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Problems relating to the Lorentz boost in the mean-field approach are investigated. %'e consider
mainly the case in which the mean-field potential is time-independent. Fundamental assumptions
and formulas are given. It is stressed that the Lorentz invariance is in principle recovered by taking
account of the residual interaction, and it is discussed how to construct a moving hadron state con-
sisting of confined quarks and/or antiquarks. A brief summary of matrix elements for quark opera-
tors sandwiched by one-hadron states is given, which provides us with an intelligible example to see
the relationship of the present approach to other ones.

I. INTRODUCTION

There have appeared a lot of papers on the covariant
description of the relation between the approximate quark
modes in hadrons at rest and those in moving had-
rons. ' '6 Such an approximation is the mean-field ap-
proximation or the Hartree-Fock-type potential ap-
proach, ' ' ' ' which has succeeded in describing vari-
ous static and sometimes dynamical properties of hadrons.
If one wants, however, to construct in the mean-field
(MFl approximation a realistic hadron which consists of
"confined" qu~~ks, the description depends in some way
on R, the "center" of the MF potential of a hadron. For
example, in the actual calculations based on the MIT bag
model, ' the approximation of "spherical cavity" with its
center at the origin of coordinate has been adopted. When
the MF potential is time independent, it is not straightfor-
ward to construct in a Lorentz-covariant way a confined
quark system, in which quarks do not spread over the
whole three-dimensional space.

The purpose of the present paper is to investigate prob-
lems relating to the Lorentz boost of the MF approxima-
tion. Vfe consider mainly the case in which the MF po-
tential is time independent, emphasize the essential role of
the residual interaction to restore the Lorentz covariance,
and explain how to construct a state vector of moving
hadrons. In order to clarify the problem, the present pa-
per includes a pedagogical part and a brief explanation of
some explicit forms of matrix elements for quark opera-

tors sandwiched by one-hadron states. All of them will
serve to understand the meaning and limitation of the MF
approximation, and also provide us with an intelligible ex-
ample to see the relationship of our formalism to other
ones.

Some parts of our approach can be applied also to a
wider region of subjects, such as the dynamical processes
of phase transitions, pair creations on phase boundaries,
and so on, 2o because in the mean-field approximation par-
ticle pictures associated with different mean-field poten-
tials are related to each other in terms of the "Bogoliubov
transformation. " '

In Sec. II three typical versions of the MF approxima-
tion are summarized, and we make an assumption which
plays a basic role in this approximation. In Sec. III the
MF approximation for hadron systems is investigated,
where we explain the role of the residual interaction to re-
cover the Lorentz covariance in the case of the time-
independent MF potential. Next we explain how to con-
struct the state vector describing a hadron at rest and then
a moving one. Approximate formulas for Lorentz boost
of quark operators are given. A concrete example of ma-
trix elements for quark operators between one-hadron
states is given. In the appendixes, mathematical details of
related problems are given.

After we obtain the basic tools of calculating concrete
matrix elements of physical operators between moving
hadron states, it becomes possible to explain the meaning
of the various approaches proposed,
which is the task of a subsequent paper.
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II. GENERALIZED MEAN-FIELD APPROXIMATION

L(4;@i,@2, . . . ) . (2.1)

Define the generalized mean fiel-d Lagrangian LMF(4)
for a fixed state S:

LMF(4) =Li„„(4)—4(x) Vs(x)4(x) . (2.2)

Here we have assumed that there exists a Lagrangian (2.2)
for a fixed state S with a c-number potential Vs(x), and
the residual part of I. [(2.1)]

Let us consider here our starting Lagrangian I. which
depends on matter fields 4 under consideration and also
on other fields @i,4z, . . . ..

under consideration. These quantities should be self-
consistently determined, and become type (ii) under cer-
tain approximations. For more specialized systems with
the parity and three-space rotation invariances, we have

m (x)=m ( ~x~ ), mo(x)=mv( [x~ ), (2.10)

»I other types of m' '(x)'s being equal to zero. Such a
case has been considered by Kugo, Tanaka, one of the
present authors (M.B.) and co-workers ' there are
several examples of this type, e.g. , the cavity approxima-
tion of the bag model, ' ' the potential model, ' and so on.
Friedberg and Lee' proposed the model Lagrangian for
the nucleon as a bound-quark system by introducing the
scalar field o(x):

L,~=L(e;ei,e2, . . . )—LMF(e) (2.3)

(ii) Vs(x) = V(x), independent of t,
(iii) Vs(x) = V(r), independent of x .

(2.4b)

(2.4c)

Several examples described in the following would make
our discussion understandable.

In the Nambu —Jona-Lasinio —type model, the La-
grangian is expressed in terms of spinor fields P and f
with four-Fermi interaction terms such as

(2.5)

For the case where the state S is the vacuum, under the
condition of a sufficiently strong coupling constant,

g &g„we have as an example of type (i)

L MF(i}' 4) = —4(&+mW (2.6)

with

m = —2g(ij'i(x)g(x))o

= —2g(g(0)g(0) )o ', (2.7)

the second equality is guaranteed by the translational in-
variance of the Lagrangian itself and the vacuum.

When we proceed further to composite systems of Fer-
mi particles, we have in general

L MF (x)= P(x )[Q+m (x—)+m (x )i y 5

+ m„(x)iy"+m„"(x)iysy"]P(x),

never produces any bilinear terms of 4(x) and 4(x) in
the state S; that is, the c-number generalized mean-field
potential Vs(x) is determined in a self-consistent way.
Although this potential depends generally on the space x
and time t, we often encounter the cases where a system
under consideration can be described approximately in
terms of Vs(x) with a simpler space-time dependence:

(i) Vs(x)=const for all space-time regions, (2.4a)

For the state with no nucleon, (0 )o is determined by the
minimum of the potential V(rr),

V'(cr)=0 for ir=a'o=&o'&o

and we have

LM'F (4,4) = —4(&+grro)f .

