Possible closure conditions in a Kaluza-Klein compactified $M^4 \times S^1 \times K^{N-1}$ model

Gerald Rosen

Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104 (Received 12 June 1985)

Closure conditions concomitant with dynamical symmetry breaking are proposed for the mass-squared operator m^2 in an $M^4 \times S^1 \times K^{N-1}$ model for spontaneously compactified space-time. From the functional form of m^2 implied by the closure conditions, one obtains a remarkably accurate mass spectrum for all established leptons and quarks. The next (generation n=4) charged lepton δ is predicted to have a mass of 30.23 GeV, the (n=3) top quark *t* has a mass of 82.89 GeV, and all neutrinos have a theoretical mass of zero.

Considerable interest has been attached recently to generalized Kaluza-Klein¹ models which offer the possibility of unifying gravity with the other fundamental forces while providing extra small-scale spatial dimensions that carry the symmetries of particle physics.² In the context of spontaneous compactification of (4 + N)-dimensional space-time, the extra N dimensions span a compact manifold of characteristic volume l_P^N where $l_P \sim \sqrt{G} \sim 1.6 \times 10^{-33}$ cm is the Planck length. The gauge symmetries of strong (color) and electroweak interactions are realized as an $SU(3)_c \otimes SU(2)$ \otimes U(1) Killing group of motions on the compact Ndimensional manifold, and this requires³ $N \ge 7$. Leptons and quarks receive their masses (which are very small in magnitude compared to the reciprocal of the Planck length) by a dynamical mechanism that breaks the electroweak $SU(2) \otimes U(1)$, perhaps via a Higgs field with a nonzero vacuum expectation value.

If one seeks zero-mass modes for the Dirac operator on the N-dimensional compact space, then a non-Riemannian space (perhaps a manifold with torsion)⁴ is required to circumvent Lichnerowicz's theorem⁵ (which rigorously precludes zero-mass fermions in the case of a compact homogeneous space with Riemannian geometry). A rather complicated topology for the internal space is also required to accommodate each lepton and quark as a distinct individual particle with the correct fermion quantum numbers. On the other hand, if one of the N compact dimensions, say x_5 , is assumed to be canonically conjugate to the generation quantum number n or some integral multiple thereof, the task of accommodating all leptons and quarks is greatly simplified, for the $n \ge 2$ fermions can be viewed as x_5 "angular momentum" excitations of the basic e, d, u, and v_e . This picture leads one to consider a ground-state manifold $M^4 \times S^1 \times K^{N-1}$, i.e., four-dimensional Minkowski space times a circle of small radius associated with x_5 times an (N-1)-dimensional compact space. The latter K^{N-1} sustains the $SU(3)_c$ and broken $SU(2) \otimes U(1)$ symmetries while providing the quantum numbers Q, L, B, and color for all generations of fundamental fermions.

Recently Dolan and Duff⁶ have considered the spontaneous compactifications of five-dimensional space-time and shown that all symmetries are spontaneously broken save for Poincaré $\otimes U(1)$, signifying a ground state that is metrically $M^4 \times S^1$. The symmetries are described by an infinite-dimensional Kac-Moody hierarchical extension of the Poincaré algebra which incorporates the angular momentum canonical conjugate to x_5 in a manner consistent with the Coleman-Mandula⁷ theorem. Spontaneous breaking of the electroweak symmetry $SU(2) \otimes U(1)$ in the K^{N-1} compact spatial manifold is expected to produce closure conditions on the fermion mass-squared operator at the base of the hierarchy. In the absence of detailed dynamical considerations regarding the symmetry-breaking mechanism, is it possible to formulate physical closure conditions on m^2 ? The correctness of the latter closure conditions would be manifest in accurate mass-squared eigenvalues for all leptons and quarks.

