
PHYSICAL REVImV D VOLUME 33, NUMBER 2

New ghost-free infrared-soft gauges

15 JANUARY 1985

Hue Sun Chan and Martin B. Halpern
Lawrence Berkeley Laboratory and Department ofPhysics, Uniuersity of California, Berkeley, California 94720

(Received 24 June 1985)

%e discuss a new class of infrared-soft, Gribov copy-free gauges in which ghosts decouple. The
gauges are natural for gauge theory, allowing a geometric interpretation of the Faddeev-Popov
determinant in terms of the gauge-fixing flow on the space of gauge transformations. When a
Nicolai-Langevin map is available, the new gauges are seen to be equivalent to Zwanziger s stochas-
tic gauge fixing.

I. INTRODUCTION

a~o=V' A', 0»a» 00, (1 2)

which, remarkably, interpolates from the temporal gauge
at a= oo to the Coulomb gauge at a=O. In this context
then, the infrared singularities of axial gauges, as well as
the ghosts and Gribov copies of the Coulomb gauge, are
seen as aspects of a singular limit. In particular, large a
may be used as a defining prescription for the infrared
singularities of axial-type gauges.

A conventional treatment of the ghost decoupling and
infrared softness is given in Sec. 11. The origin of the
name flow gauges is explained in Sec. III, where we con-

In this paper we point out a class of gauges, which we
call "flow gauges, "

A(') ——Z'[A],
for which, with mild technical restrictions on Z, ghosts
decouple, off-shell infrared singularities are absent, and
there is no Grivov ambiguity. ' In Eq. (1.1), the color in-
dex a runs from 1 to N2 —1 for SU(N, and we have dis-
tinguished a direction called time, which may be chosen
arbitrarily. Z' is a functional of the spatial components

(l =1,2, . . . , D —1) orthogonal to A ti, and contains no
time derivati, ves.

We will focus primarily on the simplest subclass of
flow gauges

centrate on the geometric aspects of the gauges. The
gauge-fixing equations for these gauges are first-order dif-
ferential equations, of the type familiar in nonlinear
dynamics, which describe a flow on the space of gauge
transformations. It is the first-order nature of the flow
that accounts for the absence of Gribov copies, and, ulti-
mately, the ghost decoupling. The fiow gauges are natur-
al for gauge theories, allowing a geometric interpretation
of the Faddeev-Popov determinant:4 It is the inverse
square root of the volume form of the gauge-fixing flow.
Finally, in Sec. IV we note that, when a Nicolai-l. angevin
map is available, as it is, for example, in the case of four-
dimensional QCD (Refs. 5, 6, and 3), the flow gau~es cor-
respond to Zwanziger's stochastic gauge fixing. Con-
clusions and directions are briefly discussed in Sec. V.
There is also a technical appendix giving a careful treat-
ment of a geometric identity discussed formally in Sec.
III.

II. THE CONVENTIONAL ANALYSIS

For the practical reader, we begin with a conventional
discussion of the ghost decoupling for the smeared version
of the simple gauge choice Eq. (1.2) in Euclidean or Min-
kowski space. Using standard textbook methods, the
gauge-shell (GS) Faddeev-Popov determinant is easily
written in terms of the Grassmann ghost fields P and P',

bpp[A]=det(tzDo —BtD; )

= J&g&gexp —J(dx)f'[5' (ad, Vi)+gf'~(aA' —V A—'—A d;)]fb

(2.la)

(2.1b)

g f f~ J(dq—)q;(q —p),.J(dE)
(iEa+q ) [i(E—co)a+(q —p) ]

vanishes on integration' over E, since all the poles are in the upper half-plane when a & O." The same effect is seen in
ghost loops with n gluon insertions for all n )2. The ghost loop with a single insertion vanishes as well because f' is

(2.2)

where D„' =5~8„+gf' A„' —is the covariant derivative. It should be kept in mind however that the textbook derivation
ignores boundary conditions and Gribov copies, to which we shall return in Sec. III.

The ghost Feynman rules are given in Fig. 1. The crucial observation here is that the inverse ghost propagator is
linear in 8, and hence E. As a result, for example, the ghost contribution to the spatial gluon vacuum polarization at
external momentum (p, to),
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antisymmetric, so that the ghosts completely decouple as advertised. In the singular case a=0, the argument fails, since
the ghost propagator reduces to 5' /q, and the usual Coulomb ghosts survive.

