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A class of approximate photon-particle-particle vertex functions including higher-order correc-
tions for particles with spin <1 is shown to saturate the relevant Ward-Takahashi identities and to
possess the Poincaré substructure of the point vertex in certain gauges that is reflective of gauge-
covariant photon attachments. This leads to an approximate, higher-spin generalization of the exact
scalar-bubble theorem for the persistence of radiation amplitude zeros in the presence of self-energy
graphs. This also leads to further insight into the structural features of a spectral-weight ansatz fre-
quently employed in implementing the gauge technique for solving the Schwinger-Dyson equations.
The Poincaré substructure of the vertex for the axial-vector coupling of a photon to a spin—% parti-

cle is determined and some possible applications of this result are discussed.

I. INTRODUCTION

Gauge-covariant! point vertices for the attachment of a
massless, on-shell gauge boson onto a particle line, wheth-
er external or internal to a general Feynman graph, corre-
spond in a definitive way to infinitesimal Poincaré
transformations.2~> This distinctive, hitherto unnoticed,
and not fully understood attribute underlies the radiation
theorem®® for S matrices describing gauge-boson emis-
sion or absorption in the tree approximation and possibly
other, perhaps important, features of gauge theories.
When the tree-graph contributions are dominant, the radi-
ation theorem has striking physical consequences that
offer the opportunity for the direct testing of the gauge
nature of the coupling.

In this paper we investigate the degree to which this
Poincaré correspondence is manifested in the full vertex,
thus exhibiting a structure more detailed than that follow-
ing from the usual invariant-amplitude analysis and re-
flective of the gauge symmetry. We apply our results to
obtain higher-order extensions of the radiation theorem
along with the elucidation and amplification of some as-
pects of a type of nonperturbative approximation method
in field theory.

The exact vertex includes attachments onto particle
lines within closed loops, and while, of course, the point-
vertex Poincaré structure is operative for each of these,
their dependence upon the loop momenta leads to a very
complicated overall effect. Nonetheless, the scalar-bubble
theorem>%7 for attachments onto scalars suggests that an
identifiable portion of the exact vertex possesses precisely
the same simple features of the point vertex, and we will
see that, to a certain degree of approximation, and within
at least one choice of gauge, this remains true for the
Dirac and vector cases as well.

Further analysis of the scalar case reveals that what we
refer to as the quasipoint piece of the all-orders photon-
scalar-scalar vertex is just the Lehmann-spectral-weighted
point vertex. This establishes a connection with a well-
known prescription® for the generation of gauge-invariant
approximations to the Schwinger-Dyson equations and
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suggests possible candidates for quasipoint vertices in the
Dirac and vector cases when the naive Ward-Takahashi
(WT) identities are still valid. When this is the case, in all
three instances (spin < 1), the quasipoint vertices can be
identified with the same overall infinitesimal Poincaré
transformation as occurs in the point-vertex case. The
quasipoint vertices, which reduce without ambiguity to
point vertices when higher-order contributions are ig-
nored, include the entire longitudinal parts of the full ver-
tices, which correspond to translations, but only approxi-
mate the transverse parts. Moreover, the radiation
theorem continues to hold when attachments onto the
dressed particle lines are mediated by quasipoint vertices.
The structural analysis of the quasipoint vertex thus pro-
vides additional motivation for and further insight into an
ansatz® that has been employed extensively in implement-
ing the so-called gauge technique,”’~!! which is a nonper-
turbative method for “solving” the WT identity.!2—3C

We confine ourselves to vertices that represent the
gauge-covariant attachment of a photon onto a charged-
particle line with m=£0 and spin<1 including the in-
teresting case of the axial-vector coupling to a Dirac par-
ticle. Scalar and spinor quantum electrodynamics (QED)
provide unambiguous models for the spin< 1 cases. In a
broader context, e.g., when the scalars and fermions are
embedded in a more comprehensive gauge model that in-
cludes an exact U(l),, gauge symmetry and in dealing
with the coupling of photons onto charged vectors, the
choice of gauge within the encompassing non-Abelian
gauge theory is crucial.’! The principal reason for this is
that the relevant Slavnov-Taylor (ST) identities generally
have complicated forms that do not manifest the U(1),,,
symmetry in the form of the usual (“naive”) QED WT
identities except in very special gauges. One of these is
the covariant unitary gauge that is employed in Refs. 2—5
and 7 and in the present work.

