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Foldy-Wouthuysen representation and the relativistic equations of motion
for a classical colored, spinning particle
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Nonrelativistic classical equations of motion for a colored, spinning particle obtained rvithin the
framework of the Foldy-%outhuysen representation are analyzed mth respect to the possibility of a
relativistic generalization. To this end a new color operator is introduced by means of an operatorial

gauge transformation. Consequently, a relativistic generalization of the classical equations of
motion is proposed.

I. INTRODUCTION

Investigations of classical, colored particles have been
initiated by Wang in a well-known paper. The topic has
been continued in a number of papers by other authors. '

At present one can find in the literature a whole variety of
approaches to the classical mechanics of colored particles.
In particular, Wong's equations have been generalized to
the case of a spinning particle. Also, the equations have
been rederived by many different techniques.

We would like to present yet another approach to ob-
taining classical equations of motion for colored and spin-
ning particles. Our starting point is the observation that
the natural prototyTe of a particle with color charge is a
quark, i.e., a spin- —, particle obeying the Dirac equation
and belonging to the fundamental representation of the
SU( n) group. Therefore, we would like to obtain classical
equations of motion for spin- —, particles belonging to the
fundamental representation of the SU(n) gauge group In.
our approach the classical spin and color are defined as
expectation values of spin and color operators, i.e., as po-
larization vectors. Thus, the classical mechanics we are
looking for is, by its construction, nothing more than
merely an approximation to quantum mechanics of the
Dirac particle. This is why spin and color operators play
the central role in our considerations. Investigations
along this line of thought have been initiated in another
paper. We use the Foldy-Wouthuysen (FW) representa-
tion because this representation for Dirac particles, and
for other particles, is well known for its virtue of clarify-
ing the physical content of relativistic wave equations.
The equations obtained in Ref. 4 have a nonrelativistic
form. Also, they contain essentially a new classical ob-
servable, not considered in Refs. 1—3, which describes a
"mixing" of spin and color, see Ref. 4 for details.

Let us remark here that also in Ref. 1 and 3 the starting
point is just the Dirac equation. However, in these papers
the classical qiuuitities were obtained by a formal replace-
ment of operators by c numbers, with no reference to
wave functions describing the physical state of the parti-
cle. Moreover, in Ref. 1 one can find the statement that
the classical limit consists of th —+0, S~ao, faS =fixed
constant. This is not consistent with the fixed value of
spin, S =—,', for the Dirac particle.

The aim of the present paper is to propose a relativistic
generalization of the classical equation of motion derived
in Ref. 4. For this purpose we introduce a new color
operator and a new kinetic momentum operator in the
FW representation, Sec. III. The reason is that the opera-
tors of color and kinetic momentum used in Ref. 4 obey
Heisenberg equations of motion of a form unsuitable for a
relativistic generalization (see See. II).

The problem of a relativistic generalization by itself
might seem less than important when one recalls the diffi-
culties in extracting from quantum mechanics the notion
of a classical trajectory for colored particles. Considera-
tion of this problem, however, leads to new color and ki-
netic momentum operators. Because of this we think that
the problem of the relativistic generalization is in fact in-
teresting.

The contents of the paper are the following. In Sec. II
we recall the Heisenberg equations of motion in the FW
representation for the operators of position, kinetic
momentum, spin and color obtained in Ref. 4, and we
present in detail the problem of the relativistic generaliza-
tion. In Sec. III we introduce the new operators of color
and kinetic momentum and we write Heisenberg equa-
tions of motion for them. In Sec. IV we take a formal
classical limit and we propose the relativistic generaliza-
tion of the classical equations of motion for a colored,
spinning particle. For simplicity we consider only the de-
generate case with no mixing between spin and color." In
this degenerate case, the classical ~nations obtained in
present paper agree in form with equations obtained other
approaches, except for the term describing the coupling of
spin to derivatives of gauge-field strength (see Sec. IV). In
our approach this term is present in the Heisenberg equa-
tion of motion for the operator of kinetic momentum;
however, this term is negligible in the classical limit for
the Dirac equation (see the discussion in Sec. IV). The
lack of this term has no influence on the problem of rela-
tivistic covariance of equations of motion.