A similar situation is found in the more general case

aAO V—A' F—'[A]=0,
for which

EFp[A]= f&/&/exp —f (dx)(dx')f (x)[5 (an't —V )5 (x x')+—N (x,x')]ttt (x')

Here'

(x,x') =gf (aA' —B(A,'—At'8";)5 (x x')+—Dt" (x', t) ~
' 5(t t')—,

5F'(x, t)

5A( (x', t)

(2.3)

(2.4)

(2.5)

and x —=(x,t),x'—:(x', t'). As above, the first-order nature of the ghost propagator sets to zero all ghost loops with more
than one N~ insertion, while the contribution of the ghost loop with a single ¹binsertion is

eiq (x' x(eiE(t—' t)etta(—» x ~)
b Fp[A]=exp f (dx)(dx') f (dq)

iaE+q2 (2.6a)

=exp (dx)limD; (y, t)
5F'(x, t)

r * 5A (yt)
(2.6b)

=exp x Tr D—1 5F
2a (2.6c)

It follows that ghosts decouple for any flow gauge satisfying
T

Tr D
z =const, (2.7}

(2.8}

which includes the simple choice Eq. (1.2). More generally, we may express the Faddeev-Popov determinant Eq. (2.6c) as
I

b,Fp ——exp —,
' f (dq)W(q;0, 0)

where we have defined

(y, t} ' =2 f (dq)(dp) f (dto)eitoteip (x+"eiq (x ))~(q—p).4b 5F (»t) D —1

5At (y, t) (2.9}

Here (p, ttt) =0 is the external momentuin of the insertion
and q is the internal spatial momentum of the loop. If
F'[A] is a polynomial in A and its derivatives, it is
straightforward to see that P (q;0,0} is a polynomial in q,
so that the ghost loop with a single insertion always van-
ishes under dimensional regularization. Kith this proviso,
all flow gauges are ghost-free.

The gauge-field Feynman rules that follow from the
Euclidean Lagrangian

~E= ,Fqgq„+ —,$(aA—O—();3 )

(& q)

gob

%Eel'+ g

t'gf '(q;S„, + t'ab„o—)

are given in Fig. 2. Here the gauge choice is the smeared
version of the sharp gauge Eq. (1.2), which may be re-
gained at g= ao. We call attention to the absence, for fi-
nite o., of the E infrared singularities of the temporal
gauge at a= ao. Large a may therefore be used as a de- FIG. I. ghost Feynman rules.
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)
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6 b(E2+ gq )

go 2 (F2 + q 4/F2)

Ap 26ab(E2 qq~2)

qt22{~ + q4/ti, 2)

A„

= -sgf"'[(r —q).6-p+ (q —P)p6" + (P —&).6-l [(r q)pg p+ (q &)pgp + (& ") gp I

A'„ A'

= —g'[f"f'"'(6pp6- —6 p6p )

+ f"f"{6„6..—6,-6 )

+ fdhefcae(6 6 6 6 ) ]

tg [ f f (gppgvo gvpgpo)

+ f f (gppgvo gpugp )

+ f'"f'"(g-,g-p —g-.g") 1

FIG. 2. Feynman rules in Euclidean space. FIG. 3. Feynman rules in Minkowski space.

fining prescription for the singularities of axial-type
gauges. The prescription, as easily seen in the Feynman
rules, is not a principal value.

We have used these rules and dimensional regulariza-
tion to compute the one-loop correction to the gluon mass
in four dimensions, a nontrivial check because the param-
eter a has the dimension of inverse length. All integra-
tions are infrared convergent, and the result is that,
without ghosts, the gluon remains massless, as it should.

The individual diagrams in this computation are more
than quadratically divergent for the simple gauge choice
Eq. (2.10},although their sum is only quadratically diver-

gent. In this connection, we mention the simple spatially
nonlocal flow gauge

III. THE GEOMETRIC ANALYSIS

We turn now to a deeper treatment of the flow gauges,
which will lead to a geometric interpretation of the
Faddeev-Popov determinant. To reach the general flow
gauge Eq. (1.1) from an arbitrary configuration A„', it is
necessary to solve the gauge-fixing equations:

Ap ——Z[A"], (3.1a)

topic deserves further study. Alternatively, the
phenomenon can be avoided by choosing a spatial direc-
tion, instead of time, to define the fiow gauge.

apA0 2 ig2 V A y

( —&)
(2.11)

A„"—=Q A„——'a„Q',
g

(3.1b)