In certain noncovariant gauges, such as the axial gauge,
the Slavnov-Taylor identities take on naive WT forms,>
but then the Poincaré substructure realized in the unitary
gauge is subdued. This suppression also occurs both in
the linear and nonlinear covariant R gauges, which in-
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clude the unitary gauge as a limiting case, even though
nonlinear R, gauge choices exist which manifest the
U(1),,,, symmetry in naive Ward identities.>* Our restric-
tion to the unitary gauge and only to three-vector vertices
involving a photon attached to a charged, m=0, spin-
unity particle limits what we can say concerning the
gauge technique in this case and distinguishes our vertex-
function structural analysis from that of Baker, and oth-
ers,’’~% e.g., for the three-gluon vertex.>* Our immediate
goal in the three-vector case is the identification of an ap-
proximate photon vertex that leads to a generalization of
the radiation theorem for S matrices with at least one
external photon line. In the unitary gauge higher-order
Green function corrections may be divergent, even though
such contributions should cancel out in the S matrix, so
that renormalization problems are likely to accompany
any comprehensive attempt to implement the gauge tech-
nique in this gauge.

Generally, a quasipoint vertex may be regarded to be a
gauge-boson vertex that possesses what one chooses to
identify as the essential structural characteristics of the
point vertex. Of course there is ambiguity in such an
identification arising partly from the freedom of the
choice of gauge. Our identifications, motivated mainly by
the results of Refs. 2—5, stress the Poincaré substructure
of the point-vertex function in a particular gauge that is
representative of a highly restricted (“minimal”) class' of
gauge-invariant interactions and is thus reflective of re-
normalizability in addition to gauge symmetry. It is pos-
sible that these two attributes possess discernible signa-
tures in general gauges that would facilitate the extension
of the quasipoint concept to these circumstances.

II. DECOMPOSITION IDENTITIES

A Green function generally does not decompose into
Green functions of lower order. Of course, Green func-
tions containing conserved currents satisfy Ward-
Takahasi identities which express their contractions in
terms of Green functions with one less external leg and
are special cases of what we refer to as decomposition
identities.

In Refs. 2 and 3 so-called radiation decomposition iden-
tities for the lowest-order, photon-particle-particle three-
point function, with the single-photon propagator re-
moved, are introduced. These identities express the con-
traction of the vertex with the polarization vector of the
on-shell photon in terms of a sum of two single-particle
propagators that are each multiplied by mass-independent
kinematical factors. We first determine uncontracted
forms of these identities that apply even to off-mass-shell
photons.’®> The simple WT and radiation decomposition
identities then emerge by taking special contractions. In
Sec. III we obtain higher-order generalizations of the
decomposition identities in the course of identifying
quasipoint vertices.

We consider a photon of outgoing momentum ¢ at-
tached to a charged-particle’® line with momenta p and
p'=p —q flowing into and out of the vertex, respectively.
Generally, p?<m?, p'?stm?, where m=£0 is the particle
mass and ¢25<0. For a scalar particle the decomposition

identity for the lowest-order three-point function with the
photon propagator removed is just the simple resolvent re-
lationship

1

...m2

1 1 1
5 ( '+ )“ = b rk ’
' lom? P TP P—m? p? fi =K pl—m?
(2.1

which in this instance is just partial fractionization, where
the scalar radiation factor, f*, is given by

u —1
fi= p'+% p'+% Ki
u -1
= p—% p—% ‘q (2.2)
We note that
P'+34=p—79q . 2.3)

Equations (2.2) imply that the right-hand side of (2.1)
makes reference to the same infinitesimal translations
both entering and leaving the vertex. For example, if (2.1)
is contracted with a polarization vector € corresponding
to an on-shell photon with €:g=0 and ¢2=0, we recover
the radiation decomposition identity,*®

1 1 pe
(p'+p)e = -
' —m? P—m?: p'l-m? |pq
S, e
pq |p°—m

where the parameter (p'e/p':q)=(p-€/p-q) characterizes
the infinitesimal translation associated with the photon at-
tachment.>®> The contraction of (2.1) with 9y (q? arbi-
trary) yields the WT identity in lowest order:

1 1 1

— prp) - - .
P i—m? prp qu_mz p'l—m?  pi_m?