I consider this problem in the present Brief Report. The ground state is assumed to be $M^4 \times S^1 \times K^{N-1}$, and the wave function for a fermion is expressible correspondingly as a direct product,

$$\Psi = \psi(x_1, x_2, x_3, x_4) \phi_{\hat{N}}(x_5/l) \xi(x_6, \dots, x_{N+4}) \quad . \tag{1}$$

In (1), ψ is a Dirac spinor depending on the M^4 coordinates; $\phi_{\hat{N}}$ depends on the S^1 coordinate and is associated with the quantum number *n* for successive generations of leptons and quarks; ξ depends on the compact K^{N-1} coordinates and is an eigenfunction of simultaneously commuting generators for Q, L, B, and color. Let x_5 have the range $-\pi l \leq x_5 \leq \pi l$ with topological identification and C^{∞} smoothness at $x_5 = \pm \pi l$. I make no assumption regarding the magnitude of the constant length l (which may be of the order $l_P \sim 10^{-33}$ cm) but eliminate it by employing $\theta \equiv x_5/l$ as a dimensionless coordinate for S^1 . Thus any physical field variable, and in particular $\phi_{\hat{N}}(\theta)$ in (1), is a periodic function of θ with period 2π . If a set of leptons or quarks is characterized by $\phi_{\hat{N}}(\theta)$'s which all have period $2\pi/\hat{N}$,

$$\phi_{\hat{N}}(\theta + 2\pi \hat{N}^{-1}) \equiv \phi_{\hat{N}}(\theta) , \qquad (2)$$

where \hat{N} is a positive integer, then the set of leptons or quarks is said to have subperiod index \hat{N} .

Concomitant with dynamical symmetry breaking, the components of the fermion wave function (1) satisfy

$$(\partial_{\mu}\partial^{\mu} - m^2)\Psi = 0 , \qquad (3)$$

where the mass-squared operator m^2 acts on $S^1 \times K^{N-1}$. At the base of the Kac-Moody algebra,⁶ the mass-squared operator m^2 must satisfy *closure conditions*, i.e., specified Lie algebraic commutation relations with θ and associated operator variables. As closure conditions on m^2 , I propose that the mass-squared operator depends exclusively on Q and

TABLE I. Solutions to Eqs. (10), (11), and (12) for $\phi_{\hat{N}}(\theta)$ with $n \leq 4$ and $\hat{N} \leq 7$.

<i>n</i> = 4	<i>n</i> = 3	<i>n</i> = 2	<i>n</i> = 1	n = 0	Ñ
sin4 0	sin30	sin20	sinθ		1
cos80	cos60	cos40		1	2
sin120	sin9 0	sin60	sin30		3
cos160	$\cos 12\theta$	cos80		1	4
sin200	sin150	sin100	sin50		5
cos240	$\cos 18\theta$	$\cos 12\theta$		1	6
sin280	sin210	sin140	sin70		7

 $P_{\theta} = -i\partial/\partial\theta$, the angular momentum canonically conjugate to θ

 $m^2 = m^2(Q, P_{\theta}) , \qquad (4)$

while satisfying

 $[P,m^2] = 0 , (5)$

 $i[QP_Q, m^2] = 2m^2 , (6)$

$$[\theta, [m^2, \theta]] = 2m^2 \quad . \tag{7}$$

Here P is the θ -parity operator, $P^{-1}\theta P = -\theta$, $P^{-1}P_{\theta}P = -P_{\theta}$, and the operator P_Q in (6) is canonically conjugate to the charge operator Q, $[Q,P_Q] = i$. Equation (5) states that m^2 is invariant under $\theta \to -\theta$, Eq. (6) states that m^2 is proportional to Q^2 , and Eq. (7) finally implies the functional form [i.e., the uniquely indicated "general integral" to the conditions (5)–(7)]

$$m^2 = m_1^2 Q^2 \cosh(\sqrt{2}P_{\theta})$$
, (8)

in which m_1 is a disposable positive constant. That the mass-squared operator (8) is positive definite follows from the self-adjointness of Q and P_{θ} and the positive character of the hyperbolic cosine power series,

$$\cosh(\sqrt{2}P_{\theta}) \equiv \sum_{k=0}^{\infty} \frac{(2)^k}{(2k)!} P_{\theta}^{2k} \quad . \tag{9}$$