11. EQUATIONS OF MOTION FOR OPERATORS
IN FOLDY-VFOUTHUYSEN REPRESENTATION

The Dirac Hamiltonian in the F% representation, cal-
culated up to the order ( rnc), has the form '
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H =mc2135 '+gA + Pll'fI'5
2m

PS iB i5 — D E '5
mc Sm e

S '(E 'fI '+ II "E')5'+0(5') (1)
4m 2c2

Here 5 is an auxiliary dimensionless, book-keeping param-
eter we shall set equal to 1 at the very end of the calcula-
tions. Roughly speaking, counting powers of 5 is
equivalent to counting powers of (mc) '. II' is the kinet-
ic momentum

A ~ ~ AII' P' — A ', p'= iA-
Bx'

~ ~
A '=A"T', where T' are the Hermitian generators of
the SU(n) group, and S'= —,

' o' is the spin operator. We
also have

F"„„=a„A„—a~„+ '
[A„,A„], E'=F"„,

DP„.=&P„„+ g [A,,F„„].
The color magnetic field is

The higher orders (in 5) of the FW transformation have
been calculated in Ref. 8.

Now let us turn to the observables for the colored Dirac
particle. It is well known that the position operator (in
the Schrodinger picture) of the particle should be taken to
be the coordinate x', acting by multiplication of the wave
function in the FW representation. This wave function
we shall denote by P'. The spin operator is given by
S '=cr'/2, where o' act on the spinor indices of P'. Notice
that we do not include the A factor into S'. Also, the
momentum operator P ' is given by —i%/dx', where the
derivative acts on f'. These operators, called, respective-
ly, the mean position, the mean spin, and the mean
momentum, become quite complicated when transformed
back to the initial representation of the Dirac equation.

A, A
The Heisenberg equations of motion for x ', II,S ' are

peikiB 'S "5
dt mc

1 g, dxi' zdx'
4 me 2 dt dt

dx~Et dx Ep
dt dt

Here D;E' means

(d E')0+ ~ [A E']H .

For the color operator we have at least two possibilities,
namely T'= —,u with cr' acting on the color indices of
either the original Dirac bispinar g or the bispinor in the
FW representation g'. The first passibility is not appeal-
ing, because this color operator when transformed to the
FW representation by standard formulas given in Ref. 4
becomes a rather lengthy expression containing, in partic-
ular, Dirac matrices a'. Also, one can see that this opera-
tor in the F% representation has a rather unpleasant
transformation law under the gauge group.

The second possibility, i.e., T' acting on P', was used
in Ref. 4, and it is used as the starting point in this paper.
However, we find it useful to consider instead of this T'
the quantity

k(x) =4'(x)T',
where 4'(x) is a fixed number-valued function belonging
to the adjoint representation of the gauge group, e.g.,
O'=F„'„For 4. &'=5 we recover T'. The Heisenberg
equation of motion for 4 has the form

=cDo@+ P(ll Dt@+Di@II )5'
dt 2m

'g PS'[B',e]5
mc

e k,s'[E 'II '+ 11"E',e]5'
4m c

[D E' 4]5
8m c

dx i= —[Hi,x'] =—PII '5 — g e„,S'E '5'

dH g ~ I dg dg=~&kl &
d

+dt 2c dt dt

+gE + pS'DkB'5
me

+ ~~PS' DE' + DE' 5
4me dt dt

+ 2 z Dk(DiE')5
8m e

(2)
where

D~4=(dqk)~+ [A~,4]H,

the subscript H means "in the Heisenberg picture. "
Now we would like to describe in detail the problem of

relativistic generalization. We adopt the following rather
formal rules for the classical limit:

II'~mx', S'—+s', 4~4'(x)I',

D; 4~ [d(4' g(Rc ) 'f~ A; 4']I'—,

etc , where f,.b, are the structure constants of the SU(n)
group. Also, one should abandon in the equations all the
terms which are multiplied by the positive powers of A',
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and to set p= 1,5= 1. On the right-hand side (RHS) of (6)
there are the classical quantities: the classical spin s, the
classical color charge (I'), the velocity of the particle x.
For a justification and for a discussion of the rules (6) see
Ref. 4, where a more refined approach to the classical
limit is presented.

It is easy to see that the rules (6) applied to Eqs. (4) and
(5) yield classical equations of motion which do not allow
for an immediate relativistic generalization. Precisely
these equations were obtained in Ref. 4, the only differ-

ence being that in that paper we considered T' operators
instead of 4Ii.

