
PHYSICAL REVIE%' D VOLUME 33, NUMBER 1

Perturbative @CD analysis of the photon structure function

1 JANUARY 1986

H. Nakkagawa
Institute for Natural Science, Nara University, l230 Horai cho-, Nara 63l, Japan

A. Niegama and H. Yokota
Department ofPhysics, Osaka City University, Sumiyoshi ku-, Osaka 558, Japan

(Received 15 August 1985)

General two-scale formalism of the optimized perturbation theory (OPT) is successfully applied to
the second-order QCD calculation of the photon structure function. Our findings are as follows. (i)

Thorough resolution of the scheme dependences can be achieved if and only if the factorization and

renormalization scheme dependences are investigated simultaneously. (ii) The two-scale OPT has

dealt with the large second-order corrections so that at least part of the leading large-n terms are ab-

sorbed into the coupling constant; thus the optimized perturbation expansion may show an im-

proved convergence. (iii) The above observation (ii) agrees up to the leading large-n terms with the
results obtained through the kinematical analyses by Brodsky and Lepage and by Amati et al.

I. INTRODUCTION

The structure function of the photon has been discussed
as a clean testing ground of quantum chromodynamics
(QCD) because it is free of the unknown matrix elements
of local operators at least in the first few orders of the ef-
fective coupling constant a =g I/4n The .existing
second-order calculations, ' which did not involve any
unknown quantities except the scale parameter A, howev-
er, suffer from two difficulties. The first one is concerned
with the calculational scheme dependences, such as the
renormalization-scheme dependence, of QCD pertur-
bation theory, and the second one is the large negative
subleading-order corrections at large x.

As was studied by Politzers and by two of us, pertur-
bative QCD calculations of physical quantities depend
essentially on two calculational schemes c'" the renor-
malization scheme (RS) and the factorization scheme
(FS).' ' Resolution of the scheme-dependent ambigui-
ties can be successfully carried out with the use of the op-
tlInlzcd pcrturbatlon theory (OPT), orlgiIlally pI'oposcd oI1

the basis of the principle of minimal sensitivity by Steven-
sons in order to solve the problem of the RS dependence.
Here we should note that because the FS dependence is
closely connected with the RS dependence and cannot be
treated by itself, both of the two scheme dependences
should be analyzed simultaneously. Such generalization
of OPT has already been done, ' and the photon structure
function is just the quantity that clarifies the necessity
and the usefulness of the generalized OPT (hereafter we
call such a generalization the "two-scale" formalism of
OPT). In fact if we consider only the RS dependence, ig-
noring the presence of the FS dependence, OPT cannot be
apphed to the second-order result of the photon structure
function, simply because its leading-order result is in-
versely proportional to the effective coupling constant a.
This difficulty can be overcome by considering the two
scheme dependences simultaneously. %e shall complete
this analysis in the present paper and study the conse-

quences of the two-scale formalism of OPT applied to the
second-order calculation of the photon structure function.

The two-scale formalism of OPT has already been ap-
plied to the calculations of the hadronic structure func-
tions, ' and one of the interesting consequences is con-
cerned with the convergence behavior of perturbation ex-
pansion. Application of OPT not only solves the problem
of scheme dependences, but also improves the convergence
behavior. This fact makes us sure that OPT may afford
us a prescription to handle the scheme-dependent large
higher-order corrections. Roughly speaking, through the
optimization, part of the large corrections are absorbed
into the optimized coupling constant and the optimized
perturbation coefficients become moderate; thus the con-
vergence behavior of the perturbation series is improved.

There are other approaches to handle the large higher-
order corrections. Several authors have noted that there is
a purely kinematical reason to expect higher-order correc-
tions to become large as x ~1 and that it is reasonable to
hope that one can improve the convergence of the pertur-
bation expansion by including correct kinematics at each
order. Such analyses were first given for hadronic struc-
ture functions by Brodsky and Lepage' and by Ainati
et al. ,

' who claimed with a postert'ori justification' that,
by resumming such perturbation series being singular as
x ~1 to all orders of the strong coupling constant, the ar-
gument of the effective coupling constant at each vertex
of the ladder rung is rescaled as Q ~Q (1—x).

We now recognize that the outcomes of OPT and of the
kinematical analyses are quite similar. To what extent
does this similarity hold'? And if both analyses give the
same result, are there any physical and/or theoretical rela-
tions between theme

Frazer and Rossi' studied in detail the singularities in
QCD perturbation theory for x —1, and found an impor-
tant observation: The behavior of the photon structure
function for x —1 is different from that of the hadronic
ones. Although the kinematical corrections have success-
fully accounted for the leading large corrections for x —1
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for hadronic structure functions, they haue reproduced

only a portion of them even for the leading corrections for
the photon case. Taking this observation into account we

can say that the photon structure function provides us
with an excellent field to study the problem set up above.