W =——,'Z„'~P ——,
' g(aA', —a, A,'}2, (2.12)

which again is the smeared version of the gauge choice
Eq. (1.2). In addition to the infrared softness, we note the
curious circumstance that these rules cannot be rotated to
Euclidean space in the usual manner, due to complex
singularities in the Ao and longitudinal propagators. This
phenomenon is easily traced to the Euclidean rotation
property of A 0 (A p~iA 0), which naively requires a com-
pensatory rotation a~ —ia to maintain the gauge. The

with dimensionless P. This gauge is also infrared soft,
ghost-free (independent of dimensional regularization},
and individual diagrams are no more than quadratically
divergent. The Feynman rules for this gauge are obtain-
able from Fig. 2 by the substitution a~P(q )'~ . With
dimensional regularization, the gluon remains massless in
this gauge as well.

For completeness, we also give in Fig. 3 the gauge-field
Feynman rules for the Minkowski Lagrangian

for the gauge transformation Q[A]ESU(N). These first-
order differential equations in time

Q t+ig(A pQt —QtZ[ A"])=0 (3.2)

define a flow of the type famihar in nonlinear dynamics.
In particular, Q[A] is unique given the initial condition
Q(x, ti)=Qi(x). The flow gauges are therefore free of
Gribov copies for boundary conditions which fix Q(x, ti)
(Ref. 13}. A situation in which such a boundary condition
is natural is the case of a functional integral whose initial
condition A„(x,ti) is specified. Then an appropriate defi-
nition of the off-gauge-shell Faddeev-Popov determinant
ls

[A t2 ti]
=f eQ a[A,"—Z[A"]]S[Q(~,t, )Q', ( ~ ) —1],

(3.3)
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where &Q is Haar measure at each space-time point
Equation (3.3) is gauge invariant under gauge transforma-
tions which do not change t'he initial condition. The
determinant contains no Gribov copies because the flow is
uniquely determined. Specification of initial condition in
this manner is equivalent to a "retarded" boundary condi-
tion' ' for the determinant, whereas specification of a
final condition gives an analogous "advanced" prescrip-
tion which we will not discuss explicitly.

To bring out the aspects of fiow on a manifold, it is
convenient to introduce general coordinates A"(x, t) on
each group manifold Q(x, t). In a Cartan-Mauer basis the
vielbein and metric' are

e~ = —2i Tr(QtT, B~Q}, (3.4a)

e, B~Q=iT,Q, e, 8 Q = i—Q T, , (3.4b)

g „=2Tr(a Qta„Q), (3.4c)

(T, ) (T, )pq= —5~5gp —5—n5pq
1 1

a rs apq 2 rq sp ~ ~ pq
(3.4d)

where a =araA . With the definition e—=det(e'), we

may then recast the Faddeev-Popov determinant as the
geometric object

[A;t&,t&]=J. . . [SAe]5(e'A V')e—'(t, )5[A (,t, ) —A, ( ~ )]

associated with the generic fiow

A =V (A), V (A)=e, (A)V'(A),

on an arbitrary manifold. In our case the flow is on the space of gauge transformations and, using Eq. (3.2},

V'=2g Tr[T, (QApQt —Z[An])] .

(3.5)

(3.6)

(3.7)

It is instructive, however, to consider Eq. (3.5), at least temporarily, in the general case.
We may formally evaluate Eq. (3.5) for a generic flow on an arbitrary manifold as follows. The 5 functional is exhibit-

ed in terms of the unique flow Ap by expanding A =Ap +g, so that

5(e' A —V')5[A (,t i ) —A i ( }]=5(A —Ap )detx I e~ ( A) A (x)—V'[A(x) ] I (3.8)
5$(x ) )=0

where we have noted with the subscript R that the determinant is to be evaluated with retarded boundary conditions. '

detg „,Ie'(A)A (x)—V'[A(x)] jg'"(x')

=(detxB, )Xdeta e„'5 (x x') 8—(t t—') (V 8 e„')(x')5— '(x —x')+e'(x, t')
5A"(x', t') 0

VIg e(t) Xdet& 5(t —t')5 -'(x—x')5„—8(t —t') (e V 8 e')(x')5D '(x —x')+
f) &tgf2 5A"(x', t') 0

(3.9b)

where we have used 8, '5(t t')=8(t t—') according —to
the retarded condition, and the subscript zero means to
evaluate at the true flow Ao. As is well known, ' only the
first power' of 8(t t') contributes to the fin—al retarded
determinant in Eqs. (3.9). We therefore obtain, up to ir-
relevant constants,

r

=lim5" ' +r„,{A(x,t)) V'(A(x, t))5V (x, t)
5A"(y, t)