The classical equation for spin obtained in this manner
can be recognized as the small-velocity limit of the Tho-
mas equation. s This requires that we interpret s as the
rest-frame classical spin, in full accordance with earlier
considerations of spin polarization operators for the Dirac
particle in the external electromagnetic field, see, e.g., Ref.
1O. The well-known substitution

w=a+ —,
' c x(xs),

where w is the laboratory-frame classical spin of the par-
ticle in the small-x limit, gives a nonrelativistic equation
for w. This equation possesses immediate relativistic gen-
eralization in the form of the Bargmann-Michel-Telegdi
(BMT) equation.

Motivated by these classical considerations we intro-
duce on the quantum level the laboratory-frame mean
spin operator

8"=S '+ [ll '(ll 'S ")+(II'S ")II ']5' (7b)
4m ~c2

The Heisenberg equation of motion for W' reads

dW' g
dt mc

+ pW E' + E' 5
20lc dt dt

Here we have neglected the terms of order higher than 5i
because the Hamiltonian (1) is given only up to this order.
The rules (6) applied to (8) give the small-velocity limit of
the BMT equation. The precise form of this classical
equation for the case of the colored, spinning particle we
will write in Sec. IV.

The classical equation obtained from (5} by use of the
rules (6) also does not have the form of the small velocity
limit of a relativistic equation. Inspired by the case of
spin presented above, we propose to introduce a new color
operator 4, such that the Heisenberg equation of motion
for it would give on the classical level the small velocity
limit of a I.orentz-covariant classical equation.

Closer inspection of the problem shows that the diffi-
culty with the relativistic generalization is due to the fac-
tor —,

'
present in the last term of the Hamiltonian (1).

There would be no problem with the relativistic equation
for 4 if this was —,

' instead of —,'. This —,
' instead of —,

' is

due to the Thomas precession of spin. Thus, the Thomas
precession term, necessary for the right time evolution of
the spin, gives an undesirable contribution to the equation

III. THE NEW COLOR
AND MOMENTUM OPERATORS

We shall make the rather natural assumption that the
new color operator 4 is related to the old one 4 by an
operatorial gauge transformation Q. That is,

Ci=Q@Q ', A„=QAQ '+ BQQ
g

etc. The spin operator S' is not transformed because it
does not contain color degrees of freedom.

We adjust Q in such a way that the Heisenberg equa-
tion for 4 becomes on the classical level a Lorentz-
covariant equation. The new color operator 4 is assumed
to be a Lorentz scalar. Precisely, we assume that the
equation for 4 has the form (5}, with the exception for
the fourth term on the RHS of (5) which should have the
factor 2i instmd of the pr~ent 4i. In this way the opera-
torial gauge transformation (9) will just remove the un-

dersirable contribution to Eq. (5) coming from the Tho-
mas precession term. That is, we would like to have

d4 1=cD04+ p(II 'Dg4+D; @II')5
dt 2@k

+ &a p[2(@"Ft +Ft ~"»C']5
2mc

et [ ,' W'(Fo; II "+—Il"Fog)2' c

+ —,'(F„II"+II "F )8"C]5'

i i [DFO;,@]5
8n 2c

(1O)

Dp@=QDpk Q '= dp@+ [Ap, 4],

8"=5'+ [Il'(II "S )+(II S")II']5'
4m c

= W'+0(54) .

of motion for the color charge. The fact that the equation
for 4 does not have the form of a relativistic equation (in
the small velocity limit) indicates that the color operators
T' are not Lorentz scalars.

Let us also notice that the rules (6) applied to Eq. (3),
with the R~O prescription suspended, also give an equa-
tion which does not have the form of a small-velocity lim-
it of a Lorentz-covariant equation. Again the difficulty is
due to the —,

' factor in the last term of the Hamiltonian

(1). However, here the problem can be regarded as not so
important because the unwanted term is annihilated by
the i}1~0 prescription. This applies also to the Abelian
counterpart of Eq. (3}. On the other hand, Eq. (5} does
not have the Abelian counterpart.
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The additional symmetrization in the third and fourth
terms on the RHS of (10) is introduced because W' does
not commute with F&„and II'. However, the commuta-
tors of W with F,II would give contributions to Eq. (10)
of order higher than 5 . Therefore, in the order 5 this
additional symmetrization is superfluous.