Section II is devoted to a brief survey of the two-scale
formalism of OPT, and to its application to the second-
order calculation of the photon structure function. In
Sec. III optimization is carried out both with numerical
and analytical methods. The structures of the optimized
photon structure function are studied with special atten-
tion to the improvement of the convergence of perturba-
tion expansion and to the relation with the kinematical
analyses. Conclusions and several discussions are given in
Sec. IV.

II. PHOTON STRUCTURE FUNCTION
AND OPTIMIZATION FORMULAS

A. The second-order expression
for the photon structure function

The second-order @CD calculation of the photon struc-
ture function suffers from twofold ambiguities: those
coming from the FS as well as RS dependences. Howev-

er, the existing calculations have been carried out with
the use of a special (in a sense, simple) FS, where the fac-
torization scale M and the renormalization scale p are
identified and treated as if there were only a single scale p(—=M) from the beginning. Thus in order to apply the
two-scale formalism of OPT we should at first carry out
the perturbative calculation of the photon structure func-
tion to get results where parameters denoting the RS and
FS dependences are clearly discriminated from each other.

The nth moment of the photon structure function
1

F„"(Q )=f dxx" F/(x, Q2) (1)

can be factorized in terms of the Wilson operator-product
expansion (OPE) as

F„"(Q')=8„(a(M)) 4'„(Q/p, M/p, a(p)),
where 0„ is the matrix element of the local operator with
spin n, i('„ the OPE coefficient function. Hereafter we
carry out the calculation valid to first order in the elec-
tromagnetic fine-structure constant a=e /4n. Following
the general formulation of OPT (Ref. 9) we calculate the
OPE coefficient function in terms of the effective cou-
pling constant a(p)=g (p)lkr renormalized at p, and
renormalize the operator matrix element at M. In (2},0„
and V„are row and column vectors, respectively,

8„=(5f,8„,5„,Ã) =(8„,Ã), (3a)

~„='(~~,~„',~Ns, ~r)='('(~„),~r) . (3b)

(NS denotes nonsinglet. ) O„and 0'„are again row and
column vectors whose components are obvious. The
operator matrix element 4„satisfies the equation

d@„(a(M))
=5„(a(M))y„(a(M)),

d hd't/I

where y„denotes the anomalous-dimension matrix

+Ã(a (M) )K„(a(M) ), (6a)

dÃ, (a(M))
=0, or Ã is independent of M, (6b)

which can be easily integrated to give'

u(M) y„(x)
b„(a(M))=AT exp f dx

a(st) K„(x)
+e& f dx

a(m) y„(y)
QTexp y, 7

X y

where A is the scheme-independent constant and the P
functions are defined as'0'"

da(p)/d 1np=P(a(p, )), a(p=po)=g„/4m, (8a)

da(M)/d InM =P(a(M)), a(M =Mo) =gl/4n

(8b)

Following Bardeen and Buras (BB) we shall neglect the
first term in (7), keeping only the inhomogeneous point-
like term that is dominant in the asymptotic limit. Thus
we are not concerned with the problem of large negative
corrections near x =0, which has been already studied ex-
tensively by Gluck and co-workers. '

Perturbative expressions for various quantities are as
follows (hereafter we shall neglect the moment index n):

y'J(x) =y,.~x+y,'Jx +
y"(x)=yNs +yNs '+.
KJ(x)=e (K +K'x+J J

K (x)=e (Ksx+ . },
P(x)=bx (1+cx+czx +

(ij =Q, G),

) (j=g,NS),

~ ~ ~ ) 7

P(x}=bx (I +cx+cz x+ . . ),
Ã (x)=e 51(1+Bjx+ . ) (j=g,NS),

4'o(x)=e 5e,(Box+ . . ),
"(x)=e 5r(B&+. . . ),

O O

y."
fry O O

Ns
O E„O

E E E 0
I

where y„ is a three-by-three matrix and K„ is a row vec-
tor. Then Eq. (4) can be decomposed into the two equa-
tions

dk„(a(M)) =0„(a(M) )y„(a(M) )
d bdf
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where x denotes the effective coupling constant a(M) or
a(p). Our notations are taken from Stevenson and are
somewhat different from those of Bardeen and Buras. A
transformation table is given for convenience (Table I).

In the present approximation, namely, in truncating
everywhere, e.g., in Eqs. (9), the perturbative expansion up
to the next-to-leading- (second-) order terms, there are ten
parameters in total which label the RS and FS depen-
dences: the renormalization scale iM, the factorization
scale M, and the eight two-loop anomalous dimensions

yNs, y,~ (i,j =Q, G), and KJ (j=p, G, NS). It should be
noted that in this order two p functions p(x) and p(x)
coincide with each other. The above ten parameters
should be taken, in principle, as independent variables
throughout the OPT procedures, which then fix these pa-
rameters to their optimal values. Unfortunately, however,
it is technically difficult to carry out the optimization in-
side the whole ten-parameter space. To find a way out of
this difficulty we consider here a simplified model for the
photon structure function, which consists of only two
components: the nonsinglet point-quark component and
the point-photon component, i.e.,

F„= @Ns&NS+ &y&„ (10a)

d+Ns/d lnM=yNS@NS+KNS@r
(10b)

d8„/d lnM =0 .

