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Imaginary part in thermo field dynamics
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%e investigate the imaginary part of Feynman diagrams in a real-time finite-temperature formalism, ther-

mo field dynamics. Interesting relations are found which lead to a simple derivation of the imaginary part

of self-energy diagrams.

There has been a growing interest in the problem of
nonequilibrium phenomena in quantum field theory, espe-
cially in relation with the quantum effects in the early
universe. ' Unfortunately, at present, there is no well-

established theory capable of coping with the general non-
equilibrium systems. The best one can do is to formulate a
theory which allows one to treat the situations where the de-
viation from equilibrium is small. This line of approach has
been taken by several people to discuss the early universe
and some interesting results have been obtained. ' Among
them an important one is the relation between the ima-

ginary part of Feynman diagrams and the transport coeffi-
cients used to describe the dissipative processes. Hence
developing a systematic and simple method for evaluating
the imaginary part of Feynman diagrams at finite tempera-
ture is highly desirable. '

The present Brief Report is concerned with the calculation
of the imaginary part in the perturbation based on the real-
time finite-temperature formalism. We shall take thermo
field dynamics3 (TFD) as an example of real-time formal-
isms. ~ Further, we shall limit our scope and consider only
the self-energy diagrams. As regards the foundation of
TFD readers may consult the original works, 3 and also
works in Ref. 5 for the perturbative calculation of the real

l

part of Feynman diagrams at finite temperature.
TFD perturbation is defined in the Minkowski space and

thus the integral contains both real and imaginary parts ex-
plicitly. In contrast, the perturbation in the conventional
imaginary-time formalism' ' (ITF) is defined on S'xE'
and thus the integral is purely real. Hence the evaluation of
the imaginary part in ITF involves an analytic continuation
back to real time. ' One of our purposes is to answer the
question raised by Weldon whether TFD reproduces the
same imaginary part calculated in ITF. We shall answer this
question. in the affirmative.

First, let us give a quick review of the ITF calculation.
Consider a self-energy diagram in kP' theory (Fig. 1). The
imaginary part (or discontinuity) is obtained as follows. The
one-loop correction to the self-energy is given by
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First, one evaluates the real part of (1). Using the formula
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and calculating the residue due to poles at z - +iEI and z po+iE2, one finds
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Then one continues ipo=i2nN/p po(real)+i&, and uses
the relation
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(P is the principal part) to extract the imaginary part. The
result is

1

FIG. 1. A one-loop self-energy diagram in ~qb3 theory.
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The so-called discontinuity, discX, is given by

discX = —2i ImX

To see the connection with TFD it is convenient to rewrite the standard thermo propagator, I (k) ", as follows
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where
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From (12) one sees that the imaginary part of our interest is
given by ImX. From (1 la) and (lib) one easily obtains
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Then consider the renormalized scalar thermo propagator

a'-'(k)"- (k'- m')."-X(k)",
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Further, one finds
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Explicitly, the (1,1) component of the relation (10) reads
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where X(k) and X(k) are connected with each other
through the following relation: The relations (14a) and (14b) are interesting in that one can

now obtain Im X(k) in three different ways' by calculating
directly the imaginary part of either X", X", or X'2. This is
very different from the ITF calculation. %hat is more in-

teresting is that among the three methods there is a big
difference in the labor involved. The easiest way is to
evaluate X'2, which is purely imaginary to begin with; hence
no physical real part is involved in the calculation. In the
following we exploit the relation (14b) and provide a new
and simpler calculation of ImX(k) in the examples treated
previously in ITF s»

(1) X@' theory (Fig. 1).
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In the above we have made use of, for instance,
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FIG. 2. A toro-loop self-energy diagram in A.$4 theory.
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We have reproduced (5). FIG. 3. An (N —1)-loop self-energy diagram in

(2) )].]]]] theory (Fig. 2).
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Then, a manipulation similar to (16) leads to a result identical with that of ITF calculation. "
(3) )],]t]"+] theory in two dimensions (Fig. 3).
The imaginary part of this general diagram is simply given by
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In comparison with other methods the power of relation (14b) is evident in these examples.
Let us turn to the fermion case. We find relations similar to (14):
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one finds (f is the Yukawa coupling, k2- p —k])

As in the scalar case we make use of the second relation.
(4) Fermion self-energy diagram (Fig. 4).
In Fig. 4, the broken line represents a scalar. The fermion propagator is given by
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FIG. 4. A one-loop self-energy diagram of a fermion. FIG. 5. A one-loop self-energy diagram of a scalar with a fer-
mion loop,

Using
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etc., one finds
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This result corrects a minor error of Ref. 8. The final example we present is a fermion loop.
(5) Scalar self-energy diagram with a fermion loop (Fig. 5).
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In summary, we have investigated the imaginary part of Feynman diagrams within the scheme of TFD. %e have shown
that the real-time formalism allo~s one to perform a direct calculation of the imaginary part, in a very concise manner,
thanks to relations (141) and (201).
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