(2.5)

The distinction between (2.4) and (2.5) is evident even in
this simple case.

Matters become more interesting for particles with spin.
The counterpart of (2.1) for spin  is most easily de-
rived*’ by use of the generalized*® Gordon identity

P+P )+ Cu=y#+0'vu» (2.6)
where

Cu=xlrupr—p]. 2.7)
One finds from (2.6) that

Va2 =p' D= +p") 0 —p)+Cop—p'C, .  (2.8)

We then obtain from (2.8) the spinor decomposition iden-
tity

1 | 1
’ y = ’
gy—m’ p—m p'—m

1
fb—rb m’ (2.9)

where the Dirac radiation factor
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B=lp—39*++C*I(p'+q/2)q]""
=[(p—39)q] '[P’ + 39+ +C*]

now represents an infinitesimal Lorentz transformation as
well as a translation when contracted with a four-vector.
The full Poincaré transformation corresponding to these
infinitesimal generators is determined in Ref. 3 and ap-
plied to an external plane-wave extension of the radiation
theorem in Ref. 4. The radiation decomposition and low-
order WT identities are obtained from (2.9) and (2.10) just
as in the scalar case.

Axial-vector currents are relevant where chiral symme-
try is a consideration. In spite of this we have included a
(bare) mass term in the spinor propagator because our re-
sults have applicability in nonchiral symmetric situations
and because a mass term is appropriate for the excitations
appearing in the Lehmann sum. The axial-vector form of
(2.9) is easily deduced from that expression and one finds

11

(2.10)

1 1
“ = W—r4 , (.11
7—m' Sy m p,_mfA f”p—m 2.11)
where §=p +p’ and the modified radiation factor
-1
P A
fi=— |L-+30m4) 75, 2.12)

implies a chirality-dependent Poincaré structure with
kinematics markedly different from that contained in
(2.10). The low-order axial-vector WT identity>>* is ob-
tained from (2.11) by contracting it with g, which is the
natural momentum combination in the axial-vector case.*!
The (formal) radiation decomposition identity involves the
contracted radiation factor

fae=—+1e,q)p-q)"ys

with no translational term.

Even when dealing with the conventional photon-spinor
coupling, (2.11) can be useful in decomposing contribu-
tions from successive multiple-photon attachments onto a
single line,

(2.13)

S(p)Y*S(p)vY -+ - v*S(pw) ,

into a sum of single Dirac propagators, S (p;). For exam-
ple, after using (2.9) on S(p, )7“S(p2) one next en-
counters terms such as S (p;)y*y%y8S(p;). Since y*yy?
can be expressed as a linear sum of y* and ¥y terms the
role of (2.11) in continuing the decomposition is evident.
The point coupling of the photon to a massive vector
particle can be characterized in terms of the vertex*?

I,5=Pyglp',m Z)Yﬁaa(P'aqa —p)koPos(p,m Y, (2.14)
where corresponding to our choice of unitary gauge
Puip,m?)=—g,,+ 2480 (2.15)
m

YP%p',q, —p ko= —[k*p +q)3+k"(p'—q)"
—g%k-(p'+p)] , (2.16)

and we have contracted the elementary triple-vector ver-

tex with an arbitrary four-vector k, for the sake of sim-
plicity of presentation. Typically k, is taken to be g, to
obtain the (“naive”) WT identity, or ¢, to find the emis-
sion amplitude or to determine the radiation decom-
position identity, where the covariant, unitary-gauge,
free-vector  propagator is understood to be’®
P, (p,m*)(p*—m?)~1.