(2.12)

(2.13)

L MF(4 4)= 4[&+u(»—]P (2.14)

where u(x) =g (N
~

o(x)
~

N ) is determined by solving the
self-consistent coupled equation

[Q+u (x)]i}'i(x)=0,
1 5V(u (x)/g )

gz 5u(x)

with p(x)=—(&
~
y(x)q(x)

~

&).
Our final example2 is the model Lagrangian depending

on the Higgs field P(x) which plays an important role in
spontaneous breakdown of gauge symmetry:

L(P)= Bpf di'P V(Q—,$ )— (2.16)

(2.15b)

with, e.g.,

(2.17)

Here, let us consider the expanding hot universe with tem-
perature T. When T is high enough, the vacuum of the
universe is realized at the point / =0, and as the tempera-
ture goes down to some critical value T„ the local
minimum of the potential V appears and a phase transi-
tion occurs. Then, we divide P(x) into two parts as

P(x)=go(t)+P(x, t) . (2.18)

Here the mean field Po(t) is determined by the equation of
motion

where
(2.8)

~ ~ av
4'o(r)+3

R
0o=

~ 0o (2.19)

m {x)=—2g(S
~
p(x)g(x) ~S), «c; (2.9)

in which an expanding universe is described in terms of
the Robertson-%'alker metric

the expectation values are taken between composite states ds =dt R(t) dx— (2.19')
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and we have for the quantum fluctuating part (()(x,t)

LMp(Q)= d—P cPf $—m [$0(t)]P . (2.20)

Now, in all the models mentioned above, in order that
the MF approximate Lagrangians are workable for
describing the physical systems under consideration, we
take the following assumption.

Assumption I. The Heisenberg operator of matter fields
under consideration, 4(x), can always be expanded in
terms of a complete set of functions IP„(x)I which are
eigensolutions of the equation of motion derived from
LMp (22):

III. MF APPROXIMATION FOR HADRON
SYSTEMS, AND THE ROLE OF

RESIDUAL INTERACTION

Let us confine ourselves to considering a composite
quark system confined in a hadron. In the present status
of understanding the confinement mechanism, various
effective-Lagrangian approaches are of methodological
significance. In the following we make the MF approxi-
mation of type (ii), and see how it becomes essential to
take into account the residual interaction in order to re-
cover finally the Lorentz invariance of the theory.

4(x)= g a„P„(x) . (2.21)
A. Time-independent MF approximation

When one hadron is in the state at rest, we can imagine
that quarks in the hadron are well described by using an
MF potential of type (ii). From this naive consideration,
we are led to the following definition.

Definition I. Define the time-independent MF potential

This assumption makes it easy to get the relation be-
tween the particle modes of different mean fields, which
is generally expressed in terms of the Bogoliubov transfor-
mation. "

Some important comments are in order. First, the set
of eigenfunctions of LMp, IP„(x)], does not always be-
long to the same Hilbert space as that of L [(2.1)] itself.
One example is the case of type (i) in which we have an
infinite number of mutually orthogonal Hilbert spaces
corresponding to different values of constant mean fields.
Another one is seen in the MIT bag model'9, where the
potential V(x) = oo outside a domain lql, where the wave

(R))
functions P„' (x)'s can never be expanded in terms of

(R2)
P, ' (x)'s if Ri flR2 ——0. Still in these cases the Bogo-
liubov transformation itself can be defined in a usual
manner, although special care should be paid in treating
the Bogoliubov transformation. ' Assumption I is valid
in so far as the space-time volume (for the former exam-
ple) or the potential (for the latter one) is kept finite; thus
it is probable that the Heisenberg field is expanded in
terms of [$„(x}Iat least approximately. Second, it some-
times occurs that the MF Lagrangian LMp is not invari-
ant under the whole symmetry group 6 of the starting
Lagrangian L. This situation is obviously seen from the
cases of type (ii) or (iii); the Lorentz invariance of L is
violated in the level of LMp. Even in the simple
Nambu —Jona-Lasinio —type MF Lagrangian (2.5), for ex-
ample, the chiral symmetry of the original Lagrangian is
well known to be violated when an explicit mass term
Pm/ is introduced as in L Mp [(2.6)]. Such a situation is
naturally understood if one notes that L Mp is determined
for a certain state S which is not always invariant under
transformations belonging to the symmetry groups of the
starting Lagrangian. One of the most important tasks to
be considered in the MF approach is to find the way to re-
cover the underlying symmetry in describing physical
states and physical observables. Of course, the required
symmetry can be in princip/e restored by taking account
of whole effects of L, . But in practice we are sometimes
forced to manage the problem in an approximate way
through recovering the invariance at least formally. One
such method usuldly adopted in nuclear physics is the
generator coordinate method. ' ' %'e mill explain the
above-mentioned method for special hadronic systems in
case of the MF potential of the type (ii} in the following
sections.

V(x, t)=V' '(x) . (3.1)

The potential V' '(x) is the MF potential at center R. (In
Ref. 9 the phrase "rest frame" is used in connection with
the time-independent potential. ) For the sake of practical
use, it is often very convenient to consider the case where
the following assumption is approximately valid.

Assumption II. The MF potential V' '(x) is written as
u(

~
x—R~ ), which is spherically symmetric, and the

eigenfunctions of equation

[9+u(
~
x—R

~
)]g(x)=0 (3.2)

for the quark field g(x) are characterized by a set of
relevant quantum numbers including the total angular
momentum, n =(E„;jk, m, . . . ) (Refs. 29 and 13).