Com aring (10) with (5) and using (9) we see that in the
order 5 we have the relation in the Heisenberg picture

ei i [W (E II +II E )
4m 2c2

+ (E 'II "+II E ') W', e]5 . (11)

Neglecting in (11) the terms of the order higher than 5
we can effectively put there

Then (11) will be satisfied if

""n-'= — 'g, S'(E'll'+ll "E')5'+O(5') .
dt 4m 2c2

(12)

Notice that the RHS of (12) is of order 5, i.e., ( mc)
Let us observe that the transformation (9) also changes

the form of the equation (3) for II ". Namely,

der' = — g P(~ II'+lI'I' )5+gE'+ g 13(W'D,a'+D„a'W')5
dt 2mc 2mc

[Ws(D EiII I+111D Ei)+(D EIII I+ II/D Ei)Ws)52+ g D (D Ej)5i
m c sm c

(13)

The classical counterpart of Eq. (13) will be given in Sec. IV.
The form of 0 should be calculated from (12). We do not know the explicit solution of (12) for generic external field

E ', except for the rather formal expression

0= Texp —
haik, S'(E 'lI "+Il kE ')52

4m c

where T stands for the ordinary time ordering. For E covariantly constant in time, i.e., DOE =0, we can take in the
order 5

A =exp — ek,S '(e 'II "+II kE ')52+0(5i)
4m 2c~

because

11 k dS'
=gE '+O(5), =0+0(5),

t t
(15)

A

=—[H2 E']+
at

= (DOE ')tt +O(5) =O(5) .

The terms neglected in (15), would contribute to the term O(5 ) in Eq. (12). When DODOE '=0, we have

II=exp — g, e,~S' t(E'II +II "E') (D E'll "+11—"D—E')+
,
g(D E'E +E—DE') 5+O(5')

4m c 0

(16)

where we have used the fact that

dE'
dt

=DOE'+O(5) .

Similarly, one can write Q when Do E '=0, etc.
It is natural to ask whether the operatorial gauge

transformation (9) can be related to a Lorentz boost, in a
manner analogous to that as (Tb) mimics on the quantum

level the Lorentz boost (7a). In 0 is to be related to a
txiost then one would expect that its classical counterpart
obtained by the rules (6) should be equal to 1 when the
velocity of the particle vanishes. The solution (16) does
not have this property. This suggests that the passage
from 4 to 4 is not a representation of the Lorentz boost.
Therefore, 4 and 4 should not be called, respectively, the
rest-frame and the laboratory-frame color operators, in
contradistinction to the case of 5 ' and 8".



538 H. ARODZ AND K. GOI.EC 33

IV. RELATIVISTIC CLASSICAL EQUATIONS
OP MOTION

As the rules for classical limit we adopt now

II'~mx ', 8"~w', 4(x)~4'(x)K',

F„„~F„'~',D„4~(D„4)'K', etc. ,

(17)

(O'K') =(D„4)'K'ri"
d7

e u m E'""O'Ecry~ ueb (19)

where u" =dx "/d~ is the four-velocity. Substituting into
(19) 4'=5 we obtain the classical equation for the new
classical color vector E'

P=l, 5=1, iii"=0 if n &0. dK'
2mc

(20)

The quantum equation (8) for the laboratory-frame spin
operator W' can be written in the form (again we neglect
all terms of the order higher than 5r )

W'
P($ IW k+ W kg l )5

dr 2mc

+ g [W~(E'II~+11'E')
4m 2c2

+(E 'll r+ II rE ') Wi']5' . (21)

The rules (17) applied to Eq. (21) give the classical equa-
tion which is the small-velocity limit at the BMT equa-
tion

Here K' should be regarded as the expectation value of
the operator T'=QT'Q '. These rules can be easily es-
tablished within the framework of Ehrenfest's approach
to the classical limit, presented in Ref. 4. In fact one
would expect that 4-+@~K', F&„~F&+', etc., where
4'(x},F„'„are the classical counterparts, obtained by the
rules (17) of Q4"(x)Q ' and QFq„Q '. However, be-
cause in the Schrodinger picture 4'(x), F„'„are number-
valued functions, Q@'(x)Q ' differs from 4'(x) only by
the terms such that II ' present in Q acts on 4'{x). These
terms are of order A/m2c . The same is true for F&„.
Therefore, in the classical limit 4'(x) =4'(x), F&„F„'„, ——
(D„F~)'=(D„F~)', etc.

