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%e apply the technique of Fujikawa to solve for simple two-dimensional models by looking at the
nontrivial transformation properties of the fermion measure in the path-integral formalism. %'e ob-

tain the most general solution for the massless Thirring model and point out how the one-parameter
solution reduces to that of Johnson and Sommerfield in a particular limit. %'e present the most gen-

eral solution for the massive vector model indicating how it reduces to the solutions of Brown and

Sommerfield for different values of the parameter. The solution of a gradient-coupling model is

also discussed.

I. INTRODUCTION

In the past, soluble two-dimensional field-theoretic
models have been studied extensively, notable among
them being the massless Thirring model, the Schwinger
model, and the massive vector model. ' I The solutions
of these models have been obtained by various methods,
namely, by explicitly solving the equations of motion, by
operator methods, by bosonization, etc. The main reason
behind the solubility of these models is the fact that they
contain a massless fermion in the theory which leads to
classicaHy conserved currents:

8J"=0, 8/~5 ——et'"t)J„=o .

Bo:ause of quantum effects these conservation laws be-
come anomalous" and it is the anomaly content of the
theory that leads to the nontrivial solutions of these
theories.

Recently Fujikawa has shown in a series of papers'
how various anomalies arise in the path-integral formal-
ism. The observation essentially is the fact that the fer-

ion measure may transform nontrivially under various
transformations leading to the anomalous Ward identities.
It is, therefore, of interest to examine how one can obtain
the already known solutions of various two-dimensional
models following the method of Fujikawa. The observa-
tion here is quite simple. For a two-dimensional fermion,
interacting with an external vector field, one can always
redefine the fermion fields so that they decouple. There-
fore, if the theory contains any nontrivial dynamics, it
must essentially be contained in the transformation prop-
erties of the fermionic measure under the field redefini-
tion.

In general„ the two-dimensional models can have an
Abelian or a non-AbeIian symmetry. We mould consider
only Abehan models for the present. Further, they may
possess a local gauge invariance, as is the case ~ith the
Schminger model. ' Roskies and Schaposnik' have stud-
ied this model from the path-integral point of view. Of

the models without any local gauge invariance, only the
derivative-coupling model was studied earlier' 's in the
path-integral formalism. In the present paper we investi-
gate the other nongauge models, namely, the massless
Thirring model, the massive vector model, and the
gradient-coupling model. Our philosophy is as follows.
Since these models do not possess any local symmetry we
try to find out the most general change in the fermionic
measure under a field redefinition which would allow for
an anomaly even in the vector current. In Sec. II we work
out this general change in the measure of a fermion in-
teracting with an external vector field. In Sec. III we use
the results of the change in measure to obtain the most
general solution for the massless Thirring model. It is a
one-parameter family of solutions and we indicate which
value of the parameter leads to the Johnson and Sommer-
field result. In Sec. IV we study the massive vector
model and discuss how different values of the one-
parameter family correspond to the results of Brown and
Sommerfield. 5 The pseudoscalar derivative-coupling
model has been studied earlier. ' ' In Sec. V we discuss
the scalar model with a gradient coupling. Finally we
present some concluding remarks in Sec. VI.

II. FERMIONS IN AN EXTERNAL VECTOR FIELD

Let us now study the case of a fermion field interacting
with an external vector field. We want to emphasize that
our purpose is to study the most general way the fermion-
ic measure changes in such a case and, therefore, we do
not associate any dynamical local gauge invariance with
the vector field. That is, we allow for the possibility that
the vector-current conservation in such a case may be-
come anomalous. The generating functional is given by

z= aae~,
where

S= f d x[i@y"(t)„iAp)gj . —
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Note that in 1+ 1 dimensions, the vector field can be
written as

(3)

y"D„=y»(a„—iA„}
=y»(d» i—gA» —i riy 5A» )

with

so that formally

~=o-'a„A», g=-,'a-O'V„„,
where

(4)

F»v = d»A v dA—» .

Let us now calculate the most general change in the fer-
mion measure if we make a simultaneous, infinitesimal
gauge and chiral transformation, i.e.,

P~P'= [1—ie(x} i yse—(x)]itI,

P~P '= /[1+i e(x) i y5F—(x)] .