The approximate quark field satisfying (3.2) is denoted
by g' '(x} and expanded in terms of eigenfunctions ( U,
V„) as

'(x}=g [a„(R)U„(x—R)e

+b„(R)tV„(x—R)e " '], (3.3)

which is just what was introduced in Ref. 13.

B. Time dependence of quark operators

First notice that, in accordance with our assumption I,
the Heisenberg field P(x) appearing in the Lorentz-
invariant Lagrangian I. can be expressed as

P(x}=g [a„(R;xo)U„(x—R)e

+b„(R;xo) V„(x—R)e " '] (3.4)

with the coefficient operators a„(R;xo} and b„(R;xo)
vrhich depend on time xo due to the residual interaction
L,~, while the approximate mean field f'R'(x) in (3.3) is
further specified with a time parameter Ro besides R as
follows:
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(t' '(x)= g [a„(R)U„(x—R)e

+b„(R) V„(x—R)e " '] (3.5)

with (R)=(R,Ro). This specification means that we take
into account the boundary condition in such a way that
P'"'(x) coincides with the Heisenberg field g(x) given by
(3.4) at xp ——Rp, i.e., [P&,g(x)] =i tP(x),

ax~
(3.14)

C. State vectors of composite system

Next we will give formal expressions of the hadron
state vector with definite values of the four-momentum
(P„). First note the familiar displacement character of
the operators ( P„),

P(R)(x)=g(x) at xp=Rp,

or equivalently

a„(R}=a„(R;xo=Ro)

(3.6) from which we have for arbitrary displacement
(e~)=(e,ep)

r

b.(R)=b.(R'xo=Ro) .
(3.7) where

D(e) =exp( iP&e)"—) . (3.16)

r

(R)
)

'=U (xo) 'b (R)
'U (xo) (3.9)

Here, U'"'(xp) is the unitary operator satisfying the equa-
tion

d U'"'(xp )
i = —H, (x )U'"'(x )

GXO
(3.10a)

[see Appendix A, Eq. (A7)] with the boundary condition

U'"'(x, =R, }=I, (3.10b)

where H, (xp) is the residual interaction Hamiltonian, or

H,~(xo) =P() HMp(xp), —

HMp(x() ) = f„de (R()x)

(3.1 la)

X [ iu 8+—U(x R)P]g—(R)(x):

(3.11b)

where Po is the total Hamiltonian. Note that the time
development of P(x) is determined by Pp, and that of
(I}' '(x) is controlled by HMp(Rp), i.e.,

It will be proved that properties of the operators P(")(x)
and [a~(R), b„(R)j are useful in the following considera-
tion.

The field f(x) at an arbitrary xp is related to )j)(R)(x) as

y(x) =U"'(x )y(")(x)U(R)(x )-' (3.8)

or

~
Hg, R,Ro}=e ' '

~

Hg', O,Ro),
(3.17) is written formally as

(3.20}

iHq)=Mq(2m) 5(P) f dR()e " iH~, O,Ro),
(3.21)

which means that
~
H„) in (3.17) can be regarded as a

hadron state at rest. Note that we have implicitly as-
sumed that

Now according to the standard generator-coordinate
method, ' ' we construct the following hadron state
which can be identified as the state at rest:

~Hz)=~& f dRdRpe " '~H„;R} (3.17)

with some normalization factor M„, where
~
Hz', R ) is

defined with the use of appropriate quark configurations
Hz(at, bt) by

i H„;R ) =Hg(a(R), b(R)t)
i
h(R) ); (3.18)

the hadronic vacuum
~

h (R) ) is defined by

(),(R)
~
h(R) ) =b (R)

~

h (R) )

=0 for any n, m . (3.19)
a„ in (3.17) is a parameter, the meaning of which is to be
explained later in this subsection. Note that in the MF
approximation each (anti) quark in (3.18) behaves as an
independent particle, and the configuration of the hadron-
ic state (3.18}is so arranged that it is a linear combination
of the same power of polynomials of at s andlor bt s
(concrete examples are found in Refs. 12 and 13). By us-

1ng

DMp(xp, Rp) —=exp[iHMp(Rp)(xp —Ro)] . (3.12b)
D(e,o)

~

h (R) & =
~
h (R+e,Ro) & . (3.22)

From (3.12a) we obtain

&,(R) (E„(x, R,)—-
b„(R)

a„(R)
=DMp(x(), R()) b (R) 'DMp(xpyRo) . (3.13)

Details are given in Appendix A.

Under this condition, we can prove

D(E)
~
h(R) }=e "

~

h (R +E') }, (3.23)

where E), is equal to Po, defined by (A16) in Appendix A.
The parameter a„ in (3.17) is determined in such a way

that the relevant hadron H„described by the state (3.17)
has the collective energy caused by the residual interac-
tion, which gives rise to mass correction in the MF ap-
proximation. By using (3.15) and (3.23), we obtain
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D(e) ~H„)=M„ f dRdRpe " ' exp i g E„;+Ep, ep ~Hq(R+e))

T

exp i g E +.Ea +a„ep
i GH~

(3.24)

which indicates that the state
~
H„) can be regarded as a

true eigenstate of the total four momenta P„'s with eigen-
values

(Pap}= &m~= g E~+Es+&~
i 60~

(3.25}

I

In other words, making use of the exact operators a„(R)'s
and b„(R)'s at xp ——Rp, we can construct the hadron state
at rest,

~
Hq ) (3.17), with the proper eigenvalue of the to-

tal momenta, when az is so determined as to reproduce
the correct relation (3.25}.