The vector decomposition identity is found from the
following alternative expressions for I vé

Lis=—2P5(p",m? |17 P05
+ mZ p'}' 5+ ‘}’pb ) d7a
a 1
Ig=2|—1t, +2m2 P.s(p,m*)
(pr=m? .,
+ 7 (pyks+kyps), (2.17b)
m
where
wyv=qykv_kyqv (2.18)
and
Vz%(p +P) kg“‘,—(z)‘w . (2.19)

From (2.17) one can find the vector counterpart of (2.1),
(2.9), and (2.11):

1 1

P_g(p’ )
_175) yB\P sm

p2_m2 p:2

—(f),

f1+))ﬁ

a Paé(p’mz)

3 , (2.20)
p —m

where the vector radiation factors are
—1

(f(+));w yv+ w;u\qkpv '+'g'

p q9

1
2m?
(2.21a)

(fg/—))/,w: P—% ‘q

t —_
244 2m 2

(2.21b)

The tensor 2, (w,,) is the vector realization of the in-
finitesimal Poincaré (Lorentz) transformation associated
with the photon attachment. It is interesting to note that
the naive unitary-gauge WT identities that follow from
(2.20) by taking k?=¢q? correspond to pure translations
that are independent of the vertex kinematics in that the
radiation factors reduce to g,, in this case.* The Lorentz
structure resides solely within the transverse part of the
vertex as in the spinor case, but unlike the
translation—WT-identity relationship, this structure is not
obvxously correlated with some property of the exact ver-
tex.*

We observe that in contrast with the scalar and Dirac
cases, the vector radiation factors differ in their inclusion
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of purely transverse, m 2-dependent terms that destroy the
pure Poincaré structure exhibited for attachments to sca-
lar and Dirac particles. These m-dependent terms vanish
for crucial cases k,=g,, with g? arbitrary, and k,=¢,,
for g>=q-€=0. Also, even if g*#£0 for k,=¢,, these
terms do not contribute if the vector particle is coupled to
a conserved current.’

Equations (2.1), (2.9), (2.11), and (2.20) are the point-
vertex decomposition identities and, despite a vast litera-
ture concerning various aspects of the elementary point
vertex functions, the particular organization they
represent is, as far as we are aware, new. They highlight
the distinction between the WT and radiation decomposi-
tion identities for both the point and higher-order vertex
functions. In Sec. III we determine vertex functions that
include higher-order corrections and that yet still satisfy
decomposition identities with the same basic structure.

III. QUASIPOINT VERTICES

A. Scalar vertex

If we multiply (2.1) by the Lehmann weight function
ps(m?) for the scalar field and integrate over m?, we find
that

dm?ps(m?)

(p'+p¥ [ "E 5 =fUA(p H—A(p],

—m)(p2—m
(3.1

where A’ denotes the full scalar propagator.** In this con-
text, the gauge-technique ansatz of Delbourgo and
West® !4 consists in the identification of the quantity

Th(p'p) =(p"+pP0"p' D!

x|J

dm*p(m?)

AI 2y—1
o I—mpt_my |27

(3.2)

with the exact scalar-photon vertex function I'*(p’,p);.
Since I'3(p’,p), obviously satisfies the naive WT identity,
the difference

Cr(p',p)s=TH(p",p)s —Th(p",p)s » (3.3)
must be purely transverse:
(p'—p) TH(p',p)s=0. (3.4)

Because I'*(p’,p); has the invariant amplitude decomposi-
.42
tion

TH(p',p)s=(p'—p¥f(p'%p?)
+(p'+prg(p'p?), (3.5)
we see from (3.2)—(3.5) that

I_ 2
Ce(p'.p)s =(p'+p W g(p'z,p2)~‘(ﬁz‘%ffp' %p?

(3.6)
Thus the approximation I'*~TI%, e.g., in the gauge tech-

nique, implies the neglect of the transverse part,

, _ , ' Bin'_ n)2 ,
T4(p',p), = w—pw—ﬂtﬂ%¥biﬂ—fwzm%,

(3.7)

of the exact vertex. The WT identity applied to (3.5) im-
plies that the right-hand side of (3.7) has no kinematical
singularity at p’2=p?2.

The attachment of an on-shell photon onto a fully
dressed scalar line entails the contraction

e'r(P’»P)s=(PI+P)'Eg(P' 2’p2)
=eTplp’p) . (3.8)

Given (3.8) and the observation, following from the com-
bination of (3.1) and (3.2), that I'% satisfies an all-orders
version of (2.1),

A'(p' B (p',p) A (pH)=A'(p' O)f — FEA'(p?) , (3.9)

the extension of the proof of the radiation theorem to in-
clude exact scalar bubbles is immediate.>%’

The function T'%(p’,p) is an example of what we refer
to as a quasipoint vertex. Generally such a vertex is re-
quired to have the same structural features possessed by
the point vertex with regard to Poincaré transformations
and the satisfaction of the appropriate WT (or ST) identi-
ty. Moreover, when higher-order corrections are ignored
a quasipoint vertex must reduce to the point vertex in a
consistent fashion. Finally, although this requirement
may be redundant, a quasipoint vertex must not possess
any kinematical singularities;'®?® clearly T%(p’,p), has
none.