Before considering the effect of this transformation, let
us establish our notations. We work in the metric,

g =1, g"=—1, and in our notation y is Hermitian
with (y ) = 1 whereas y is anti-Hermitian with
(y') = —1. y5 ——yoy' and it follows that it is Hermitian
with square equal to unity. In continuing to Euclidean
space, we treat P and g as independent complex quanti-
ties. Further, we let x ~ ix4, —do~i dg, y ~iy4,
y5 ——y y'~iy~y4. y5 is Hermitian in Euclidean space al-

though the y„'s are anti-Hermitian and in Euclidean space
we have tbe identity

Y»Yv ~»v i+»vy5 ~ &14 + 1

With these conventions, it is clear that

S= X l ~
—lA~

X l y~ p
—l ~0' —l GI

X l ~
p
—l ~0 —l y5

—l XE —l y~ ~
—l ~O' —l y5

l XE l yjtl p
—' p.

o' 'y5 p

In continuing to Euclidean space we let Do~iD4, i.e.,
we require Ao~iA4 and Ao~iA4 I.t is clear, therefore,
that in continuing to Euclidean space it is impossible to
maintain simultaneously the reality of A„and A„as well
as the duality between them. We, therefore, choose to
treat them as independent real quantities in Euclidean
space. Once all the calculations have been done and we
have rotated back to Minkowski space can the duality re-
lation be used. With all these rules, the Dirac operator of
Eq. (9) in Euclidean space becomes

g=y»D» y»(id——» i)A»—iriy5A»—) . (10}

and

~(().=~.'0n ~n =~n'&n (13)

Here ri and g are arbitrary parameters with the con-
straint in Eq. (9) and as we will show later, they essential-
ly measure the gauge and chiral noninvariance of the
functional measure. It is quite well known' that the
Dirac operator with an axial coupling is not Hermitian in
Euclidean space and in the present case it is easy to check
that

8 =y»(d» i(A»+i—riy5A»)=y»D»(A, —A5) . (11)

In recent literature, ' there has been a lot of controversy
over the use of non-Hermitian operators. In fact, when
one uses non-Hermitian operators, the orthonormality and
the completeness of the basis states is not guaranteed.
Therefore, to avoid all such criticism we use the two Her-
mitian operators

s=g'y, s=nn', (12)

in whose eigenstates we expand the fields p and p. Thus,
for example (see Ref. 15),

=iSE

so that
g(x) = g a„(()„, 17(x)= Q X„b„, (14)

Z= D D e

To find the change in the measure we have to choose a
set of basis states in which to expand f and P. It is clear
that if we choose the same basis states for both P and g,
then that would lead to a gauge-invariant result. And
since we are interested in finding the most general change
in the measure, i.e., since we are allowing the vector
current to be anomalous, we must expand P and g in
terms of basis states which are eigenstates of different
operators. ' Because of the dual nature of A„and A» in
Minkowski space, namely,

A„=e»+',

the covariant Dirac operator can be written as

so that DfDP= g„db„da„.
The calculation of the change in measure under the

combined transformations of Eq. (5) is quite stan-
dard. ' ' ' ' However, we will include it here for com-
pleteness. Note that

f'(x) =[1 i e(x) i y 5m(—x))g—
= ga„'P„=g C„a

gd „'=(d tC„~) 'gd „,
where

C„=5„if d x~P—„(x)[e(x)+y5e(x)]P (x) .

Thus
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('

detC„=exp(TrlnC )=exp i—g f d xEP„(x)[e(x)+yse(x))P„(x)

The exponent is divergent and can be regulated in the following way:

—A, 2/M2
i—g f d xEP„(x)[e(x)+y5e(x)]P„(x)= lim —i g f d xEP„(x)[e(x)+y5e(x)]P„(x)e

8 M2~ og pg

lim i—g f d'xEy~(x)[e(x)+ysnx)]e a'-~'y„(x)
M2~ co pg

2

lim —i f d2xs Tr[e(x)+y5eqx)]e
' e "Ee'a™e'e

(2m')

Here we have used the completeness relation of the eigenstates in the momentum space. Expanding out the operator 5
and doing the Dirac trace gives the finite result as

—i g f d~x~p„(x)[e(x)+) ~i(x)]p„(x)=— f d'x~ e(x) iiB„A—„+ e„Q„„'
5 2m

+e(x ) —l YlB~A ~ +

Clearly then, we can write the change in the measure for i]() as

Df=JAP',
where

Jil)=exp ' — d xE e(x) —lgBiiA~+ ep»F~» +e(x) —lrlB~A~+ e]()g~»2'
Similarly one can show that the change in measure associated with f under a combined gauge and chiral transforma-

tion is given by

Df=J Df',

Jy ——exp d xs E'(x ) i (B„A„—— 6~»F»» —0'(x ) ] 'gB]]A ~ + ep»Fp»
t

Thus under a combined gauge and chiral transforma-
tion (infinitesimal), the most general change in the fer-
mion measure is given by

i'

