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The large-N expansion has been used for solving the Schrédinger equation for a Mie-type potential. The
ground-state energy and the corresponding wave function are obtained analytically up to six terms.

I. INTRODUCTION

In recent years the large-N expansion has been used for
solving the Schrodinger equation.!”* In solid-state physics
such expansions are well known,*® similar expansions being
developed for quantum field theory.”-® This method pro-
vides a good approximation for obtaining the low-lying spec-
trum of quantum-mechanical systems, in contrast with the
WKB method. Furthermore, the method has the following
advantages: It does not depend on the separation of the
Hamiltonian into two terms, one exactly solvable and the
other relatively small, and the calculation can be done using
a simple algebraic recursion method.

In the present work we apply the 1/N expansion to obtain
the ground-state energy and the corresponding wave func-
tion for a system bound by a Mie-type potential. The
analytical expressions are derived for the first six terms.

II. THE METHOD AND CALCULATIONS

We wish to solve the Schrodinger equation for a special

case of the Mie potential'®
K m k
V(r)=D ol __m |o . 1
(r) 0[m—k[r] m-—k[r )
By taking m =2k and k =1, it reduces to
vin=-4_-8 @
r r

where 4 = Doo? and B =2Dgo. We assume that the gen-
eralization of the potential to N dimensions, N being the
number of spatial dimensions, may be written as

Vn(r)=N*V(r)/9 . 3)

For simplicity, we write the Schrodinger equation in N
dimensions for the / =0 case (with=1)
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Considering only the radial part ¢ of ¥ and redefining
y=r1-M12¢ Eq. (4) takes the form
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In the large-N limit the ground-state energy is defined as
the minimum of the effective potential

+V(r/9 , @

Vere(r) = 8pl,r2
namely, Vo= Ver(ro), and Egouna= N*V,, where Vo=C?/
(2ure?) — B/9ry with ro=9C?/uB being the position where
the minimum occurs; here we define C*= (9+8u4)/36.

To calculate the higher-order corrections to the energy,
we define

€= — 2;‘,!‘02E ’ (8)
r=ro(14+x) , 9
and transform Eq. (5) into a Riccati equation by means of
O(x)=e/® | (10
to obtain
2
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where
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We now expand
€= 2 e, (1/N)" (13)
n=-=2
and
—4%’1 = 3 &£WN" . (14)
n=-1

Substituting these expansions into Eq. (11) and combining
the terms of the same order in (1/N), we obtain the re-
currence relations for €, and g,,

, wrB |
M I F > BT E S0 Rt (15a)
g'_l(x)+2g_1(x)g0(x)+m=e-l , (15b)
g (x)+28-1(x)g1(x)+g02(x)—4(1—i_x);=eo . (50

and for n =1,

8»'(x)+ 2 gm(-x)gn—m(X)+2g—l(x)gn+l(X)=En » (15d)

m=0
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where a prime denotes differentiation with respect to x.

Since E=N?V, to order N% one obtains €_,=C? and g_(x) = — Cx/(1+x), where the sign is fixed requiring that
®(x) — 0 as x — oo. Using the recurrence relations, Eq. (15), we obtain the first six terms of €, and g,(x) as

€-,=C? ,

e-1=—C+1 ,

e=(—C*—6C +4)/(4C?) ,

€= (8C*—4C?*—15C +8)/(8C*) ,

&= (—-3C*+40C>—12C*-35C +16)/(16C®) ,

e3=(—104C°—72C*+560C>— 128C? - 315C +128)/(128C?) ,

and
g-1(x)=—-Cx/(1+x) ,
gox)=(C-1)(x+2)/[2c(1+x)] ,

g1(x)=[(2C*+4C -3)x +(6C?*+4C - 4)V/I8C*(1 +x)] ,
g2(x)=[(-6C*+6C*+8C ~5)x+(—6C*+10C*+8C-6))/[16C°(1 +x)] ,
g3(x)=[(—8C*—96C*+60C?*+64C —35)x +4(—6C*—24C*+21C*+16C —10)1/[128C'(1 +x)] ,

(16a)
(16b)
(16¢)
(16d)
(16e)
(16f)

(17a)
(17b)
(17¢)
174d)
(17¢)

g4(x) = [(72C°—40C* - 288C> + 140C? + 128C — 63)x +2(36C° — 44C* — 144C> + 90C? + 64C — 35)1/[256C°(1 +x)] .

III. CONCLUSIONS

We calculated the first six terms of the ground-state ener-
gy, Eq. (16), and the corresponding wave function, Egq.
(17), for a quantum-mechanical system bound by a special
case of the Mie potential. The present results for the poten-
tial parameters 4 =0 and B=1 in Eq. (2), which corre-
sponds to the Coulomb potential, namely, the hydrogen-
atom potential, coincide with the previous calculations.>*

For this particular case the energy terms in the expansion,
Eq. (13), take the form

n+3
RV
The expansion then converges to -f%— Hence the ground-

state energy from Eq. (8) is obtained —0.5 a.u. exactly.
This value is the exact nonrelativistic H-atom ground-state

-2 . (18)

€p =

176

r
energy.

The path-integral solution of the same potential was ob-
tained recently,!! and the resultant energy expression is

E=—-—— . (19)

For the H-atom case this energy expression also gives —0.5
a.u. exactly. The present result reproduces exactly the
path-integral solution and the nonrelativistic Schrédinger
equation solution.

Following the same procedure and choosing an appropri-
ate wave function, one can easily compute the energy and
wave function for the excited states.
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