The rules (17}applied to Eq. (13) give a classical equa-
tion which is the small-velocity limit of the equation

d2 V

m =+F'"+' (18)
c dT

where r is the proper time.
Let us remark that in Eq. (13) the terms linear in A' give

in the classical limit (17) (with the iii~0 prescription
suspended ) the contribution

w(DkB) K + e,kwxi(D E') K
Nlc 2pBc

which can be regarded as the small-velocity limit of the
contribution

to the RHS of Eq. (18). This term is included in the clas-
sical equation of motion by many authors. ' Our opinion
is that it should be excluded from the classical equation of
motion for the spin- —, particle. The reason is that we

would like to regard the classical equations as the equa-
tions for expectation values of quantum operators in the
state of the form of a wave packet. In particular, we do
not accept the formal substitutions like Pi~0, S'~oo,
iriS'=const. Therefore, in our approach R has its true ex-
perimental value. When some term containing R is rela-
tively large this means that quantum effects are
important —then the classical approximation is likely to
be incorrect. In fact, in the case of large terms containing
a spin operator one would expect phenomena similar to
those observed in the Stern-Gerlach experiment. So, the
terms containing fi have to be small if the classical ap-
proximation, which is based on the assumption that there
exists a single classical trajectory, is to be the correct one.
Therefore, the terms containing i}I can safely be neglected.

The rules (17) applied to (10) yield the small-velocity
limit of the equation

dw" ~vpu I'ga
d1 mc

(22)

(a) The essence of our result is the following: The
operatorial gauge transformation (9) with Q obeying (12)
leads to the new color and momentum operators. These
new operators obey Heisenberg equations of motion of
such a form that the formal classical limit (17) gives equa-
tions which are the small-velocity limit of the Lorentz-
covariant equations of motion (19), (20), (22). The equa-
tion (12) for the operatorial gauge transformation Q has
been calculated up to the order 5. Calculation of the
higher orders requires knowledge of the higher-order
terms in the Hamiltonian (1).

(b) The statement that the classical equations of motion
(18), (20}, (22) are Lorentz covariant is based on the as-
sumption that K' is a Lorentz scalar. This assumption

implies that T' is not Lorentz scalar because Q is not
Lorentz scalar. This follows from the fact that equation
(12) cannot be written in Lorentz-invariant form

dQ
Q =Lorentz scalar .

df'

A direct check of the transformation properties of 4
and 4 would be possible if one knows the generators of
the representation of the Poincare group acting in the
space of solutions of the Dirac equation in the presence of
the external Yang-Mills field. The eigenvalues of these
operators would have the meaning of the true momentum,
angular momentum, etc., of the particle. Therefore, the

'x w, (w~) is the Pauli-Lubanski four-
vector.

V. DISCUSSION
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eigenvalues should be gauge invariant. For this, the gen-
erators should be gauge covariant (under the local gauge
transformations). It is well known that it is a rather non-
trivial task to construct such generators, see, e.g., Ref. 11.
Thus, a direct check of the transformation properties of 4
and 4 is not possible at the moment.

(c) The rules (6) and (17) for the classical limit are rath-
er formal. Nevertheless, they are the most frequently used
rules, see, e.g., Refs. 1 and 3. A more refined approach to
the classical limit is presented in Ref. ". there mixing of
spin and color is observed. In the present paper we use
the formal rules for two reasons. First, in order to short-
en reasonings. Second, the lengthy and tedious derivation
of the rules of the kind (6) or (17), done in the spirit of
Ref. 4, is not very interesting because the region of their
validity is severely limited by the difficulties with extract-
ing the notion of classical trajectory for a colored particle
from quantum mechanics. Our main goal in the present
paper has been to solve the puzzle posed by the fact that

the classical counterpart of Eq. (5) does not have the form
of the small-velocity limit of a Lorentz-covariant equa-
tion.

(d) The obvious continuation of the present paper is to
calculate the Heisenberg equations of motion and 0 in the
orders higher than 5 . Such an investigation would also
provide a check of the idea that in order to obtain
Lorentz-covariant equations one should utilize the opera-
torial gauge transformation. In the present paper we have
shown that the operatorial gauge transformation works in
the order 52. Unfortunately, the calculations in the higher
orders will be rather tedious. This can be seen from the
rather complicated form of the Hamiltonian in the FW
representation calculated in the orders 5 and 5 (Ref. 8).
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