EFp[A;t2, ti]=exp ——,', (dx)& V
1

(3.10)
X5D '(x —y) {3.1 1}

where is the covariant divergence'9 of the flow, and I „, is the
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&to(t2)
&to(ti )

(3.12)

under the flaw Eq. (3.6), which may be driven by a source
A. As a result, the flow gauges allow the purely
geometric interpretation of the Faddeev-Popov deter-
minant

&to(ti )
bFp[A t2 ti]=

to ti
(3.13)

as stated in the Introduction.
We turn now to the special case of flow on the space of

gauge transformations. On group manifolds, & e=0,
and the most convenient expression for the covariant
divergence Eq. (3.11) of the flow (3.7) is

&V (x, t)
ig T—r[E(y, t )Z[ A (x,t)]]

~ o,&A~(y, t) 0

where"

(3.14)

(E) = —2i(T) e,
5A

Christoffel connection constructed from the metric tensor
Eq. (3.4c). Equation (3.10) is an evaluation of the off-
gauge-shell Faddeev-Popov determinant in terms of the
true flow Ao. In the Appendix, the quasilattice method of
Ref. 14 is used to check the result Eq. (3.10) in the case of
a finite-dimensional manifold.

It is also well known that the volume form (covariant
volume element) &t0=g, (dAe) evolves in time accord-
ing to

QQt+ig(QZ[A]Q —Z[A ])=0 (3.16)

is on gauge shell. The on-shell flow always has a fixed
point at Q(x, t) = 1. If we also choose the initial condition
Q(x, ti)=1, then this fixed point is the unique flow
Qo ——1. It follaws from Eq. (3.14) that

Gs
&V ( x,t),b 5Z'(x, t)
NA"(y, t), 5A; (y, t)

(3.17}

in agreement with the conventional result Eq. (2.6c).
It is amusing to note that, for the simple gauge choice

Eq. (1.2)„ the covariant divergence is a negative constant
for a&0,

N —1 f (dk)k (3.18)

so that the fixed point of the on-shell flaw is stable, and
the flow is a simple contraction mapping. We remind the
reader of the fact, discussed in Sec. II, that dimensional
regularization sets the covariant divergences to zero,
which masks the geometry of the flow; this phenamenon
deserves further study.

We should also stress the connection between the "re-
tarded" methods used in this section and the conventional
analysis of Sec. II. In Sec. II, the vanishing of ghast loops
with more than one insertion followed because the ghost
propagator had its poles only in the upper half-plane for
a&0. This property is precisely the retarded boundary
condition discussed in this section. Indeed the momen-
tum space ghost propagator of Fig. 1 is just the Fourier
transform of the retarded propagator

=Q ' 'Q-
'5Q~ X ' 5Q

(3.15) Att (x, t;x', t')

are the (matrix) Killing vectors. It is not difficult to
check the gauge invariance of Eq. (3.14).

Finally, we wish to evaluate the gauge-shell Faddeev-
Popov determinant. When Eq. (1.1} is satisfied, we say
that the fiow

8(t t') e—xp——V
~

t t'
~

5 '(x —x')— (3.19)
CX a

whose 8(t t') factor —was used to obtain the simple result
Eq. (3.10). The retarded boundary condition can of course
be used to write down the on-shell determinant directly,

EFp[A;t2, ti]=detx 5' B,5 (x —x')+5(t —t')D,"(x',t')
5A (x', t')

(3.20a)

=det [5'"8,5 (x —x')]det 5' 5 (x x')+8(t —t')D;"—(x', t')
5A (x', t')

(3.20b)

=exp —, (dx) lim D (x', t)
5Z'(x, t)

x'~x 5g; (x', t)
(3.20c}

since only the first power of 8(t t') contributes. —

IV. THE STOCHASTIC CONNECTION

In this section we discuss the connection of the flow
gauges with Zwanziger's stochastic gauge fixing. The
connection can be made when there exists a Nicolai-
I.ange vin map of the action gauge theory onto an

~ a —~a+ a (4.1)

with g a Gaussian noise, have recently been discussed in
Refs. 5, 6, and 3. The simplicity of the map is due to the
fact that the retarded Jacobian of the transformation

l

equivalent stochastic process. In the case of four-
dimensional QCD with Ao ——0, such maps