It should be noted that this model represents the essential
structure of the photon structure function in the large-n
limit: Because the hadronic anomalous-dimension matrix

P„ in Eq. (7) becomes a diagonal matrix in the large-n
limit, the photon structure function (2) with (3)—(5)
reduces essentially to the above model in the limit n ~ oo,

l

This paper

YNS» yi(
QNss fij

Xj'

Bj
By

Bardeen and Buras

g2/4m
—Po/2
Pi/4po

yN—s/4 —yii/4
—yNs/16 —yij /16 I

KJ /16m

K,'/~ t

8 /4
8„/16m

(i j=4 G)

(j=Q, NS)

(j=Q, G, NS)

in which we are particularly interested.
The model considered is simple enough to be solved

analytically. The OPT analysis, given in Appendix A,
shows that the optimized solution actually lies within a
parameter subspace where the hadronic two-loop
anomalous dimension vanishes, yNS ——0.

Guided by the above observation we start our analysis
in calculating the structure function in a scheme where
the hadronic two-loop anomalous dimensions yNS and y;
(i,j =g, G ) vanish. Thus taking p, M, and KJ
(j =iti, G,NS} as independent variables we perform the
OPT procedure within the five-dimensional subspace in-
side the original ten-dimensional parameter space.

Now, by following the standard calculations, we can
write down the second-order expression for the photon
structure function (in a scheme explained above):

TABLE I. Conversion between notations used in this paper
and those used by Bardeen and Buras {BB){Ref.2). This table
should be read as, e.g. , a =g /4e, yNs(this paper)
= —

4 yes{88), etc.

y 4 0 1+de dgit 1+caF = bF"/e =—5+~ (1+8~a)— Bga

dgg dgii
+5g(Kg —cKg } (1+Bi)a}— Bga +5+g

I

fg (1+Bga )+ Bga

+5NsKNs (1+BNsa ) +5NS(KNs —
cKNS )

d (1+BNsa ) b5rBy—1 1+ca o

1+dNS 0 Ns

where a =—a(M), a—:a(p, }„and the d's are essentially the
hadronic one-loop anomalous dimensions, i.e.,

dNS = YNS/b, dij =yi~j/b (i,j =—i', G),
(12)

d+ = I4+ygg+l(y~ ygg }'+4y~y«-]'/2I /2b .

The one-loop anomalous dimensions y 's and K 's are
scheme invariants and have already been calculated. '

8. Optimization formulas

In order to apply OPT to the second-order result of F"
(11), we present here the optimization formulas. For this
purpose we should at first evaluate the response of Fr
with respect to changes of the five scheme-labehng pa-
rameters p, M, E~, j:6, and E&s. The quantities to be

aB, /b vi~=0 (i=y, G,NS),

aB,/b a lnM = —d~,
(13)

(14a)

optimized are the perturbative coefficients B~, Bg, BNS,
and Bz and the effective coupling constants a and a,
which are functions of the above optimization variables.

Before calculating the response of F" to changes of the
parameters we should take notice of the following fact:
The perturbative coefficients B~, Bg, and BNS are noth-

ing but those that appeu in the calculations of the ha-
dronic structure functions; thus their structures, except
their optimal values, should be determined only through
the analyses of the hadronic structure functions. Analysis
of the consistency condition for the nonsinglet structure
function has already been done, and can be done with
tedious but straightforward manipulations for the singlet
case. The resulting consistency equations are
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aB, /b alnM = —d~,
dBNslb 81nM= —dNs .

(14b}

(14c)

aB, /aK, '=0 (i.,j=y, G, NS) . (15)

Obviously BJ (j=Q, G, NS} should be independent of the
anomalous dimensions E~ EG, and Ews that appear only
in relation to the photon structure function, i.e.,

Now we can easily write down the desired response
equations of the photon structure function (11). Their ex-

plicit expressions are complicated and lengthy, and we

give them in Appendix B. According to the optimization

procedure, we then impose that the response of I' y to
changes of parameters should be of order a. This require-
ment imposed on the response equations (Bl)—(B5) gives
us the consistency equations:

1+dgg dBg dgg 5Bg 0 1 5BNs
&~ (1+d, )(1+d ) bal~ (1+d, )(1+d ) bainM +" "I+d„bal~+5N Ns

By 0 1 +dgg 0 1

"b BlnM +"(1+d )(1+d ) 1+d

8„
b Bing

=0,
8By 5$ dgg

8K~i bsy d+d
BBy 5g d~

b5y d~d

5Ns 1

QKNs b 5» d Ns

(16b)

(16c)

(16e)