B. Spinor vertices

Evidently the Lehmann weighting of the decomposition
identities for spin < 1 suggests itself as a means of generat-
ing quasipoint vertices. For spin>0, however, the oc-
currence of more than one spectral function complicates
this procedure.

The Dirac case is relatively straightforward be-
cause the full Dirac propagator, S’(p), admits of an alter-
native Lehmann representation in terms of a single, scalar
weight function pp(m):

Stor= [ 704 [ Jame

8,11,14

; (3.10)

where mp is the Dirac particle mass.* From (2.9) we
then obtain

S"(p")\Th(p",p)pS" (P)=S"(p" )f5 —f5S"(p) ,

where

(3.11)

S DB(p'p)pS"(p)= [ dm pD(m)F,im y*‘p_lm
(3.12)
defines the Dirac quasipoint vertex denoted by I's(p’,p)p.
As in the scalar case the difference between I'z3(p’,p)p
and the exact Dirac vertex I'*(p’,p)p must be purely
transverse,
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)p=T*p",p)p—Th(p".p)p ,
(p'—p) I p',p)p=0,

(3.13)
(3.14)

rr(p'.p

although even for an on-shell photon with polarization €
we have

e, (p',p)#0, (3.15)

in general. Thus, the extension of the scalar-bubble
theorem to the Dirac case that follows from (3.11) is not
exact, but necessitates the expression of the photon attach-
ment in terms of €,I"s(p’,p)p, which represents an ap-
proximation to the exact e-contracted vertex.

Also, in contrast with the scalar case, I's(p’,p)p is not
purely longitudinal, as is evident from the expression

where the commutator

Ct=1[r*4q], (3.17)

is obviously transverse. The purely longitudinal term in
(3.16), which saturates the WT identity, possesses
kinematical singularities at p>—p’?, so a transverse piece
is required to cancel these.!® It is useful to rewrite (3.16)
in a form that manifests the absence of such singularities
even though we are assured that they are not present from
the form of the left-hand side of (3.12) and the existence
of (§)~!
Let us express the inverse propagator in the form!®

M(p',p) =B [5(p)=1 _57(p) 1] S'(p)~'=F(p*)p+G(p?) (3.18)
—P
n 1 [ChS'(p)~'—S"(p")~ICH], (3.16) Where F(p?) and G(p?) have no spinor structure. Then
pi—p'? ’ one finds that
_
2) 2 2 2
’ . ’ ! —
T(p"p)p =Thelp'p) + | LE=FL ) |y y prowy 4 | ERI=CR) Hen (3.19)
2(p°—p’ 2) p —p
where
2 12 2 2 2 /2
’ ’ ’ _ ’ _
Téc(p',p)=p+p" *(p+p') F(z"(p)z 1;(,”2)) mEe H;F(p ) (p+p )“—‘—’—L—G( ) G,(z) (3.20)

is the gauge-technique ansatz proposed by Ball and Chiu'®
which is obviously free of kinematical singularities.. The
remaining purely transverse terms* on the right-hand side
of (3.19) are also free of kinematical singularities. The
preceding calculation is important in that it illustrates
quite vividly that the requirements of freedom from
kinematical singularities and a consistent lowest-order
limit do not constrain the transverse parts too strongly.?®

Unlike the scalar case, there seems to be no obvious as-
sociation of I'% (p ,p)p with the invariant amplitude struc-
ture of T*(p’,p)p. The degree to which I's constitutes a
well-defined part of I'*(p',p)p would appear to rest upon
the legitimacy of a general representation®

