Possible closure conditions in a Kaluza-Klein compactified $M^4 \times S^1 \times K^{N-1}$ model

Gerald Rosen

Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104 (Received 12 June 1985)

Closure conditions concomitant with dynamical symmetry breaking are proposed for the mass-squared operator m^2 in an $M^4 \times S^1 \times K^{N-1}$ model for spontaneously compactified space-time. From the functional form of $m²$ implied by the closure conditions, one obtains a remarkably accurate mass spectrum for all established leptons and quarks. The next (generation $n = 4$) charged lepton δ is predicted to have a mass of 30.23 GeV, the $(n=3)$ top quark t has a mass of 82.89 GeV, and all neutrinos have a theoretical mass of zero.

Considerable interest has been attached recently to generalized Kaluza-Klein¹ models which offer the possibility of unifying gravity with the other fundamental forces while providing extra small-scale spatial dimensions that carry the symmetries of particle physics.² In the context of spontane ous compactification of $(4 + N)$ -dimensional space-time, the extra N dimensions span a compact manifold of characteristic volume l_P^N where $l_P \sim \sqrt{G} \sim 1.6 \times 10^{-33}$ cm is the Planck length. The gauge symmetries of strong (color) and electroweak interactions are realized as an $SU(3)$ _c \otimes SU(2) \otimes U(1) Killing group of motions on the compact Ndimensional manifold, and this requires³ $N \ge 7$. Leptons and quarks receive their masses (which are very small in magnitude compared to the reciprocal of the Planck length) by a dynamical mechanism that breaks the electroweak $SU(2) \otimes U(1)$, perhaps via a Higgs field with a nonzero vacuum expectation value.

If one seeks zero-mass modes for the Dirac operator on the N -dimensional compact space, then a non-Riemannian space (perhaps a manifold with torsion)⁴ is required to circumvent Lichnerowicz's theorem' (which rigorously precludes zero-mass fermions in the case of a compact homogeneous space with Riemannian geometry). A rather complicated topology for the internal space is also required to accommodate each lepton and quark as a distinct individual particle with the correct fermion quantum numbers. On the other hand, if one of the N compact dimensions, say x_5 , is assumed to be canonically conjugate to the generation quantum number ⁿ or some integral multiple thereof, the task of accommodating all leptons and quarks is greatly simplified, for the $n \ge 2$ fermions can be viewed as x_5 "angular" momentum" excitations of the basic e, d, u, and v_e . This picture leads one to consider a ground-state manifold $M^4 \times S^1 \times K^{N-1}$, i.e., four-dimensional Minkowski space times a circle of small radius associated with x_5 times an $(N-1)$ -dimensional compact space. The latter K^{N-1} sustains the SU(3)_c and broken SU(2) \otimes U(1) symmetries while providing the quantum numbers Q , L , B , and color for all generations of fundamental ferrnions.

Recently Dolan and Duff⁶ have considered the spontaneous cornpactifications of five-dimensional space-time and shown that all symmetries are spontaneously broken save for Poincaré \otimes U(1), signifying a ground state that is metrically $M^4 \times S^1$. The symmetries are described by an infinite-dimensional Kac-Moody hierarchical extension of the Poincaré algebra which incorporates the angular momentum canonical conjugate to $x₅$ in a manner consistent with the Coleman-Mandula' theorem. Spontaneous breaking of the electroweak symmetry $SU(2) \otimes U(1)$ in the K^{N-1} compact spatial manifold is expected to produce closure conditions on the fermion mass-squared operator at the base of the hierarchy. In the absence of detailed dynamical considerations regarding the symmetry-breaking mechanism, is it possible to formulate physical closure conditions on m^2 ? The correctness of the latter closure conditions would be manifest in accurate mass-squared eigenvalues for all leptons and quarks.