These equations, simultaneously with Eqs. (13)—(15), can be integrated to give the quantities B& (j=g, G, NS and y) as
functions of the scheme-labeling parameters and of their corresponding scheme invariants:

B~(Q/M) =d~b ln(Q/M)+~~,

Bg(Q/M) =dggb ln(Q/M)+Kg,

BNs(Q/M) =dNsb ln(Q/M)+sNs,

B„(Q/M)=d„b ln(Q/M}+[5~sKNs/dNs+5p(K+gg Kgd~)l(d~—dgg dodgy) j/b5—y+xy,

where

dy =(5+~y+5w—sKONs )lb5y

(17a)

(17b)

(17c)

(17d)

and Kp Kg, KNs, and Icy are invariants, independent of both the FS and RS, that are calculable in some calculational
schemes. Formulas to get these scheme invariants a's are given in Appendix C.

Finally we get the optimization equations by setting the variations (Bl)—(85) to be exactly zero after the substitution
of the consistency equations. These equations, obtained through straightforward manipulations, are quite complicated,
and are not reproduced here. Note, however, that the numerical optimization studied in the next section is carried out by
solving these exact optimization equations. In place of them we present here for later convenience the optimization
equations obtained in the limit of small coupling constant (g 0 0),

BNs+b lnM/p 0 (1+dgg )(B~+b 1nllf/p) dgPg-—(5+g+5NsKNs)b ln +5NsKNs +5Qy
p 1+dNs

+5+y+5NsKxs =O(&) (19a)

0 ( 1+dgg )BQ dg@g 0 BNS

(1+d+ )(1+d ) 1+dNs

dggBg dgPg O(a), — ——
—d~gB&+d~g ——O(a),

BNs ——O(a) .

(19b)

(19c)

(19d)

(19e)
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Equation (19a) is obtained by setting to zero the variation

of F"with respect to the change of the factorization scale

M, i.e., BF"/8 lnM =0, Eq. (19b) by setting the variation

BF"/8 1np to zero, Eq. (19c) by setting BF"/M~ ——0, Eq.
(19d) by BF"/BKG ——0, and Eq. (19e) by BFr/dK' =0,
respectively.

III. OPTIMIZATION

8. Numerical optimization

First we present the results obtained by solving the ex-
act optimization equations, which can be carried out only
through the numerical computations. Hereafter we con-
sider @CD with four quark fiavors, nf 4——T. he opti-
mized coupling constants a and a that are the solutions to
the equations

A. Choice of the optimization variables
~

b
i
1n(p/A) =1/a+c in[ca/(1+ca )],

i
b

~
ln(M/A) =1/a+c 1n[ca/(1+ca)],

(22a)

(22b)

&Qy+&NsKNs =o«) . (21)

Note that this equation does not involve 8; (i =Q, G,NS)
Thus even if we fix E s at the outset to be consistent
with Eq. (21) and carry out the optimization with a single
optimization variable M(=p), we can determine neither
the optimal values of 8 s nor that of M. This fact ex-
plains why we have been unable to apply the original
single-scale OPT to the RS-dependent second-order calcu-
lation of the photon structure function, which does not
show any peculiarities in the present two-scale formalism
Qf OPT.

In this section we give, by solving the optimization
equations, the result of the two-scale formalism of OPT
applied to the second-order calculation of the photon
structure function and study the consequences. In solving
the optimization equations, however, a little care should
be taken. By way of illustration let us consider the opti-
mization equations in the small coupling limit, Eqs. (19).
By substituting Eqs. (17) into Eqs. (19) we can easily see
that each of the four equations (19b}—(19e) works as an
equation that determines the optimal value of the factori-
zation scale M, and that they are not mutually consistent:
Among the four parameters p and K (i =Q, G,NS) only
one of them (or one linear combination of them} can be
chosen as an independent variable and the remaining three
parameters must be fixed at the outset. This is a reflec-
tion of the fact that the parameters labeling scheme
dependences generally form an overcomplete set of vari-
ables in the OPT program. ' Note also that the anomalous
dimension KG cannot be chosen as an optimization vari-
able because the optimization equations (19a)—(19d) do
not contain KG, thus cannot determine its optimal value.

Thus there are essentially only three choices of the
optimization variables: (A} (M,p}, (B) (M,KNs), and (C)
(M,K~). Parameters not listed are fixed at the beginning.
Choice (C) gives essentially the same result as (8). In the
following we shall mainly study the two choices (A) and
(8) with the remaining parameters being fixed as

(Ao) (M,p, ), Kg KG ——KNs ——0——; (20a)

(Bo) (M,KNs), @=M, Ky KG ——0. —— (20b)

It may be instructive to mention the following fact: If
we set @=M at the outset, namely, in the starting formula
(11), and apply OPT, then we get a set of four optimiza-
tion equations. In the small coupling limit three of them
are nothing but Eqs. (19c)—(19e), and the fourth equation

that comes from setting the variation BFr/8 lnM to zero
is just the difference between Eqs. (19a) and (19b), i.e.,

are calculated referring to the starting calculational
scheme, for which we choose the modified minimal-
subtraction scheme (MS), but are of course independent
of such a scheme. The scale parameter A defined in Eqs.
(22) (Refs. 6 and 9) is related with the conventional scale-
parameter '~ A by

A=A(2c/~6
~

)-'~'~=111SA (23)

and we use the value of the scale parameters A=A~
=0.2 GeV.