NE% GHOST-FREE IN~WWED-SOFT GAUGES 545

g 0 —gQ+Dcbg b + 0 (4.2)

in which A o acts as a random source: Gaussian g averag-
ing and the original Ao integration must still be per-
formed. It is therefore not surprising that the smeared (-
gauge Euclidean action theory Eq. (2.10) can also be ex-
pressed as the constant Jacobian maps

—go+ lDb 1 yb+q~b + a

(X
(4.3)

(from A to rI) is a constant.
With a slight generalization of the methods of Ref. 6, it

is easily seen that the gauge-invariant action theory can be
expressed as the constant Jacobian maps

For a= oo (Ao ——0), the original map Eq. (4.1) undergoes
a random walk in gauge space, in analogy with the
Parisi-%u equation. This is interpreted at the action
level as the E singularity of the temporal gauge. For
0&a & oo, however, the Zwanziger gauge-fixing term of
Eq. (4.6) stops the random walk, replacing it with a longi-
tudinal damping. At the action level this corresponds to
the infrared softness discussed in Sec. II.

The longitudinal damping by the Zwanziger term is
highlighted by considering the time evolution of the
volume form &A under the stochastic flow Eq. (4.6).
The original map Eq. (4.1) describes a constant volume
flow, ' but now, using the methods above,

Here we have made the change of variable

X =~/(aA —V*A ), (4.4)

5A (x, t)
=det

NA(&) ) 5A,. (y, r) )

and averaging is over both noise functions rI and X, with
the Gaussian Boltzmann factor

=det[5's5J5(t r) )5 —'(x —y)]

exp ——, J(dx)[rI,'(x)il';(x)+g'(x)X'(x)] (4.5) )&exp (r t)—) W — J(dk)k(N 1)—
a

A
g

——+8 +Dg —V A +g';.
Q'

(4.6)

As in Ref. 6, a final-state constraint on A is necessary,
and the initial and final values of A& must be recorded,
using Eq. (4.4), as boundary conditions on the X integra-
tion.

The result Eq. (4.3) is a generalized Zwanziger gauge
fixing of the original stochastic process (4.1), with X' pro-
viding an extra random element in the gauge-fixing term.
Zwanziger's gauge fixing corresponds to the sharp case
g= Do, i.e., aAO ——V A, in which limit the second noise X
dccouples,

(4.7)

where W is the spatial volume of the system. The time
dependence of the volume form comes entirely from the
Zwanziger gauge fixing, identifying Eq. (4.6) as a simple
longitudinal contraction mapping. This longitudinal con-
traction is essentially the same phenomenon observ)xi for
the gauge-fixing flow in Eq. (3.18).

For the general (sharp) flow gauge Eq. (1.1), we obtain
the maps Eq. (4.2) with Ao ——Z'[A], which corresponds
to Zwanziger's general prescription. There is however an
unwanted factor

b,pp [A]detxGS 5A

7l
=exp —, (dx) lim [D (x, t)+D& (x', t)]

5Z (x, t)
5A (x', r)

(4.&)

1 . 5~v M~E +Span +
sw„'

where

which must be included with the i) averaging. This factor
equals unity for the simple gauge choices Eq. (1.2) or Eq.
(2.11),and is in general removable by dimensional regular-
ization, as in Sec. II. With this proviso, the flow gauges
are isomorphic to Zwanziger's prescription.

The argument above is easily extended to the original
fifth-time stochastic quantization. Begin with the fifth-
time gauge-invariant Euclidean Lagrangian

5'~vM
(4.9)

5A~5Ap

YM ab 6 a+Dp A 5+pe,
5A„'

(4.11)

with A5 acting as a random source, as in Eq. (4.2). The
"temporal"-gauge choice 35 ——0 results in the Parisi-%u
equation. The random walk in gauge space exhibited by
the Parisi-%u equation is understood at the action level as
the infrared singularities of this temporal gauge. To ob-
tain infrared softness at the action level, choose instead,
for example, the sharp flow gauge Aq ——Z'[A„]. The re-
sulting map

F5„——A~ —B~A5 gf' A5A„'— (4.10)
(4.12)

is the fifth-time field strength, SvM is the four-
dimensional Yang-Mills action, and the overdot denotes
fifth-time derivative. The Nicolai-Langevin inap of this
action theory is

is the original fifth-time Zwanziger gauge-fixed Langevin
equation, with longitudinal damping. As above, the
equivalence for the simple flow-gauge choice aZ'=B.A'
proceeds independent of dimensional regularization.
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V. CONCLUSIONS

With mild technical restrictions, the flow gauges
Ao ——Z[A] are ghost-free, infrared soft, free of Gribov
copies, and geometrically natural for gauge theories.
These properties are essentially independent of any partic-
ular action, following instead from the first-order nature
of the gauge-fixing flow, so that retarded (or advanced)
boundary conditions apply to Faddeev-Popov deter-
minants. For those actions which possess Nicolai-
Langevin maps, the flow gauges are equivalent to
Zwanziger's stochastic gauge fixing.