The hadron states in the MF approximation,
~
Hz )MF

are obtained by adopting the Ro-independent operators
ja (R),b„(R)j, which amounts to setting
ja~(R,Rp ——0)—=a~(R), b„(R,Rp ——0)=—b„(R)j, and to
neglecting the effect due to H~. Here H~(Rp) is equal
to H~(Rp) minus H'(Rp) [see (815) in Appendix 8];
H'(Rp ) is defined so as to satisfy

H'(Rp)
i
Ii(R)) =Eg 'i h(R))

[H (Rp)~am(R}]=[H (Rp)~be(R)]

=0 for any (m, n) .

~
Hg )MF is defined by

~Hq)MF ——N~ J dRHq{aR)t, b(R)t) ~h(R)) .

(3.26}

(3.27)

g Es+EI'"=m~'
i EH~

(3.29}

[see (819) in Appendix 8], which can be regarded as an
approximate mass of the hadron Hz in the zeroth order
with respect to H, .

The higher-order corrections due to 0',~ are in princi-
ple obtained as explained in Appendix B by taking ac-
count of the detailed structure of each term of the total
Hamiltonian Pp and also of the hadronic vacuum. It is,
however, hardly possible to see those detailed structures,
and we have to treat a„ in (3.17}as a phenomenologically
adjustable parameter since we have little knowledge of the
residual interaction. In the variational method, a& is tak-
en so as to give the minimal energy-expectation value.

This state has the momentum eigenvalue p=O under the
condition that

~

h (R) ) satisfies (3.22). Also, as explained
in Appendix B, the state

i Hg,'R):—Hg (a(R)t, b(R)t)
i
h (R) ) (3.28)

has the eigenvalue of HMF(Rp ——0)+H'(Rp ——0) which is
equal to

I p»~ &=&~ J d«"" IHg, R& . (3.32)

A summary of relevant formulas is given in Appendix C.

D. I-orentz boost of quark operators

%%en we calculate various types of matrix elements of
quark operators, such as

jz(x) =ig(x)yzf(x),

HI(x) =f(x)Op/(x)g(x)O~Q(x),

etc., between states (H„;q
~

and
~

Hz', p), it is necessary
to obtain the Lorentz boost of quark operators.

With the Lorentz-boosting operator U(L), which corre-
sponds to the Lorentz transformation x„'=L„"x„,the
operator P(x) transforms as

P'(x') =U(L) 'f(x') U(L) =A(L)g(x),

where

(3.33a)

A(L) yqA(L) =Lq "y~ A(L) =ygA(L) 'y4 .

(3.33b}

In general, the generators of Lorentz transformation are
formally expressed in terms of the energy-momentum ten-
sors T„„'s which depend on the whole Lagrangian. %e
have introduced the MF Lagrangian LMF of type (ii)
which contains the potential V~ '(x) with a center R and
without a special manipulation is not Lorentz covariant;
then the residual interaction is needed to recover the
Lorentz covariance. %'e show in Appendix B how the co-
variance can be restored by taking into account the residu-
al interaction.

In the lowest order of the MF approximation, we can
express explicitly the boosted quark operators
U(v)ja„(R} or b (R}JU(v) ' in terms of ja~(R)'s,

Throughout the following considerations, therefore, we
assume that

~
Hz )MF —=

~
Hz, p=O), (3.27), describes ap-

proximately well the hadron state at rest (p=O) with its
mass Nlg,' 1.e.,

(P,Pp)
~
Hq, p=O) =(O,mz ' mq)

~
Hq ,p=O') .(3.30)

Then we can construct the momentum eigenstate

~
H„;p) which satisfies approximately the on-shell rela-

tion by Lorentz boosting U(v~ ):

H„;p) = U(vz)
I
H„;p=O) (3.31)

with the energy of this state P -p{p +i' 'p)2' and
vz ——p/pp. From (3.30) and (3.31},we can derive a formu-
la' which relates the state (3.31) to the three-momentum
eigenstate which has been adopted in the MF ap-
proach' ' and used in various calculations ' '6
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A(L(v))=—A(v)=exp[wv a/(2u)], (3.34)

b„(R)'s I by using (3.33a) and assumption I; here,

U(v) = U(L(v) ). Let us now describe it in the following.
The concrete form of A(L (v)) in (3.33a) is expressed as

If the H,' (Ro ——0) part in Po is neglected, we obtain from
(3.15) and (3.13)

a (R,yu)e =D (yo)a (R)D(yo)

with a =i y&y and tanh w =u/c; w is the Lorentz-rotation

angle of the boost U(v):

=DMF{y.)~.«}DMF{y.)-'

=a (R)e (3.36}

([L (v)x] )=(xj,x~~coshw +xosinhw,

x~~sinhw+xocoshw) . (3.35)

where DMF(yo):—exp[iHMF(AO ——0)yo]; the sign =' means
the equality when H', is neglected. From (3.33a), we
find for x~ =L~ xi

«v}a.{R.xo)U{v) e " = g f dx U. (x—R) A(v) 'U (x' —R)e 'a (R,x,')

+ g f dxU„{x—R) A(v) 'V (x' R)—e b-(R,xo)t, (3.37a)

U(v)b„-(R,xo)tU(v) 'e " = $ f dx V„-(x—R)tA(v) 'U (x' —R)e a (R,xo)

+ g f dx V„-(x—R) A(v) 'V-(x' —R)e b-(R,xo) (3.37b)

By applying the approximation (3.36) to the right- (RHS) as well as left-hand sides of (3.37a} and (3.37b), we obtain as a
formal expression

U(v}a(R,xo) U(v) '='F(R,v), a(R,xI) ), (3.38a)

where

f& Xp
a(R,xo):—(ai(R)e ' ', . . . ,a„(R)e " ', . . . ,b;(R) e ', . . . ,b-(R)e, . . . ),