Explicit optimization is carried out for the moments of
the structure function F „",Eq. (11), where n runs over the
range 3(n &50. Because we are not concerned with the
problem of the large corrections for x -0, we do not con-

sider the second moment F"„ i. In Fig. 1 we have plotted
the quantity F"„= bF„"/e f—or the leading-order calcula-
tion, for the second-order calculation in the MS scheme,
and for the optimized second-order calculation. The
leading-order approximation of the optimized second-
order result is also plotted for comparison. Our results
for the optimized structure function are, as they should
be, essentially independent of the choice of the optimiza-
tion variables: Two choices (Ao) and (Bo) predict the
opti- mizm1 moments that differ at worst only at the fifth
significant figures, meaning that both choices give the
equivalent predictions within the present accuracy level of
the numerical computations. From Fig. 1 we can see that
the effect of the optimization differs between the small-n
and large-n moments, namely, the optimization works for
the small-n moments so as to increase their absolute
values while it works so as to reduce their values for the
large- n moments.

In order to see such an effect of the optimization more
clearly we give in Table II the optimized to original ratio
of the structure function, F„"(OPT)/F „"(BB).From Table
II we recognize that the effect of the optimization really
changes around n =5—7: The larger n becomes, the
larger the effect of the optimization becomes so as to
reduce the absolute values of the moments. This fact sug-
gests that the optimization has also been able to success-
fully deal with the problem of the large second-order
corrections for the large-n moments, i.e., the large correc-
tions for x —1. This point is quite interesting and is to be
studied in Sec. III C in more detail in connection with the
kinematical approaches. ' *' Here we show for conveni-
ence how the structure function in the x space changes
through the optimization.

%'e have used the method proposed by Yndurain for
inverting the moments to the x-space structure function
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FIG. 1. Moments of the photon structure functions P„" in

units of e "/~ b ~, predicted by the leading-order QCD calcula-
tions (Ref. 1) (dashed curve), the second-order calculations in the
MS scheme (Ref. 2) (dotted curve), the optimized second-order
calculations (solid curve), and the leading-order approximation
of the optimized calculations, see text (dash-dotted curve). The
predictions are for A =0.2 GeV and four flavors. %e have plot-

ted n times the structure-function moments, nP„" for conveni-

ence.

F((x,Q ). Information of the moments over the range
3 & n & 50 was used for this purpose. In Fig. 2 the results
are given, together with the results for the leading-order
and for the original second-order calculations. The struc-
ture function reconstructed from the leading-order ap-
proximation ~ of the optimized second-order result is also
plotted for comparison. Through the optimization the
structure function has becm significantly reduced for large

FIG. 2. Photon structure function Pj( xg )2in units of
e~/

~

b
~

as predicted by QCD calculations in the leading order
(dashed curve), in the second order in the MS scheme (dotted
curve), in the optimized second order (solid curve), and in the
leading-order approximation of the optimized second-order re-
sult (dash-dotted curve). Predictions are for A=0.2 GeV and
four flavors.

x but has been significantly enhanced for smaller x
(x (0.6).

Finally we show how the optimization improves the
convergence of the perturbation expansion by studying the
second-order perturbation coefficients. The second-order
expression of F"„expanded in powers of the effective cou-
pling constant has the form

anF„"(Q')=, ,
+b„,

3
5
6

10
15
20
25
30
35
40
45
50

1.042
1.001
0.989
0.959
0.933
0.911
0.892
0.875
0.859
0.845
0.831
0.818

1.034
1.006
1.000
0.986
0.975
0.967
0.960
0.954
0.949
0.944
0.940
0;936

TABLE G. The ratio of the optimized to the original
second-order calculations of the photon structure function,

P„"(OPT)/P„"(BB). The original calculations are those in the
MS scheme by Bardeen and Buras (Ref. 2) with Ass) =0.2 GeV.

where the second-order coefficients b„depend on the
schemes used, whereas the leading-order ones a„do not
[the coefficients a„defined in (24) and (27) below differ
from those given in Ref. 2 by a factor 1/8&, i.e.,
a„=a„ /Sir ]. In Table III we give the ratios b„/a„and
b„/[a„/a(M(Q))] for the original MS calculation and for
the optimized result. The optimized coupling constant
a(MopT(Q)) is evaluated via Eq. (22b) at Q2=5 and 20
GeV, where the coupling constant in the MS scheme
takes the value 0.1234 and 0.0940, respectively. We see
that the optimized second-order coefficients have been re-
duced drastically compared to the MS results. It seems
also interesting that the optimized second-order coeffi-
cients are always positiue for large n and thus the opti-
mized perturbation expansion may behave as the ordinary
positive term series, whereas in the original MS calcula-
tions the second-order coefficients are altL)ays negative and
thus the perturbation series behaves as alternating series.
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TABLE III. The second-order to the leading-order ratios b„/a„aiid b„/[a„/a(M(Q))] for the origi-
nal MS (Ref. 2) and for the optimized calculations. The two-loop effective coupling constant in the MS
scheme, is calculated with I=Q and ~s=0.2 GeV.

