron is considered in this view as an extended charged
body, in equilibrium in every inertial frame, subject to the
laws of electrodynamics and the laws of re1ativistic continu-
um mechanics through the general conservation law [Eq.

But of course here Unonems Gnonems Uems Gem d0 not con-
stitute four-vectors by themselves.

Schwinger 2 has also derived in a rigorous and transparent
way two energy-momentum four-vectors: one correspond-
ing to a ~mo and another to a m, . He does this by re-

quiring that —(1/c)F""j„be divergenceless; that is, he
construes two conserved tensors that correspond to stable
charge distributions. Schwinger calls these masses "elec-
tromagnetic, " but there must necessarily be forces of con-
striction of nonelectromagnetic origin that produce the re-
quired four-currents. These masses are electromagnetic in

the sense that ~m, is obtained provided that all the

momentum is of electromagnetic origin, while m, results if
all the rest energy is electrostatic. Again, this is consistent
with von Laue's analysis [Eqs. (14) and (16)].
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(3)]. Then it is natural that the purely electromagnetic part
of the classical electron does not behave covariantly and
there is nothing strange in that a noncovariant electromag-
netic field energy-momentum is compensated by a nonco-
variant mechanical contribution: Again it is a consequence
of the conservation law.

On the other hand, the new point of view treats the elec-
tron as a point particle, and the approach is rather geornetri-
cal and phenomenological. This may be the correct ap-
proach when we want to compare the classical theory with
quantum electrodynamics, ~here the electron is also con-
sidered as a point particle. But the relation between classical
and quantum electrodynamics is rather an open problem.

Of course the problem of the nature of the Poincare

stresses remains, and since progress here seems very diffi-
cult, work on classical theories in this line has been aban-
doned. By now the phenomenological approach, with its re-
normalization program, has produced important results in
quantum electrodynamics, but not much so in classical elec-
trodynamics.
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