I consider this problem in the present Brief Report. The ground state is assumed to be $M^4 \times S^1 \times K^{N-1}$, and the wave function for a fermion is expressible correspondingly as a direct product,

$$
\Psi = \psi(x_1, x_2, x_3, x_4) \phi_{\hat{N}}(x_5/I) \xi(x_6, \ldots, x_{N+4}) \quad . \tag{1}
$$

In (1), ψ is a Dirac spinor depending on the M^4 coordinates; ϕ_N depends on the S¹ coordinate and is associated with the quantum number n for successive generations of leptons and quarks; ξ depends on the compact K^{N-1} coordinates and is an eigenfunction of simultaneously commuting generators for Q, L, B, and color. Let x_5 have the range $-\pi l \le x_5 \le \pi l$ with topological identification and C^{∞} smoothness at $x_5 = \pm \pi l$. I make no assumption regarding the magnitude of the constant length l (which may be of the order $l_p \sim 10^{-33}$ cm) but eliminate it by employing $\theta = x_s/l$ as a dimensionless coordinate for S^1 . Thus any physical field variable, and in particular $\phi_{\hat{N}}(\theta)$ in (1), is a periodic function of θ with period 2π . If a set of leptons or quarks is characterized by $\phi_{\hat{N}}(\theta)$'s which all have period $2\pi/\hat{N}$,

$$
\phi_{\hat{N}}(\theta + 2\pi \hat{N}^{-1}) \equiv \phi_{\hat{N}}(\theta) , \qquad (2)
$$

where \hat{N} is a positive integer, then the set of leptons or quarks is said to have *subperiod index* N .

Concomitant with dynamical symmetry breaking, the components of the fermion wave function (1) satisfy

$$
(\partial_{\mu}\partial^{\mu} - m^2)\Psi = 0 \tag{3}
$$

where the mass-squared operator m^2 acts on $S^1 \times K^{N-1}$. At the base of the Kac-Moody algebra,⁶ the mass-square operator $m²$ must satisfy closure conditions, i.e., specified Lie algebraic commutation relations with θ and associated operator variables. As closure conditions on $m²$, I propose that the mass-squared operator depends exclusively on Q and

TABLE I. Solutions to Eqs. (10), (11), and (12) for $\phi_{\hat{N}}(\theta)$ with $n \leq 4$ and $\hat{N} \leq 7$.

$\pmb{\hat{N}}$	$n = 0$	$n=1$	$n=2$	$n = 3$	$n = 4$
-1	\bullet . 	$sin\theta$	$sin2\theta$	$sin3\theta$	$sin4\theta$
$\overline{2}$		$\alpha = \alpha = \alpha$	$cos4\theta$	$cos6\theta$	$cos8\theta$
$\overline{\mathbf{3}}$	\cdots	$sin3\theta$	$sin6\theta$	$sin9\theta$	$sin 12\theta$
4		α , and α	$cos8\theta$	$\cos 12\theta$	$\cos 16\theta$
5	\sim 100 \sim 100 \sim	$sin5\theta$	$sin 10\theta$	$sin 15\theta$	$sin20\theta$
6		$\alpha = \alpha = \alpha$	$\cos 12\theta$	$\cos 18\theta$	$cos24\theta$
7	\cdots	$sin7\theta$	$sin 14\theta$	$sin21\theta$	$sin28\theta$

 $P_{\theta} = -i\partial/\partial\theta$, the angular momentum canonically conjugate to θ

 $m^2 = m^2(Q, P_{\rm e})$, (4)

while satisfying

 $[P,m^2]=0$, (5)

 $i [QP_0, m^2] = 2m^2$, (6)

$$
[\theta, [m^2, \theta]] = 2m^2 \tag{7}
$$

Here P is the θ -parity operator, $P^{-1}\theta P = -\theta$, $P^{-1}P_{\theta}P$ $=-P_{\theta}$, and the operator P_Q in (6) is canonically conjugate to the charge operator Q, $[Q, P_Q] = i$. Equation (5) states that m^2 is invariant under $\theta \rightarrow -\theta$, Eq. (6) states that m^2 is proportional to Q^2 , and Eq. (7) finally implies the functional form [i.e., the uniquely indicated "general integral" to the conditions $(5)-(7)$]

$$
m^2 = m_1^2 Q^2 \cosh(\sqrt{2}P_\theta) \tag{8}
$$

in which m_1 is a disposable positive constant. That the mass-squared operator (8) is positive definite follows from the self-adjointness of Q and P_{θ} and the positive character of the hyperbolic cosine power series,

$$
\cosh(\sqrt{2}P_{\theta}) = \sum_{k=0}^{\infty} \frac{(2)^k}{(2k)!} P_{\theta}^{2k} . \tag{9}
$$