b„/a„ b„/[a„/~(M(Q) )]

OPT results BB
Q =5 GeV

OPT results BB
QUA=20 GeV2

OPT results BB

3
5

10
15
20
25
30
35
40
45
50

—0.688
—0.140

0.031
0.112
0.193
0.272
0.346
0.416
0.481
0.542
0.598

—4.482
—4.524
—5.403
—5.924
—6.259
—6.496
—6.675
—6.817
—6.933
—7.030
—7.113

—0.0735
—0.0174

0.0046
0.0187
0.0352
0.0535
0.0730
0.0933
0.1142
0.1357
0.1577

—0.553
—0.558
—0.667
—0.731
—0.772
—0.801
—0.824
—0.841
—0.855
—0.867
—0.878

—0.0539
—0.0123

0.0031
0.0119
0.0215
0.0315
0.0416
0.0515
0.0612
0.0707
0.0798

—0.421
—0.425
—0.508
—0.557
—0.588
—0.611
—0.628
—0.641
—0.652
—0.661
—0.669

ln(MopT/Q )=—,' lnn, — (25)

and the optimized coupling constant aopT =a(MopT ) that
is the solution to Eq. (22b) as

aopT=I/I b
~
ln(Qn '//A)

lnln(Qn '/ /A)
ln (Qn ' /A)

(26)

Expressing the optimized structure function F „"(OPT) as

C. Optimization in the large-n limit

In order to see how the optimization has dealt with the
problem of the large second-order corrections for the
large-n moments, or the large corrections for x —1, we
study here the optimization in the large-n limit. In this
limit the anomalous-dimension matrix P„[see Eq. (5)] be-
comes a diagonal matrix, and we can carry out the opti-
mization analytically.

By keeping the leading terms in the 1arge nlimi-t for
quantities appearing in the optimization equations, we get
the optimal value of the factorization scale Mop T—:MopT(Q) as

the analysis by Frazer and Rossi, ' that the structure
function in x space can be reexpressed as

F$(x, Q )=h (x)/a((1 —x )' Q /A )+H(x), (3O)

where F(=h(x)/a(Q /A ) is the large-x form of the
leading-order result. Note that Eqs. (28) and (30) are the
same results as were obtained through the analysis of
phase-space boundary effects. ' ' We can perform the
same analyses for the hadronic structure functions, where
we get the same results, namely, the optimized coupling
constant eats the leading large corrections for x —1 com-
ing from the phase-space boundary effects.

Thus we can conclude that through the optimization
based on the principle of minimal sensitivity (PMS) we
can successfully deal with the large corrections that come
from the kinematical boundary effects. This observation
may justify the validity of OPT and shed some light on
the question of what the PMS optimization does, not in
the context of a mathematical prescription but as a physi-
cal effect.

F„"(OPT)= +b„(OPT), (27)
IV. CONCLUSIONS AND DISCUSSION

b„(MS)/a„=(b/4+ ', )inn+0(1) . — (29)

Namely, through the optimization, part of the second
order corrections, i e , the first t.er.m in (29), haue been
absorbed into the effectiue coupling constant a op T—:a(MopT ), Eq. (26).

With Eqs. (26) and (27) we can also show, by following

we also get

b„(OPT)/a„= —', inn +0(1),
which should be compared with the result in the MS cal-
culation '

In this paper we applied the optimized perturbation
theory (OPT) to the second-order QCD calculation of the
photon structure function. The result shows that the
two-scale formalism of OPT is able to resolve the
scheme-dependent ambiguities inherent in the perturbative
QCD calculation of the photon structure function, thus
giving a unique QCD prediction. In this respect we call
attention to the fact that the original formalism of OPT,
which has taken into account only the RS dependence,
cannot optimize the second-order calculation of the pho-
ton structure function. The reason why such a problem
occurred can be understood in terms of the two-scale for-
malism of OPT. The second-order calculation of the pho-
ton structure function has, thus, served as a testing
ground to prove the necessity as well as the sufficiency of



33 PERTURBATIVE QCD ANALYSIS OF. . . 53

the simultaneous investigation of the RS and FS depen-
dences in order to resolve the scheme-dependent ambigui-
ties.