S'(p")TH(p',p)pS"(p)= [ dm pp(m)gH(p',p;m) ,
(3.21)

where the difference

148 =0(a),

(3.22)
yp—m

Bp' pm)—
ghp',p;m) v m

is purely transverse.
Axial-vector vertices can arise in spinor QED in dif-
ferent ways. In ordinary QED with massive vector-
coupled charged fermions one refers to the vertex
I'™(p’,p)sp, defined in terms of the axial-vector current
YyPy sy, which satisfies a WT identity that involves the
pseudoscalar vertex I'(p’,p)sp, propagator —ys products,
and anomalous terms.* Delbourgo and West®!* consider

r

a model for the dynamical breaking of chiral symmetry in
axial-vector-coupled spinor QED that is constrained to
have no anomalies. In this instance only the propagator
—¢s products enter into the WT identity for I'*(p’,p)sp.
Quasipoint axial-vector vertices, I's(p’,p)sp can be con-
structed in at least the first of these models as we next
demonstrate. We define a quasipoint axial-vector vertex,

T(p’,p)sp, by
S'(p")T%(p',p)spS'(p)

1
= H
= [dm pD(m)F,_m s, (3.23)
Then from (2.11) we see that
S'(p")Th(p',p)spS'(p)=S"(p")f4 — f4S'(p)
=S'(p")T%(p",p)p vsS(p) ,
(3.24)

from which we infer that I's(p’,p)sp has no kinematical
singularities. It is easy to check that I's(p’,p)sp satisfies
the naive WT identity (without an anomalous term) pro-
vided that

S'(p")Tp(p’,p)spS'(p)

(3.25)

_ 1
= fdm pD(m)—————-—p,_m (m/mgy)ys

is also identified as the associated quasipoint pseudoscalar
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vertex, where m,, is the bare fermion mass.

In Refs. 8 and 14 the gauge technique for axial-vector
QED is affected by the identification (¢ =p —p’)
S'(p" )% 4)(p",p)spS(p)

2q,

1
YuVs+—5
2T g2

J—m
(3.26)

’

1
—fdmpA(m)ﬂ

where the pole at g2=0 is related to the dynamical break-
down of chiral symmetry and p 4(m) is the fermion spec-
tral function in this model. The ansatz (3.26) subtracts
off from (3.23) the contribution, in which the m, factor is
canceled out, that (3.25) makes to the WT for I's(p’,p)sp,
thus assuring that I3 4(p’,p)sp is appropriate for mass-
less bare fermions. This explicates the basic differences
between the two models and also shows that the quasi-
point concept is more ambiguous for '3 4)(p’,p)sp than
for Ts(p’,p)sp.

. N ’ ' 1
AM(P )F;H(P ’p)VAﬂv(p)Efdmzpl(mz) [p,z_m

d (m*)
fmpzm p

Then we see from (2.20) and (2.21) that

8P T, 0 )y App) = Do p ) — f B p) +

where
Sup)= [ = A [P y(pym2)pi(m?) +gupam )]
2
fuv=—5"15
o p?—p'?

2(_11»"’) 2 2

C. Vector vertices

The covariant part of the vector propagator, A,,,(p), has
a unitary-gauge spectral representation

Ap)= [ ;—‘@—lmp,m pr(m?)

+8uvp2(m)] (3.27)
which involves two spectral functions. This circumstance,
along with the appearance of the transverse m >-dependent
terms in (2.20), complicates matters considerably as com-
pared to the scalar and spinor cases.*®*

Our principal guideline in constructing a vector quasi-
point vertex is that it reflect the Poincaré structure of the
point vertex as closely as possible. This would seem to
suggest that g,wpz(mz) enter into the spectral weighting
in conjunction with the same radiation factors as does
P, (p,m 2)py(m?). Accordingly, let us tentatively define a
quasipoint vector vertex, [ p(p’,p)y, by

1
p —m
— () — (i) et (3.28)
V. e pi—m? |’ .
[8,8P Py —PuBar(P) ] g, , (3.29)
(3.30)
(3.31)

Generally, even assuming the existence of the inverse propagators, the right-hand side of (3.28), and thus f‘i’ﬂ(p',p)y,
possesses kinematical singularities at p?>=p’? and is therefore an unsatisfactory candidate for a quasipoint vertex. The

source of the problem clearly lies in the spectral weighting over pz(m 2) in (3.28), since the p,(m?)