It is assumed that $\phi_{\hat{N}}(\theta)$ is an eigenfunction of P_{θ}^2 ,

$$P_{\theta}^{2}\phi_{\hat{N}} = -\frac{\partial^{2}\phi_{\hat{N}}}{\partial\theta^{2}} = n^{2}\hat{N}^{2}\phi_{\hat{N}} , \qquad (10)$$

where the generation number n = 0, 1, 2, ... for a fixed positive integer value of the subperiod index \hat{N} . Moreover, solutions to (10) are restricted by requiring definite θ parity equal to $(-1)^{\hat{N}}$,

$$P\phi_{\hat{N}}(\theta) \equiv \phi_{\hat{N}}(-\theta) = (-1)^{\hat{N}}\phi_{\hat{N}}(\theta) , \qquad (11)$$

and precluding the \hat{N} -even (positive θ -parity) solutions to (10) for n = 1 by the subsidiary condition

$$\int_0^{2\pi} (\cos \hat{N}\theta) \phi_{\hat{N}}(\theta) \ d\theta = 0 \quad . \tag{12}$$

Then, to within arbitrary multiplicative constants and for $\hat{N} = 1, \ldots, 7$, admissible $\phi_{\hat{N}}(\theta)$ are $\sin(n\hat{N}\theta)$ or $\cos(n\hat{N}\theta)$ subject to (11) and (12), as shown in Table I. Let the subperiod index values for leptons and quarks be prescribed by the formula⁸

$$\hat{N} = 4 + 3|Q + L| \tag{13}$$

or, equivalently,

$$\hat{N} = 7 - 3|Q - B| , \qquad (14)$$

as shown in Table II. Then the successive generations of

TABLE II. Quantum numbers and $\phi_{\hat{N}}(\theta)$ eigenfunctions for leptons and quarks. The eigenfunctions all have the definite θ parity required by (11) with the subperiod index defined by (13) or (14). Notice that $\phi_{\hat{N}} = 1$ corresponds to both e and u and $\phi_{\hat{N}} = \cos 12\theta$ to both τ and c, underscoring the fact that the $\phi_{\hat{N}}(\theta)$ are concomitant with but cannot supplant the fermion quantum numbers carried by ξ in (1).

Q Charge number	L Lepton number	<i>B</i> Baryon number	<i>Ñ</i> Subperiod index			on-quark $\phi_{\hat{N}}(\theta)$ for <i>n</i>	≤4
-1	1	0	4	е 1	μ cos8θ	aucos12 $ heta$	δ cos16θ
$-\frac{1}{3}$	0	$\frac{1}{3}$	5	d sin50	<i>s</i> sin10 0	b sin15θ	h sin20 0
$+\frac{2}{3}$	0	$\frac{1}{3}$	6	и 1	с cos12 0	t cos18θ	<i>8</i> cos24θ
0	1	0	7	ν _e sin7θ	ν _μ sin14θ	$\frac{\nu_{\tau}}{\sin 21\theta}$	ν ₈ sin28θ

BRIEF REPORTS

TABLE III. Masses (units MeV) of leptons and quarks according to the eigenvalue formula $m = m_1 |Q| [\cosh(\sqrt{2nN})]^{1/2}$ with $m_1 = 0.52172$ MeV.

Ñ	n = 0	<i>n</i> = 1	n = 2	<i>n</i> = 3	<i>n</i> = 4
4	<i>e</i> 0.52		μ 105.60	au1786.6	δ 30 228
5		d 4.22	s 144.79	<i>b</i> 4968.1	h 170472
6	<i>u</i> 0.35		с 1191.1	t 82 889	<i>g</i> 5 768 400
7		ν _e 0	$\overset{\nu_{\mu}}{0}$	$ $	$\overset{\nu_{\delta}}{0}$

leptons and quarks are given by the sets

 $\begin{pmatrix} e & d \\ u & v_e \end{pmatrix}, \begin{pmatrix} \mu & s \\ c & v_{\mu} \end{pmatrix}, \begin{pmatrix} \tau & b \\ t & v_{\tau} \end{pmatrix}, \begin{pmatrix} \delta & h \\ g & v_{\delta} \end{pmatrix},$ (15)

n = 0, 1 n = 2 n = 3 n = 4

in which the n = 0, 1 states combine together in the first generation grouping.

From (10) it follows that the $\phi_{\hat{N}}(\theta)$ are eigenfunctions of the mass-squared operator (8), which has the associated eigenvalues

$$m^2 = m_1^2 Q^2 \cosh(\sqrt{2}n\hat{N})$$
 (16)

Table III displays the theoretical lepton and quark masses

$$m = m_1 |Q| [\cosh(\sqrt{2}n\hat{N})]^{1/2}$$

given by (16) with the constant parameter set as $m_1 \equiv 0.52172$ MeV.