There is another important observation found thmugh
the present analysis. The OPT based on the principle of
minimal sensitivity (PMS) has successfully dealt with the
large second-order corrections in the large-n moments
(i.e., the large corrections for x —1) precisely the same

way as the kinematical approaches have done, ' ' at least
in the leading terms in the large-n iimit T.his is also true
for the hadronic structure functions. Thus for the photon
case only a portion of the leading second-order corrections
in the large-n limit has been absorbed into the optimized

effectiue coupling constant, which "runs" in terms of the
rescaled mass parameter M„(OPT)=Q n ' in the
moment-space, or M (OPT)=Q (1—x)(~2 in the x-space
representation. The same rescaled mass parameter also
appears in the optimized hadronic structure functions,
and is of course consistent with the "prescription" in the
kinematical approaches where the argument of the effec-
tive coupling constant at each uertex of the ladder rung is
replaced as Q ~Q (1—y).

At present we have no idea why such "equivalence" be-

tween the optimization and the kinematical analyses has
held. As noted above, this equivalence has been proved
only for the leading correction terms in the large-n limit.
The only thing we can say now is that the OPT based on
PMS may have correctly taken into account the kinemati-
cal boundary effects and that the optimized perturbation
expansion shows an improved convergence behavior. This
fact may justify the validity of the optimization based on
PMS, giving it another physical insight.

Finally we comment on the possible breakdown of the
perturbation expansion that may occur for the large-n
moments. We have shown that through the optimization
the dominant correction terms in the large-n limit have
been absorbed into the coupling constant and thus the op-
timized second-order corrections become moderate. Then
what happens when the MS calculation gives the negative
values for the structure function, as is well known to
occur for large n, or large x'? The answer is as follows.
In OPT, though the optimized second-order coefficients
become moderate, Eq. (22), which determines the optimal
coupling constant, as n becomes sufficiently large comes
to have no solutions, indicating that the optimal coupling
constant exceeds unity, aofr & 1, and that the perturba-
tion expansion breaks down. Thus, contrary to the MS
calculation we now have a definite criterion to decide
whether or not the perturbation expansion makes sense.
The region where the MS calculation predicts the negative

values for F ~r can be shown to lie outside the convergence
domain of the optimized perturbation expansion. In this
sense OPT is self-consistent and predicts nothing that
contradicts the physical requirement
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APPENDIX A: ANALYSIS OF A SIMPLIFIED
MODEL OF THE PHOTON STRUCTURE FUNCTION

Fr(Q ) =8(a(M)) 4'(Q/p„M/)u, a(p)), (Al)

where 0 and 0' are two-component row and column vec-
tors, respectively,

O(a(M) )=(eNs(a(M) ),er(a(M) )),

&Ns(Q/p, M/y, ,a(p, ))
(Q /u, M/p„a (((t ) )= (A3)

Then 0 satisfies a differential equation

=8(a(M))y(a(M)),

where y denotes a 2 X 2 anomalous-dimension matrix

rws

&xs (A5)

With the use of the renormalization-group equation

da (M)
lnM

=P(a(M)), a(M =MD) =gM/4n. (A6)

Eq. (A4) can be integrated to give

a(M) yNs(x)
@Ns(a(M)) =+sexp I dx

'o P(x)

(M) ENs(x)

a(M) yNs(y)
Xexp dyx

(A7)

Here we give an analysis of a simplified model of the
photon structure function and show that the application
of OPT actually chooses a scheme where the two-loop
anomalous dimensions vanish. The model considered is
such that the moment of the photon structure function is
given as (the moment index n is suppressed)

We thank Dr. T. Kawaguchi for his aid in the comput-
er programming and in the numerical computations dur-
ing the early stage of the present work.

Using the perturbative expressions for various quantities
[analogous to Eqs. (9) in the text], we can get the second-
order expression for the photon structure function
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KNS+KNsx a(1+ex) Ns 1+ca0 1 0 yl /bc

=5y8~+ dx 5NS(1+BNsa )bx'(1+ex)»+ca 1+ex

5NS CQ=5+y — (1+BNsa )
b 1+ca

0
c/(1+v) o /b 2 ~ /b

( 1 )yNS
—yNs~s 2( )yNsis(+ i

eu/(1+ca)

/b —1yNS
( 1 )yNS ]

where we have neglected the hadronic contributions [i.e., the first term in Eq. (A7)], as explained in some detail in the
text. In this model a set of parameters labeling the scheme dependences is [p, M, KNS, and yNSI, and the quantities to
be optimized are BNS, By, and the effective coupling constants a =a (M) and a =a()(s).