E(R,v), „,„E(R,v)„,, „-
F(R,v)

"o~o F(R,v). .. „- E(R,v), „,„-

F(R,v), , „—:f dx&U„(x—R) A(v) 'U~(x' —R),

(3.38b)

(3.38c)

(3.38d)

etc.
The sum over xu on the RHS of (3.38a) means the integral over x~~. (Note xIi xocoshiu +——x~~sinhw. ) Full expressions

of the Ematrix and its properties are given in Appendix D. Equation (3.38a) can be rewritten as

U(v)a(R, O)U(v) '='F(R, v)a(R, O),

F(R,v)„F(R,v)-
E'R "'= E(R,v)„F(R,v)„

(3.39a)

(3.39b)

E(R,v)„=—f dx U„(x—R) A(v) 'U (x' —R)e ', etc. ,
T

cosh w cosh w z —0
slnh w cosh w x((

L

(3.39c)

(3.39d)

From (3.39a) we get formally

U( v) ='exp[ —a (R,O)lnF(R, v)a{R,O)] . (3.40)

I

easily by tracing back in what way the RHS of (3.38a) sat-
isfies the properties required from, e.g.,

(3.41a)

(3.41b)
Note that, when one performs successive I.orentz

transformation, one should start always with Eq. (3.38a).
It is clear that the straightforward application of (3.39a)
leads us to incorrect relations. This can be understood

U(v)U( —v)=1,
U(v)U(v) =U(v) U(v)=1 .

This is examined in Appendix D.
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E. Remark on matrix elements of quark operators
between one-baryon states

Until now, me have explained how to construct, in case
of the time-dependent MF potential (2.4b), a moving had-
ron state which consists of confined quarks and/or anti-
quarks, and also considered the Lorentz boost of the
quark operators. Thus, it would be instructive and

pedagogical to show explicit forms of matrix elements of
quark operators. So, in this subsection, we give summar-
izing remarks on matrix elements of quark operators
sandwiched by one-hadron states, the details being left in
a subsequent paper.

To be concrete, we consider matrix elements of quark
current operators between one lo~-lying baryon state:

& Bc;q
~ J,(0) ) BD;p & =N, (q)Nn(p) f dr f dx

&&(B,;S=O~ U(v )-'e"'+'"'J (0)e-"'*-""U(v,) ~Bn S=O) .

Here, the expression of the state vector (C7} is used; k& ——q~
—p&', Nc(q}=Nc(0)/(1 —uz

}'ri. The quark current Jz has
generally a form

J~(x}=g g~J~~~(x),
hd

where gl, ~'s are numerical coefficients, and

J~~~(x) =f ~(x)O~Q ~(x)

(3.43)

(3.44)

with an appropriate y matrix Oz. The quark spinor P ~(x) describes the quark field with a set of the color and fiavor
quantum numbers denoted by b Then w. e can obtain

(Bc,'q [ Jt (0)
~
Bp,'p)

=Nc(q)ND(p) f dr f dxe &+& e "(Bc,'S'=O
~ QI,(L( ve)x )A—(ue) U(vq)

Xe' 'U(vz)O&A(vz)f ~(L ( —vz)x+ )
~
BD,S=O) (3.45)

with x+ x+r/2 —a—nd (x+)p ——0.
With the aim of comparing (3.45) with the matrix elements derived by other authors, ' " we take

f(L( —v~)x+) ~(„) p='f'"= '(L( —v~)x+)
~ ~, (3.46)

and also the same relation with q and x substituted for p and x+ in (3A6). In the following we choose the Breit frame
with q= —p=k/2, and use the Lorentz-rotation angle wi, ~i ——Q=arctanh[k/(2E&(k/2))] in orde«o specify the
relevant Lorentz transformation:

Eg(k/2)=[(k!2) +rn ]' '

it is enough for our purpose to take the same mass ms for all the low-lying baryons. Then we obtain

Bg, J~ (0) Ba I)—',

=N, (k/2)N, (k/2) f « f d*e'"*g g Us([L( —~)x-] )A( —»O~A( —&)Ue([L("'"+]'
b —Qd-g

E (1.( g) ) —Ez(L(Q)x )0,ge 8
i ( )o=( )o=o

X(Bc;S=O~a,(0) U( —II)e' 'U( —Q)a&(0} ~BD;S=O)+

(3.47)

where . meiins the contribution from the antiquark modes. In the following we use the concrete form of the "bag"
state (3.28) for the low-lying baryons written as' '

~
Bc,S=O) = g Bg,s,s,as, (0) as, (0)tag, (0)t

~
Ii(0)) . (3.48}

In order to go further, we adopt the following two approximations. The first is to neglect the antiquark-mode contri-
bution in (3A7}, and the second is the "local approximation. "' ' The validity of the first approximation is not evident,
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which will be examined in a subsequent paper. As to the second we would like to stress that this approximation is im-
plicitly used in most of the usual calculations based on not only bag models but also other models such as the Skyrmion
model recently investigated by many authors. Matrix-element calculations done without recourse to the second approx-
imation are found in Ref. 31. In our formalism, the local approximation amounts to take2

, , f dr f(r)~f(0),
[v, (0)v, (0)]'"

where Vc(0) is defined as

V,(O)-=f dr&B,;S=o~e "-'~B,;S=O) .