It is assumed that $\phi_{\hat{N}}(\theta)$ is an eigenfunction of P_{θ}^2 ,

$$
P_{\theta}^2 \phi_{\hat{N}} = -\frac{\partial^2 \phi_{\hat{N}}}{\partial \theta^2} = n^2 \hat{N}^2 \phi_{\hat{N}} \,, \tag{10}
$$

where the generation number $n=0, 1, 2, \ldots$ for a fixed positive integer value of the subperiod index \hat{N} . Moreover, solutions to (10) are restricted by requiring definite θ parity equal to $(-1)^N$,

$$
P\phi_{\hat{N}}(\theta) \equiv \phi_{\hat{N}}(-\theta) = (-1)^{\hat{N}}\phi_{\hat{N}}(\theta) , \qquad (11)
$$

and precluding the \hat{N} -even (positive θ -parity) solutions to (10) for $n = 1$ by the subsidiary condition

$$
\int_0^{2\pi} (\cos \hat{N}\theta) \phi_{\hat{N}}(\theta) d\theta = 0 \quad . \tag{12}
$$

Then, to within arbitrary multiplicative constants and for $\hat{N} = 1, \ldots, 7$, admissible $\phi_{\hat{N}}(\theta)$ are sin($n\hat{N}\theta$) or cos($n\hat{N}\theta$) subject to (11) and (12), as shown in Table I. Let the subperiod index values for leptons and quarks be prescribed by the formula'

$$
\hat{N} = 4 + 3|Q + L| \tag{13}
$$

or, equivalently,

$$
\hat{N} = 7 - 3|Q - B| \t\t(14)
$$

as shown in Table II. Then the successive generations of

TABLE II. Quantum numbers and $\phi_{\hat{N}}(\theta)$ eigenfunctions for leptons and quarks. The eigenfunctions all have the definite θ parity required by (11) with the subperiod index defined by (13) or (14). Notice that $\phi_{\hat{N}}=1$ corresponds to both e and u and $\phi_{\hat{N}}=\cosh 2\theta$ to both τ and c, underscoring the fact that the $\phi_{\hat{N}}(\theta)$ are concomitant with but cannot supplant the fermion quantum numbers carried by ξ in (1).

Q Charge number	Lepton number	B Baryon number	Ñ Subperiod index	Lepton-quark eigenfunctions $\phi_{\hat{N}}(\theta)$ for $n \leq 4$			
		0	4	e	μ $cos8\theta$	$\cos 12\theta$	$\cos 16\theta$
	0		5	d $sin5\theta$	s $sin 10\theta$	b $sin 15\theta$	h $sin20\theta$
	0		6	u	c $\cos 12\theta$	$\cos 18\theta$	8 $cos24\theta$
Ω		0		v_{ρ} $sin7\theta$	v_{μ} $sin 14\theta$	v_{τ} $sin21\theta$	v_{δ} $sin28\theta$

BRIEF REPORTS 33

TABLE III. Masses (units MeV) of leptons and quarks according to the eigenvalue formula $m = m_1|Q|[\cosh(\sqrt{2}n\hat{N})]^{1/2}$ with $m_1 = 0.52172$ MeV.

$\pmb{\hat{N}}$	$n = 0$	$n-1$	$n = 2$	$n = 3$	$n = 4$
$\overline{\mathbf{4}}$	e 0.52	\cdots	μ 105.60	1786.6	δ 30228
5	\sim \sim \sim	d 4.22	s 144.79	b 4968.1	h 170472
6	u 0.35	\bullet , \bullet , \bullet	\mathcal{C}_{0} 1191.1	82889	g 5768400
7	$\mathbf{r}=\mathbf{r}+\mathbf{r}$	v_e 0	v_{μ} 0	v_{τ} 0	v_{δ} 0

leptons and quarks are given by the sets

$$
\begin{pmatrix} e & d \\ u & v_e \end{pmatrix}, \begin{pmatrix} \mu & s \\ c & v_\mu \end{pmatrix}, \begin{pmatrix} \tau & b \\ t & v_\tau \end{pmatrix}, \begin{pmatrix} \delta & h \\ g & v_\delta \end{pmatrix}, \qquad (15)
$$

 $n = 0, 1$ $n = 2$ $n = 3$ $n=4$

in which the $n=0, 1$ states combine together in the first generation grouping.