We should also mention connections among flow
gauges, stochastic quantization, and Becchi-Rouet-Stora-
Tyutin (BRST) symmetry. By keeping the Faddeev-
Popov ghosts, even though they decouple, a inore or less
ordinary BRST symmetry is obtained. This is connected
to the fact that, although the ghosts decouple from the
gauge fields, the gauge fields do not in general decouple
from the ghosts. There has been interest ' in the (sca-
lar) supersymmetry of actions that arise from maps. Our
contribution to this subject is that, for Zwanziger gauge-
fixed maps, there is an ordinary flow-gauge BRST sym-
metry present as well at the action level.

It will be interesting to see if analogues of the fiow
gauges can be found in theories of gravity, supersym-
metry, and strings.

Note added in proof. As a special case, we have also ex-
plicitly studied light-cone flow gauges (e.g.,
aA+='(I)'i Ai), which, as expected, are free of ghosts,
Gribov copies, and infrared problems. It is noteworthy
that the softening prescription differs from popular ie
prescriptions [see, e.g., S. Mandelstam, Nucl. Phys. B213,
149 (1983}].
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~ )tf {)t=f,—„„[axe]S{e„~~—V )'

'(t;)5[x(t, ) x,.]
tf

=exp —, dt D- V (Al)

where D.V is the covariant divergence of the flow V on a
finite-dimensional manifold, whose coordinates are x".

The basic idea is, as in the text, to define a new variable

epx ~—Vn=@ (A2)

and to consider Eq. (A2) as a fiow equation driven by P.
With Ref. 14 we take P(t) piecewise constant in each of
the E time subintervals,

P(t)=P„) for t„ (A3)

]=6
& t~=tf tp=f& (A4)

where 1 &n (N, so that tf t; =Ne —Then .the integrated
form of Eq. (A2)

rt

b,x~(n)
—=x~(n) —x~(n )) ——f dt(V" +e,"P),

n —1

(A5)

+ [ (n —I) +e$(n —l )C(n)][a/a(n —i) ]f{n)I

O(e'),

while the inverse expansion

P(n) ey(n —) )

~+ (n)
IJ

—v~„„——[v"a„v~],„„

together with the initial condition x~(o) xt', s——elects N
points of evolution along the trajectory. Equation (A5)
may be expanded as

~x( )=&[V( —i)+e"( —))4( )]

+—
I [V"a„V"],„„+[e,"a„V"],„„g„,

APPENDIX: FLO% IDENTITY ON A MANIFOLD

In this appendix, we use the "quasilattice" method of
Ref. 14 to check Eq. (3.10) of the text, in the case of a
finite-dimensional manifold. Specifically, we shall estab-
lish

M (pg) —V(„ i) +O(e)
E

gives g~„) as a function of x~(

To derive Eq. (Al), we begin with the trivial identity

(Aga)

~( ) ag—V~(n ) ) +O(e) det
X

g 0

The determinant of the square matrix g(~)/ax(n) is easily computed from Eqs. (A6) or (A7}, with the result

(A8b)
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ag'

ax

N
——y (a V&+e„V&a„e") +O(~)

n=p m=1
(A9)

It follows from Eq. (ASb) that

exp ——g (a„V"+e„v"aqes)i~ i)+O(e )

m=l

X +( ) ~(n} ~p(n —l }
~(.) —V~(„,) +O(e) (A10)

As e~0, the last factor of Eq. (A10) provides a definition of b, '(tf, t; ), so that

N

'(tf, t;)=lim exp —g (a„v"+e„v"a&eb)( i)+O(e )
e(o) 2 g=o

(A 1 la)

exp t -'D VI' —I" V"e(tf )

e(t )
(Al lb)

ff
=exp —,

' dtD V
p

(A 1 lc)

which is the desired result Eq. (Al). In these steps, we have used I",„=a„lne, and the subscript zero denotes evaluation

at the true flow P=O, for which I „"„V"=d(lne)idt.
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