J=JyJy =exp — f d'xE[rle(x)e„~„„'

+ge(x)e~Qq„]

dJ"=+d„A", 8J~q ———~B„A~~, (18)

(17)

It is clear from Eq. (17) that both the vector and the
axial-vector currents become anomalous as

I

the choice of the operators in whose basis we expand the
fields simply corresponds to the arbitrariness in the choice
of the regularization scheme in conventional calculations.
Therefore, we must choose the basis states to respect all
other symmetries the theory may have, for example,
Lorentz invariance, translation invariance, etc. In addi-
tion the basis states must also be chosen such that the
anomalies satisfy the consistency conditions. However,
in this case since the anomalies are Abelian, this does not
lead to any particular restriction. However, we can make
a connection between our result of Eq. (18) and the pertur-
bative result in the following way. For example, from
I orentz invariance and Bose symmetry we can write the
current correlation function as

with
(JiiJ ) = j. k~k„

gI V +'M@V (19)

Since we have omitted the tedious, but rather straight-
forward technical details of the calculation, '2'3's several

comments are in order. First of all, the arbitrariness in

Here the coefficient of the finite transverse part is unique
and the arbitrariness of any regularization scheme can
only refiect in the longitudinal part. This form of the
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correlation function leads to the vector anomaly as

k"(jJ„)= k„.

( —I +rj)&„„+&„i. (20)

This determines the axial anomaly to be

k"(jp„)=—( —1+rl)e„Jc" .

Comparing this with the form of the axial anomaly in Eq.
(18) we obtain

By using the duality relation, we can obtain the axial-
vector —vector correlation function as

then the fermion fields decouple coinpletely. Namely,

SE= XE l g~ ~
—l ~CT —Egg

= f d xEiXy~~+ ~

However, in this case, the field redefinitions correspond
to a fmite gauge and chiral transformation. Therefore,
the measure changes nontrivially. The calculation of the
change of measure under a finite transformation is slight-

ly tricky and has been studied earlier. '6' In this case, it
can be shown in a straightforward manner to be equal to

DfDQ=DXDX

+exp — x A~ 'gg~ g

or

i)+g= 1 .

This now completes our derivation of the most general
change in the fermion measure under a combined infuii-
tesimal gauge and chiral transformations and is given by

J=exp — x 'QE x ~A~+ E' x ~A 5

(24)

Therefore, after the field redefinition the effective ac-
tion in Minkowski space becomes

S,rr ——f d x(iXy"dg+ ,' A„D&"A—„),

where

(25)

with

m+0=1 (21)

with r)+(= l.
Since the fermion fields have now decoupled, they can

be integrated out leading to an ummportant constant.
Thus the generating functional of Eq. (2) becomes

At this point we would hke to make contact with con-
ventional calculations. In that case, there does exist a reg-
ularization scheme which leads to these general results.
This is the point-splitting method where one defines the
fermion current with a phase factor which neither
preserves the gauge invariance nor the chiral invariance, '

namely,

J"(x)= Iim f(x')y"

"0="O

x
Xexp i x„" A~ —gy, 3~5

Let us note here that if we take the action of Eq. (7)
and make a field redefinition

Z =Cexp —f d x A„D""A„
2

(26)

III. MASSLESS THIRRING MODEL

The generating functional for this theory is given by

ZTH ——f DQDgexp i f d x(iPy""d„P —,'M„J")—

where

(27)

This is the most general form of the generating functional
in the absence of any local symmetries and conforms to
earlier calculations by other methods. '

GATI(x) =X(x)e
(22)

If we want to compute the current correlation functions
in this theory, we can add a source term for the currents
and write

ZTH ——f DQDgexp i f d x(ipy"d&f 2'~"+j&A&—)

$2
=exp f 12x f DQDgexp i f d xfiPy"(8 iA )P]—

5A„(x)5A"(x)

The functional integral on the right-hand side is what we have already calculated in Eq. (26). Substituting the value
for that we obtain
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ZTH ——C exp xiA, 2 5
5A~(x)5A "(x)

d xA gi g" + ei e"@ a apCl 'A
2m 1+A,g/m

(29)

This gives the most general solution of the massless Thirring model. We note that there is a one-parameter family of
solutions as had been observed earlier. Furthermore, the particular solution of Johnson and Sommerfieldi simply corre-
sponds to the values of our parameters ri =—,

'
and g= —,

' .