As shown in Table III, all of the theoretical masses given by (16) are uniformly consistent with experiment and may indeed be accurate to within a small fraction of a MeV for all leptons and quarks. Observe that the theoretical mass difference between the d and u quarks is given as 3.87 MeV, and the s, c, b masses are all in close accord with well-known production-threshold and quark-model estimates. The most immediate predictions obtained from (16) and displayed in Table III are the Q = -1 lepton δ at 30.23 GeV, the top quark t at 82.89 GeV, and the theoretical mass-zero values for all neutrinos.⁹

The fact that all experimentally established lepton and quark masses are given to high accuracy by (16) with a suitable value for the single constant parameter m_1 provides strong experimental support for the closure conditions (4)-(7). In addition to working out the many details of the model described here, it remains to show how the quantum numbers in Table II emerge from K^{N-1} and require \hat{N} to be given by (13) and (14). Moreover, the conditions (11) and (12) for admissible $\phi_{\hat{N}}(\theta)$ clearly interrelate S^1 and K^{N-1} , and this may signify associated topological properties for the complete N-dimensional compact space. Finally, the "robustness" of the closure conditions (4)-(7) must be demonstrated in the context of an ultraviolet-divergent (4+N)-dimensional theory of gravity coupled to fermions.

- ¹Th. Kaluza, Sitzungsber. preuss. Akad. Wiss. Physik-math. Kl., 966 (1921); O. Klein, Z. Phys. **37**, 895 (1926). That the fifth dimension in the Kaluza-Klein theory should be closed, with fivedimensional space-time topologically equivalent to $M^4 \times S^1$, was originally suggested by A. Einstein and P. Bergmann, Ann. Math. **39**, 683 (1938).
- ²E. Witten, Nucl. Phys. B126, 412 (1981), and works cited therein; G. Chapline and R. Slansky, *ibid.* B209, 461 (1982); A. Salam and J. Strathdee, Ann. Phys. (N.Y.) 141, 316 (1982); P. Freund, Phys. Lett. 120B, 335 (1983); S. Weinberg, *ibid.* 125B, 265 (1983); W. J. Marciano, Phys. Rev. Lett. 52, 489 (1984); P. H. Frampton, H. van Dam, and K. Yamamoto, *ibid.* 54, 1114 (1985), and works cited therein.
- ³Since one compact spatial dimension is associated with the generation quantum number in the present theory, we require $N \ge 8$.
- ⁴Y. S. Wu and A. Zee, J. Math. Phys. 25, 2696 (1984).
- ⁵A. Lichnerowicz, in *Relativity, Groups and Topology,* proceedings of the Summer School of Theoretical Physics, University of Grenoble, Les Houches, 1963, edited by C. DeWitt and B. DeWitt

(Gordon and Breach, New York, 1964), p. 849.

- ⁶L. Dolan and M. J. Duff, Phys. Rev. Lett. 52, 14 (1984).
- ⁷S. Coleman and J. Mandula, Phys. Rev. 159, 1251 (1967).
- ⁸It is clear that there exist compact K^{N-1} 's with torsion (e.g., Ref. 4) and suitably prescribed topology for which the isometry generators Q, L, B satisfy (13) and (14) in a manner consistent with the S^1 conditions (11) and (12).
- ⁹Scale-transformation considerations applied independently to fieldtheory models by K. Tennakone and S. Pakvasa [Phys. Rev. Lett. 27, 757 (1971); Phys. Rev. D 6, 2494 (1972)] and S. Blaha [Phys. Lett. 84B, 116 (1979)] suggest a geometric mass spectrum for the charged leptons, and work by the latter author predicts the δ to have a mass of ~ 30.1 GeV; however, the other quark-lepton mass values shown in Table III are believed to be more uniquely associated with the present theory. Since the total cross section for $e^+ + e^- \rightarrow \delta^+ + \delta^-$ is about 1.2×10^{-35} cm² at the optimum energy of 73 GeV, the δ could be discovered in the present decade.