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1/N expansion for a Mie-type potential
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The large-1 expansion has been used for solving the Schrodinger equation for a Mie-type potential. The
ground-state energy and the corresponding wave function are obtained analytically up to six terms.

I. INTRODUCTION

In recent years the large-N expansion has been used for
solving the Schrodinger equation. ' In solid-state physics
such expansions are well known, '6 similar expansions being
developed for quantum field theory. ' 9 This method pro-
vides a good approximation for obtaining the low-lying spec-
trum of quantum-mechanical systems, in contrast with the
%KB method. Furthermore, the method has the following
advantages: It does not depend on the separation of the
Hamiltonian into two terms, one exactly solvable and the
other relatively small, and the calculation can be done using
a simple algebraic recursion method.

In the present work we apply the I/N expansion to obtain
the ground-state energy and the corresponding wave func-
tion for a system bound by a Mie-type potential. The
analytical expressions are derived for the first six terms.

II. THE METHOD AND CALCULATIONS

%e wish to solve the Schrodinger equation for a special
case of the Mie potential'0

g= —2pro E

r ~ fp(1+x) (9)

and transform Eq. (5) into a Riccati equation by means of

e(x) =e&~ &, (10)

to obtain
'2

df(x)+ df(x) +N2u(x) 6
dx

where

In the large-N limit the ground-state energy is defined as
the minimum of the effective potential

v„„(r)=, + v(r)/9,1

Sp,r

namely, VD= V,rr(ro), and Ea„„„q=N Vo, where VO=C2/

(2pro ) —8/9ro with ra = 9C jy,B being the position where
the minimum occurs; here we define C'= (9+8pA)/36.

To calculate the higher. -order corrections to the energy,
we define

v(r) -D, k a
m —k r

I,

' k'

m 0
m —k r

(

3 —4X C' 1 8
u (x) —2p, ro 2+ 2SpN 2p, ro (1 +x)2 9ra(1+x)

v„(.) =w'v(r)/9 . (3)

By taking m 2k and k 1, it reduces to

v(r) -———8
r2 r

~here A = Boa' and 8 2Doo. %e assume that the gen-
eralization of the potential to N dimensions, N being the
number of spatial dimensions, may be written as

%e now expand

e- X c.(I/N)"
Il~ 2

g„(x)( I/W)"
dx

(12)

(13)

(14)

For simplicity, we write the Schrodinger equation in N
dimensions for the i-0 case (with g - I)

Substituting these expansions into Eq. (11) and combining
the terms of the same order in (I/N), we obtain the re-
currence relations for ~„and g„,

Vp(2+ &g(r) W =EN
2p,

2( )
2proB

,
9(1+x) (I +x)2

= &-2 (15a)

Considering only the radial part P of 4 and redefining
p=r" "'i'4, Eq. (4) takes the form g

'
) (x) + 2g g(x)go(x)+,= e(1+x ' (15b)

where

, +w v...(r) c =zq,1 d
2 jtL 6ff

(5) go (x) +2g ~(x)g&(x) +go (x)
2

= 60
4 1+x'

and for n «1,

(15c)

g„'(x)+ g g (x)g„(x)+2g ((x)g„+i(x)=e„, (15d)
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SR~F REPORTS

where a prime denotes differentiation with respect to x.
Since E=P/ Vp to order N, one obtains & 2=C and g i(x) = —Cx/(1+x), where the sign is fixed requiring that

di(x) 0 as x oo. Using the recurrence relations, Eq. (15), we obtain the first six terms of e„and g„(x) as

2=C

(= —C+1

ep = ( —C' —6C + 4)/(4C')

., - (SC'-4C'-1SC+ 8)/(SC'),

ei - ( —3C~+ 40C —12C' —35C + 16)/(16C )

( —104C5 —72C4+ 560C' —128C' —315C + 128)/(128Cs)

(16a)

(16b)

(16c)

(16d)

(16e)

(16f)

and

g i(x)- —Cx/(1+x)

gp(x) - (C —1)(x+2)/[2C(1+x)],
gi (x) - [(2C'+ 4C —3)x + (6C'+ 4C —4) ]/[SC'(1 +x) ]

g2(x) [(—6C'+ 6C'+ SC —5)x + ( —6C'+ 10C2+ SC —6) ]/[16C5(1+x) ]

gs(x) - [(—8C —96C'+ 60C'+ 64C —35)x+ 4( —6C' —24Ci+ 21C'+ 16C —10)]/[128C'(1+x) ]

(17a)

(17b)

(17c)

(17d)

(17e)

gg(x) - [(72C' —40C'- 288Cs+ 140C'+ 128C —63)x + 2(36C' —44C —144C'+ 90C'+ 64C —35) ]/[256Cp(1+ x) ]

(17f)

BI. CONCLUSIONS

%e calculated the first six terms of the ground-state ener-
gy, Eq. (16), and the corresponding wave function, Eq.
(17), for a quantum-mechanical system bound by a special
case of the Mie potential. The present results for the poten-
tial parameters 3 0 and B= 1 in Eq. (2), which corre-
sponds to the Coulomb potential, namely, the hydrogen-
atom potential, coincide with the previous calculations. '4

For this particular case the energy terms in the expansion,
Eq. (13), take the form

fl ~~ 2
tl+3

(18)

The expansion then converges to ~. Hence the ground-
state energy from Eq. (8) is obtained —0.5 a.u. exactly.
This value is the exact nonrelativistic H-atom ground-state

l

energy.
The path-integral solution of the same potential was ob-

tained recently, " and the resultant energy expression is

2m 8
f2 4~2 (19)
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For the H-atom case this energy expression also gives —0.5
a.u. exactly. The present result reproduces exactly the
path-integral solution and the nonrelativistic Schrodinger
equation solution.

Following the same procedure and choosing an appropri-
ate wave function, one can easily compute the energy and
wave function for the excited states.
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