From (10) it follows that the $\phi_{\hat{N}}(\theta)$ are eigenfunctions of the mass-squared operator (S), which has the associated eigenvalues

$$
m^2 = m_1^2 Q^2 \cosh(\sqrt{2}n\hat{N}) \quad . \tag{16}
$$

Table III displays the theoretical lepton and quark masses
 $m = m_1 |Q| [\cosh(\sqrt{2}n\hat{N})]^{1/2}$

$$
m = m_1 |Q| [\cosh(\sqrt{2}n\hat{N})]^{1/2}
$$

given by (16) with the constant parameter set as $m_1 = 0.52172$ MeV.

As shown in Table III, all of the theoretical masses given by (16) are uniformly consistent with experiment and may indeed be accurate to within a small fraction of a MeV for all leptons and quarks. Observe that the theoretical mass difference between the d and u quarks is given as 3.87 MeV, and the s, c , b masses are all in close accord with well-known production-threshold and quark-model estimates. The most immediate predictions obtained from (16) and displayed in Table III are the $Q = -1$ lepton δ at 30.23 GeV, the top quark t at 82.89 GeV, and the theoretical mass-zero values for all neutrinos.⁹

The fact that all experimentally established lepton and quark masses are given to high accuracy by (16) with a suitable value for the single constant parameter m_1 provides strong experimental support for the closure conditions (4) - (7) . In addition to working out the many details of the model described here, it remains to show how the quantum
numbers in Table II emerge from K^{N-1} and require \hat{N} to be given by (13) and (14). Moreover, the conditions (11) and (12) for admissible $\phi_{\hat{N}}(\theta)$ clearly interrelate S^1 and K^{N-1} , and this may signify associated topological properties for the complete %-dimensional compact space. Finally, the "robustness" of the closure conditions $(4)-(7)$ must be demonstrated in the context of an ultraviolet-divergent $(4+N)$ -dimensional theory of gravity coupled to fermions.

- ¹Th. Kaluza, Sitzungsber. preuss. Akad. Wiss. Physik-math. Kl., 966 (1921); O. Klein, Z. Phys. 37, 895 (1926}. That the fifth dimension in the Kaluza-Klein theory should be closed, with fivedimensional space-time topologically equivalent to $M^4 \times S^1$, was originally suggested by A. Einstein and P. Sergmann, Ann. Math. 39, 683 (1938).
- 2E. Witten, Nucl. Phys. B126, 412 (1981), and works cited therein; G. Chapline and R. Slansky, *ibid*. **B209**, 461 (1982); A. Salam and J. Strathdee, Ann. Phys. (N.Y.) 141, 316 (1982); P. Freund, Phys. Lett. 120B, 335 (1983); S. Weinberg, ibid. 125B, 265. (1983); W. J. Marciano, Phys. Rev. Lett. \$2, 489 (1984); P. H. Frampton, H. van Dam, and K. Yamamoto, ibid. 54, 1114 (1985), and works cited therein.
- ³Since one compact spatial dimension is associated with the generation quantum number in the present theory, we require $N \ge 8$.
- 4Y. S. Wu and A. Zee, J. Math. Phys. 25, 2696 (1984).
- ⁵A. Lichnerowicz, in *Relativity, Groups and Topology*, proceedings of the Summer School of Theoretical Physics, University of Grenoble, Les Houches, 1963, edited by C. DeWitt and B. DeWitt

(Gordon and Breach, New York, 1964), p. 849.

- &L. Dolan and M. J. Duff, Phys. Rev. Lett. 52, 14 (1984).
- 7S. Coleman and J. Mandula, Phys. Rev. 159, 1251 (1967).
- ⁸It is clear that there exist compact K^{N-1} 's with torsion (e.g., Ref. 4} and suitably prescribed topology for which the isometry generators Q , L , B satisfy (13) and (14) in a manner consistent with the $S¹$ conditions (11) and (12).
- 9Scale-transformation considerations applied independently to fieldtheory models by K. Tennakone and S. Pakvasa [Phys. Rev. Lett. 27, 757 (1971); Phys. Rev. D 6, 2494 (1972)] and S. Blahs [Phys. Lett. &4B, 116 (1979)] suggest a geometric mass spectrum for the charged leptons, and work by the latter author predicts the δ to have a mass of \sim 30.1 GeV; however, the other quark-lepton mass values shown in Table III are believed to be more uniquely associated with the present theory. Since the total cross section for $e^+ + e^- \rightarrow \delta^+ + \delta^-$ is about 1.2×10^{-35} cm² at the optimum energy of 73 GeV, the δ could be discovered in the present decade.