(3.49a)

(3.49b)

Bc~ Jp (0) BD , . -18[4EC(k/2)ED(k/2)]"(
k )) it

—k

Bss,i,,B~+,q, f d x exp[i ( k —2EosinhQ )x
~ ~

]
b —p, b2b3 d —g, d2d3

&(U (x')A( —Q)O A( —Q)U (x') g F(0,2Q)sq
J=2

X(h(O)
i
U(2Q) ih(0)) (3.50)

with x = xi+x~~coshQ. This is to be compared with the formula (53) derived by Betz and Goldflam.
Now we are in a position to make a remark on the behavior of (3.50) in the low-mamentum-transfer region. By exam-

ining the first-order term in (3.50) with respect to k/m~, it is easy to see that the baryon magnetic moments include two
kinds af correction terms to the static values. Those are the "retardation" and the "spin precession" terms, the former
and the latter of which come from the factor exp( —ZiEox~~ sinhQ) and A( —Q)O&A(Q), respectively. This result is in
accardance with that obtained in Refs. 4 and 9, but is different from that derived by Hwang ' and Chizhov and Doro-
khav, ' where only the spin-precession term appears.

As to the second-order corrections with respect to k/ms, we obtain as the charge radius of the proton the following
formula:'5

(r ')'~"= 1 — + ( ')'""'+ —6 (h(0)
~

U(2Q) ~h(0))
2Ep 3Eo

mN mx 2m~ dk k=0
(3.51)

Apart from the last term coniing from the Lorentz-
deformed hadronic vacuum, the above formula is the
same as derived in Ref. 9. It should be noted that, apart
from (h(0)~ U(2Q)

~
h(0)), there is a certain difference

between (3.50) and Eq. (53) in Ref. 9. This difference
comes from different ways of evaluating the spectator
contribution to the matrix element. Really, we can derive
Eq. (53) in Ref. 9 by using some special manipulation.
It can be proved, however, that apart from
(h(0)

~

U(2Q)
~
h(0)) the same matrix elements are ob-

tained from (3.50) and Eq. (53) in Ref. 9 to the second or-
der with respect to k/m~, and the difference appears only
from terms with the order equal to or higher than
(k/m~), which depends on the way one evaluates the
spectator part. Therefore, behaviors of terms higher than
(k/mg) are ambiguous, and this suggests the limit of ap-
plicability of the various MF approaches including the
present one.

It should be remarked lastly that the factor relevant to
the hadronic vacuum such as (h(0)

~
U(2Q)~h(0)) in

(3.50) appears, which is characteristic of our formalism,
and will be further investigated in the subsequent paper.

VI. SUMMARY

We have investigated problems concerning the Lorentz
boost in the mean-field approach. We have concentrated
our considerations especially on quark modes in the time-
independent mean field. We emphasized the role played
by the residual interaction in order to recover the Lorentz
invariance which the starting Lagrangian has. The
Lorentz boost forces us to deal with the time development
of the quark operators, which is governed by the residual
interaction. Since at present we scarcely have knowledge
of the latter, we have to drop somewhere in matrix ele-
ment calculations the time evolution of the operators due
to the residual interaction. We explained the problems
brought about in the approximate treatments of boosting
quark modes.

Once we clarify the concept of the mean-field approxi-
mation and provide basic tools for describing boosted
quark modes in a moving hadron or for evaluating matrix
elements of physical operators, it becomes transparent
what types of approximation have been made by various
authors. ' *" ' In the present paper we gave a
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concrete example of matrix elements for quark operators
between one-hadron states, and made a remark on the re-
lation of our approach to other ones. In a subsequent pa-
perP full explanations will be given and we clarify the
meaning or interpretation of wave functions ' ' "' '

which have been proposed by taking account of certain
kinds of relativistic effects.
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APPENDIX A: RELATIONS BET%'EEN
REPRESENTATIONS, AND REMARK ON (3.21}

The Heisenberg field g(x) satisfies

[P~,f(x)]=i. Bg(x)
ax~

(A 1)

where P&'s are the total energy-momentum operators,

1l'(»xo) =D(xo —Ro)g(»Ro)D(xo —Ro) (A2)

f(x) at xo ——Ro [see (3.6)]

1t '"'(x) =DMF(xo, Ro)f' '(x,Ro)DMF(xo, Ro)

where

DMF(xo, Ro) =—exp[iHMF(Ro)(xo —Ro)],

(A3}

(A4)

HHF(Ro) is defined by (3.11b). Substituting (A3) into
(A2), we obtain

11(x)= U'""(xo)y"'(x)U'""(x,)-',
where

' (xo)—:D(xo —Ro)DMF(xo, Ro) (A6)

(Ro)
U (xo) can be regarded as the unitary operator con-
necting the Heisenberg and the interaction representations,
and satisfying

(A7}= —H, (xo)U ' (xo)

with the boundary condition

U (Ro)=1 .

It may be needless to say that H,~( x)ois given by

(A8)

Hr~(xo) =D(xo Ro)Hr~(Ro}D(xo Ro) (A9)

Next we consider the Ro dependence of Ia (R),
b„(R)J. By noting

D (e)g(x, Ro }D(e) '= g(x+e,Ro+ eo) (A10)

with D(e) =exp( iP~d'), and u—sing (3.5), we have

D(e)g'"'(x, Ro)D(e) '=f'"+"(x+e,Ro+eo), (Al 1)

from which we find

with

D(xo}=exp(iPoxo) —.
a„(R) . a„(R +e)

I

(A12)

On the other hand, we have the time development of the
(R,RO)

approximate field operator g
' ' (x) which is set equal to

I

From (A12) and the definition of the hadronic vacuum

~

h (R) ), (3.19), we have for any (m, n}

a (R)
O=D(e) '

b R D(e) 'D(e)
i
h'(R)) = '

e ' a (R+e)
'D(e)

i
h(R)),

e " ' b„(R+e)
(A13)

froin which one obtains

D(e)
~

h(R) &
=e'f""

~

h(R+e) &,

where f(R,e) is a real phase. Iff(R,e} is independent of
R and linear with respect to e, we have

D(&'")D(e' ') =D(e'")D(E'"}=D(e'"+e"') .