rise to singularities at p*>=p’?
tion factors in the p,(m?) welghtmg
Thus, using f in place of £} and £\~

Aua P THp" P )y ApP)= AP’ ) f % — £, *Aasp) +

where now

dm?
5uv(P)=fm P, (p,m%)p(m?) . (3.33)

The p*=p’? singularities in each of the terms in (3.32)
cancel by virtue of the decomposition (2.20) and the spec-
tral representation (3.27). The terms containing the 8(p)

-———-——1 ’ ’
p2_p: 2 [Sﬂa(p )pv—ppaav(p)]walq;\ ,

integral does not give

We can alleviate this difficulty by using only the mass-independent portion of the radia-

'in the p, integral in (3.28) we can define a quasipoint vector vertex that fulfills
all of the requirements we have stipulated for such an object:

(3.32)

functions are purely transverse and also vanish when
k?=¢°(q) and g’=eg=0, which is exactly the cir-
cumstance required for the proof of the radiation
theorem. This last evidently holds with the photon at-
tachments onto the full vector propagators represented by
r¥pp)y.

Flnally, as in the Dirac case, the degree to which
ref (p'p)y represents a well-defined part of the exact vec-
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tor vertex, [%(p’,p)y, appears related to the validity of a
counterpart of the representation (3.21) and (3.22). Other-
wise, all that we can be certain of is that, by virtue of our
construction, the difference between the two functions

r%(p',p)y=T"%p"p)y—T%¥p.p)y , (3.34)

possesses no kinematical singularities, is purely transverse,
viz.,

[T¥p'P)yvlk=g=0, (3.35)

and vanishes in the free-particle limit [p,=0,p1—(p1)frec]-
As in the Dirac case, I'%#(p’,p), spoils the possibility of
radiation zeros because

[F‘;ﬂ(P’aP)V]k=e—¢0 ’

in general, even when ¢*=¢-g =0.

In summary, (3.32) represents both a unitary-gauge
gauge-technique type of ansatz for the case of a photon
gauge-symmetrically coupled to a charged vector particle
as well as a vertex function that includes higher-order
corrections for which the radiation theorem still remains
valid.

(3.36)

IV. SUMMARY AND CONCLUDING REMARKS

The usual invariant-amplitude analysis of vertex func-
tions rests on the Poincaré transformation properties of
the underlying fields, but for vertices involving gauge bo-
sons there is a further Poincaré substructure reflecting the
gauge-covariant nature of the coupling. This substructure
is manifested simply only by a portion of the exact vertex,
and then only in certain gauges, that we have termed the
quasipoint vertex. We have confined ourselves to photon-
particle-particle vertices with m =40 and spin < 1.

A quasipoint vertex necessarily includes the entire long-
itudinal part of the exact vertex function as a consequence
of the Poincaré substructure requirement, but it only ap-
proximates the transverse piece. The Ward-Takahashi

identity is therefore satisfied identically, a circumstance
that is correlated with only the translational component of
the Poincaré substructure. The purely Lorentz part
occurs only in the transverse piece of the quasipoint ver-
tex. For spin> 0, transverse parts are required in order to
cancel kinematical singularities as well as to ensure a
proper point-vertex limit in the absence of higher-order
corrections; the Poincaré substructure requirement pro-
vides a useful guideline to their minimal content particu-
larly in the complicated vector case.

We have shown that the identity of the Poincaré sub-
structure in the point and quasipoint vertices leads to an
extension of the radiation theorem that includes photon
attachments onto certain classes of self-energy graphs for
Dirac and vector particles extending an earlier result for
scalars. The supersymmetric extension of the radiation
theorem raises interesting questions concerning the gen-
eralization of these results and about the structural
characteristics of photino-particle-particle vertices.*5*

Explicit forms of the quasipoint vertices for spin< 1 are
determined using a Lehmann spectral-weighting method
introduced originally in conjunction with the so-called
gauge technique for solving the Schwinger-Dyson equa-
tions.

Finally, we have established the chirality dependent
Poincaré substructure of the point vertex in the spinor
case when coupling is axial vector. We have pointed out
how the identities that express this substructure can be ex-
ploited to obtain a decomposition of multiphoton attach-
ments via ordinary vector couplings onto a spinor line
into a sum of effective single photon attachments.
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