IV. MASSIVE VECTOR MODEL

The Lagrangian for this theory is given by

I Mv
—— ,' (a„—B„—a+q—)(a"B' a"B"—)+ BqB"+i Py" (aq igBq

—)P . (30)

Bath the Schwinger model and the massless Thirring model can be thought of as limiting cases of this theory. For ex-

ample, in the limit of p, -+0, we obtain the Schwinger model. On the other hand, in the infinite-mass limit if we let

=fixed,
p

then we recover the massless Thirring model.
The generating functional for this theory is given by

z g)g D D e Dg &~+p &

D D 2 (31)

Here S(B„)is just the action for the vector field. Fur-
thermore, we can substitute for the functional integral on
the right-hand side from Eq. (26) to obtain

T

4

Z C g)g ~ /4 exp 2~ DP'Yg
2

where

S„(B„)= J' d'x ——,'(a„B„—a~„)(a B"-a"B~)
2 2+" a a~+g

2 " 2m

xB„[gg~"—(~+g)a aw '~B„

that the effective vector-boson theory is a free theory with
the mass renormalized to

2 2+ g (33)

This is also the result obtained earliers by using point
splitting. In particular note that for g'=1, the mass renor-
mahzation corresponds to the result of a gauge-invariant
regularization and is the value obtained by Browns
whereas Sommerfield's result corresponds to the particu-
lar value of )=—,

' .
We also note that if we set p, =0, then we obtain the

Schwinger model and if we regularize in a gauge-invariant
manner, i.e., if we choose ri =0, )=1, then we obtain

m '=g 2

Ply

x —
4 ~9„—

which one immediately recognizes as the Schwinger solu-
tion.

V. GRADIENT-COUPLING MODEL

g B a a~-'B„.
2m

(32)

In Ref. 18 the most general solution was worked out for
a pseudoscalar field interacting with a massless fermion
field through a derivative coupling. The Lagrangian is
given by

Note that here we have made use of the constraint equa-
tion i)+g'=1. Furthermore, the Euler-Lagrange equa-
tions for this theory require

for consistency. If we put this condition back we note

(34)

We only quote the result of Ref. 18 where it was shown
that after a field redefinition the effective Lagrangian for
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the theory becomes

L.fr= —1—1 gg Pf

2 m 2

Note that we can rewrite this Lagrangian simply as

m
,'a„ya y—y'+—y1' (a„gA„)y—

2
(38)

with A~ =d~f.
The generating functional, therefore, can be written as

c

Da„a

D D exp i x i y& „—igA&
I,

(39)

Using the result of Eq. (26) for the functional integral on
the right-hand side and then integrating over the function-
al 5 function we obtain

ZGc= D e

where

S,rr= —1+ id $8"P1 'gg

2 m 2

Again this shows that the effective scalar field is a free,
massive field with a renormalized mass given by

2
m2

(1+kg /n)
(40)

This can be derived in a straightforward manner from the
result of Sec. II and it shows that the massive field P is ef-
fectively free with a renormalized mass given by

Ply (36)
(1—gg'/~)

I.et us now consider the gradient-coupling model where
we consider P to be a scalar field and, therefore, the La-
grangian is given by

VI. CONCLUSIONS

We have shown how one can obtain solutions of simple
Abelian models like the massless Thirring model, massive
vector model, and the gradient coupling model in the
path-integral formalism following the methods due to
Fujikawa. Roskies and Schaposnik' had already used
these methods in connection with the Schwinger model
which has a local gauge invariance. %e have shown how
these methods should be extended in a general manner to
cases where no local symmetries exist. One general
feature, in the absence of local symmetries, is that the
solutions involve a generally arbitrary parameter.

Although the solutions of the derivative coupling model
and the gradient coupling model are new, those for the
massless Thirring model and the massive vector model
have been derived before by other techniques. ' We have
only presented a different way of looking at them and
hope that these methods will help our understanding of
more complicated models possessing complicated non-
Abelian structure.¹teadded. After this manuscript was written, we be-
came aware of a recent report [M. A. Rubin, Report No.
Fermilab-Pub-85/76-T, 1985 (unpublished)] where the au-
thor studies the most general anomaly structure in the
case of the massless Thirring model by making a Pauli-
Gursey-Pursey transformation in the path-integral for-
malism. We would like to thank Professor K. Tanaka for
bringing this to our attention. While we are not suffi-
ciently familiar with the methods used in that paper to be
able to comment on the similarities, we believe that the
approach and the spirit of our calculations are quite dif-
ferent. G. Duerksen has also studied the gauge-invariant
solution of Thirring model [Phys. Lett. 1038, 200 (1981)].
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