Then we obtain

with R-independent P&. If the hadronic vacuum on which
the hadron states are constructed is taken to satisfy

D(e)
i
h(R)) =e '

i
h(R +e)),

the contribution froin
~

h (R) ) to the hadron three-
momentum p is zero.

It may be useful to note that from (A12) and (3.5) we
find

D(e) ih(R))=e ~ ih(R+e) (A15) D(e)y'"'(x)D(e)-'=p'"'"(x+e) . (A17)
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APPENDIX 8: Ro DEPENDENCE OF
Ia (R },b„(R )j, and

I
h(R }&

D«}
I H~ &MF=

I
H~ &MF,

' (814)

From (A16) and (A12) [or (3.23) and (3.15)] one obtains therefore, the state
I Hz &MF is the eigenstate with p=o.

As for the energy eigenvalue, we decompose Po as

and

I
h(R) &=i(P,—P, )

I
h(R) &az, (81)

Po —HMF(RO ——0}+Hr (Ro ——o}

=HMF(0)+H'(0)+H„'~(0), (815)
aa„(R)

=i[Pa,a„(R)]+iE„a„(R) (82}
where H'(0), if it exists, is a part of H„,(0) and satisfies

Defining

=i[H, (Ro),a„(R)] . (83) H'(0)
I
h(R) & =Ei, '

I
h(R) &,

[H'(0),a (R)]= [H'(0), b„(R,)]

(816)

a (R)—:a„(R)e

we find from (82)

a (R)=i[Pa,a (R)],

By setting

(84)

(85)

=0 for any (m, n) .

Then, remembering

HMF(Ro ——0)
I
h(R) & =0

we see

(817)

(818)

a (R):—a (R,o)

we obtain the equation equivalent to (A12)

a„(R)=D(RO)a„(R)D(RO)-' (87)

[H„„(o)+H'(o)]
I
H„;R&

g E„;+Ei',
I
Hg', R&, (819)

01

a„(R)=U' '(R )a (R)U' '(R ) (88)

which may be considered to be an approximate mass value
rn„' ' of the state

I
H„&MF. While, we can construct the

MF hadron state by using the energy projection as

with

U' '(Ro)=D(RO)DMp(RO)
I
H„&=—N„ f dR f dROHg(a (R)t, b (R)t)

I
h (R) & .

I
h(R}& =Disci(RO) I

h(R)&,

where

(810)

= [exp(/'PpRO)] [exp( iHMF(—xo =0)Rp)] .
Remembering

(89)
D(E) (Hq,'R &

[See Eq. (A5).]
As to the hadronic vacuum, we obtain from (81)

exp i g E„;+pa eo IHq, R+e&,
i GH~

(821)

D~(RO) =exp(iRo(PO —Po) )

I
h(R) &

—=
I h(R, O) & .

we see the eigenvalue of Po for
I Hz & is equal to

y E„,+pc m„"'+apo, ——
i E-H~

~po=—po —Ea(0)
(822)

We see from (87) and (810) together with (3.19)

a (R)
I
h(R) & =b„(R)

I
h(R) &

=0 for any ( m, n ) .

Next we consider the approximate MF state

IH„&MF——x„f dRIH„;R& (812)

lf H,' can be treated as a perturbation, we obtain from
(81) and (83)

I
h(R) & =i [—b po+H,'eg(RO)]

I
h(R) &, (823)

8

with

I
H„;R&=Hg(a(R)t, b(R) )

I
h(R) & . (813)

Ba„(R) =i [H,' (Ro),a„(R)], (824)

Remembering (A12) and (A16), we ~»d from which in the first order of H,'
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~ t Ro
l)o(R))=o ' ' ' (+o I, o)oooH (*o) I)o(R)(o))

Ro
(825)

a„(R)=a„(R,Rp )+i f dxpH~(xp), a„(R,R p )
8o

Let us define
~
h(R)) i and a„(R)i including the first-order correction with respect to H,' as

Ro

~
Ii(R)},=—e ' 1+i f dxpH,

'
(xp) ~h(R)},

Ro
a„(R)i—=a„(R)+i f dxpH' (xp),a„(R)

From (825) and (A16), we find

Ho+so
D(ep) ~h(R))i ——e 1+ f dxpH~(xp) e ' ~h(R, ep))

Ho+so

0

(826)

Similarly, from (826)

i
h(R, Rp+ep)) i . (829}

~o

D(ep)a„(R)D(ep) '=(2„(R,ep)e " '=e " ' a„(R}+i f dxpH' (xp), a„(R)

Therefore, to the first order of H'

o+'o
D(ep}a, (R)iD(ep) '=e " a„(R)+i f dxpH,'~(xp), a„(R) =e " 'a„(R,Rp+ep)& .

(830)

(831)

We see that, when we construct the state vector

) H„)o=—M„JdR I dR~o(o(R)ob(R)o)))o(R, ))o,

(832)

the eigenvalue of Pp for
~
Hz ) i is nearly equal to (822).

At the present stage of considerations, we do not know
any details of H =H'+H'; therefore, we cannot exam-
ine the second-order correction, and for the moment we
caimot but treat El,

' and Pp Es as para——meters.

APPENDIX C: RELATION SE+vfEEN LORENTZ
BOOST AND THREP MOMENTUM PROJECTION

In this appendix, we summarize formulas representing
a connection between the state

~
H&,p) obtained from

~
H~,'p=O) by a Lorentz boost and the one constructed

from the "bag" state
~ Hq, R) through the three-

momentum projection. Details have been given in other
papers, ' and the following is only the essence.

The Lorentz boost considered here is

(x )~{x;)

1

(1—u }

, ,/, ( —uP~(+Pp) (C2)
(1 u2)li

It is a matter of course that, when a one-hadron state
with momentum and energy eigenvalues (p=O, pp

——mq),
~
Hz', p=O), is given, the state obtained by the Lorentz

boost U(v~)

U(v~) iH&, p=O) —=
i H~, p) (C3)

is the eigenstate of the total four-momentum with the
eigenvalucs

(p,E(p)) = ~a vp

(1 u 2)1/2 '
(1 u 2)1/2

P

I

and parallel to v, respectively. Then, the total four-
momentum operators satisfy under the Lorentz boost
U(v)

(U(v)Pi'U(v) ')=(P I.(v)i~)

={I.(v) ~x~)

l
Xio 2 i/2 (X[(+UX()),{1—u )

1

(1—u )
2, /2 {ux~~+xp) (Cl)

Then, we can prove the following proposition.
Proposition. The following two conditions are assumed

to hold.
(I) The hadron state

~
Hz „p=0) is given as a MF state

obtained by supegxeing "bag" states:

i Hg,'p=O) =Kg(0) f dRiHg, R) . (C5)

where l. and
~ ~

mean the components of x perpendicular P() iHg, R=O) =mg iH„R=O) . (C6)
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Then, we can prove

i Hq, p& = U(vI ) i Hq, p=O&

Ng(0)
dRe "~ ' U(v )

i H&, R=O& .
2)l/2 p As

(C7)

F(R,v)

x, vox —R. Av Um x —R, D2a

F(R,v)
ZOZO. ~~

—:f dx| U„(x—R)iA(v) ' V- (x' —R), (D2b)

The proof is straightforward as shown in Ref. 12. Here
we add only a remark as follows. When the state vector
(3.17) is written as

F(R,v)
ZOZ p, NNS

xj V„-x—RtA v 'U x' —R, D2c

with

we obtain

D(eo)
i Hg, R»

r

exp I g Eni+Eh+aA eo, I HAIR» ~

(C9}

which shows ~Hq, R&& satisfies the condition (C6) if
In~ = +ice+~ + Eh+a~ [see (3 25}].

APPENDIX D: PROPERTIES OP MATRIX
E(R,v), (3.38c)

The concrete form of the matrix F(R,v) is written as

U(v}a(R,xo)U(v) '=F(R,v), a(R,xo),(3.38a),

(Dl)
I

U(v( w') )U(v(w) )= U(v(w +w') ), (D3)

where w and w' mean the angles of the Lorentz rotations
xz ——L(v)z x2 and xz' L(v')&~xi„——respectively; here, v
and v'=—v(w') are taken to be parallel to each other, for
simplicity. In terms of k s Eq. (D3) is expressed as

F(R,v(w))„, , F(R,v(w')),

=F(R,v(w +w') } „. (D4)

It is proved directly that (D4} holds for F(R,v) given by
(D2a)—(D2d)

Proof.

F(R,v)

xiV„-x—R1A v 'V- x' —R . D2d

It is to be remembered that the sum over xo on the RHS
of (Dl) means the integral over x ~~.

As noted in the last paragraph of Sec. III, we examine
how the matrix F(R,v) satisfies the desired properties.

(i}First U(v} should satisfy

[F(R,v(w))„„,F(R,v(w')), „a(R,xo'))„

= f dx U, (x—R) A(v(w)) ' f dy' g Ui(x' R)Ui(y' —R)t+ g—V-.(x' —R)V-.(y' —R)t
J J

J
IIiE~p

XA(v(w')) ' g Uh(y" —R}ah(R)e ' ' + g V-(y" —R)b-"(R)e
k

k k

where
(D5a)

Xp cosh m

sinh m

sinh m &o
I

cosh~
J

(D5b)

xo cosh N

sinh u'

r

sinh m' &o
II I3l 3l (D5c)

Because of the closure property of I U„(x), V- (x) J derived from the canonical commutation relation for P(x )'s under as-
sumption I, (D5a) is rewritten as

\ IIlE~ p(D5a)= f dx U„(x—R)tA(v(w)) 'A(v(w')) ' g Uh(x" —R)ah(R)e " '+ g V-(x"—R}b (R}e (D6)



BANDO, FUJII, ASK, OKAZAXI, AND KURODA 33

with xz' L——(v(ur + tc'})z x&, which reduces to

(D6)=[F(R,v(tc+w')) „a(R,xo')]„. (D7)

(ii) Next the commutation relation

Ia(R,xo),a(R,xo}tj=I
does not change under the transformation (3.3Sa); then we have proven

I= U(v}{a(R,xo),a(R,xo}tjU(v) '='F(R, v)„„,ta(Rxo ),a(Ryo ) jF (R,v),
~ „, y, ,

(DS)

F"(R,v}, —= [F(R,v},,]», etc.

This can also be derived directly as follows

&(x—y)=U(v)[g(x), |((y) jU(v) '~,, „,=& '(v)IQ(x'), f(y')tj& '(v)

=~-'(v}[y'"'(x },y"'(y )'j~-'(v)'

W101

xz L(v )z"x„——and yz L(v }z"y-—„.
Multiplying U„(x—R) and U~(y —R) from the left and right, respectively, and integrating x and y, we obtain

I dx U„(x—R)tA '(v)

X J dy y UI, (x' R)I—ak(R)e ' ',aJ(R) e 'jUJ(y' R}—
k,j

(D10)

(Dl 1)

lE~O t
—i&go

+ g V-(x' —R) I b„-(R)e,b-.(R) e ~
j V-. (y' —R)

k,j

&(A '(v) U~(y —R) ~„y

=[RHS of (D9}]„ (D12)
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