In applying OPT we take here all the above four parameters as independent variables. Now it is easy to show that the
optimization really chooses such a scheme where yNS ——0. For this purpose let us evaluate the response of Ey with
respect to changes of p and KNS. They become (the shorthand notations d =yNslb and d' =—yNslbc are used)

g0dI'y BBy ct'=5y —5NSBNsa (1+ca ) (1+ca)~
1+ca

(A9)

ar„aB„
i y i

MNS MNS

5NS ca
b

(I+BNsa)
1+cd

g0 c/(1+e)
(1+ca)" f dzz " '(1 —z)"

cu/(1+ ca )
(A 10)

where we have made use of Eqs. (13) and (15) in the text. Imposing the responses (A9) and (A10) to be of order a, we get
the consistency equations

BB„B8„5Ns

8 1W QKNS 5„yNs
(A 1 1)

Next we set the responses to be exactly zero, and obtain the optimization equations

BNsa 2(1+ca ) 1+ca

" g0 e/(1+c)
(1+ca)" f dz[CKNsz (1—z) +'+KNsz '(1 —z) ]=0,ca/(1+ca)

(A12)

ca
1+ca

' g0
c/(1+c)

((izz) f dzz '(( —z) =( .
cu/(? +ca)

(A13)

The solutions in the physically acceptable range to these equations are

~NS (A14)

which hold exactly, and

d': yNslbc =0, — (A15)

which is exact up to the hadronic contributions.
In the present model we can carry out, with the straightforward manipulations, the complete optimization explicitly,

but the results are not necessary for the present purpose and thus not reproduced.
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APPENDIX E: THE RESPONSE OF STRUCTURE FUNCTION OF THE PHOTON
TO CHANGES OF THE SCHEME-LABELING PARAMETERS

In this appendix we write down the response equations of the photon structure function:

P3g y o I+dgg dB~ dg& ~Bg o 1 5Bws a
baal~~ " (1+d, )(1+d ) bai~e (1+d )(1+d ) bainM " "'1+d, baal~

0 +5w ws
—(1+ca)

5@~ (I+B~g }— Bga +5wsKws (I+Bwsa) (I+ca)o

1+ ws

dgg BBy dgg BBg, —d~ 'dBp d~ BBg

d d bBl Mnd d b81 M + d d bBlnM d d bBlnM

1 5Bws dBy
+5ws(Kws —cKws) d b 8 IRV

a —b5y (81)

b Bing (1+d~ )(1+d ) 1+dws 0

Bw, , aBy—5ws(Kws —cKws) g (I+«)—b5„
ws "b lnp,

aI' y aB„
[dgg+(dggBg dggg }g —] b5„—

d+d "aK,' '

any dBy
[ d~+( d—~g+—d~g )a ] b5»—

aKg' BKg

aF y 5ws 5By
(1+Bwsa )—b5„

Mws dws Mews

where we have made use of Eqs. (13) and (15) in the text.

(82)

(83}

(84)

(85)

APPENDIX C: SCHEME-INVARIANT FORMULAS

We give in this appendix the formulas to calculate the scheme invariants ~; (i =1(, G, NS, and y). These formulas can
be obtained by solving simultaneously the consistency equations obtained through the analyses of the hadronic as well as
the photon structure functions. Such analyses of the hadronic structure functions have been already done in Ref. 9 for
the nonsinglet case, and can be done with straightforward but tedious manipulations for the singlet case with the help of
the results by 8ardeen et gl. ~ The solutions to these consistency equations, namely, the formulas to calculate the scheme
invariants are as follows:

&ws=Bws —dwsb»(Q/M)+dws

lr& B~ d~b ln(Q/M——) B~-, —

«g ——Bg d~b ln(Q/M) ——Bg,

zy =By dyb ln(Q/M) —B—
y

(Cl}

(C2)

(C3)

(C4)

where

By= [1 (d~ dgg)' —4dg—g~] —'—
x {[1 (d~ dgg ) 2dgg—~]d—~+—[1 (d~ dgg )]dggdg—g (1+—d~ —dgg }dg—P~ 2dgg~dgg J, (C—5)

Bg =f 1 (d~ dgg)' 4dgg—~] '— —

X[(1+d~ dgg )d~d ~ (1+d—~ dgg 2dg—gag)—d ~+2(d~—) dgg (1+d~ dgg )d—~dgg], — (C6)
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1 &Nsdws —j Ns
0 1 I

r bg Ns
SC@gg —It,'d ~ S~cq—5g
d~dgg —dodgy 1+d~+dgg+d~dgg d—~dgg

x (1+dgg )Bg d—gag

x [(1+dgg)(dggd ~ d~—dg&)+d«( dgg—d ~+d~dgg )l (C7)

In the above equations, d's are essentially the two-loop anomalous dimensions, i.e., dws= yN—slb, and d;J =y~/—b
(ij =P,G) In. the MS and MS schemes we have already had the exPressions for ' BNs, B~, Bg, and Br and also for
the two-loop anomalous dimensions d Ns, dt~ (i,j =Q, G) (Ref. 27), and Kt (i =NS, ttt, 6) (Ref. 2). Remembering the usual
calculations in the schemes MS and MS, we understand that the factorization scale in Eqs. (Cl)—(C4) are taken as
M =Q. Vhth this information we can get the expressions for scheme invariants trt (i =f, G, NS, and y) from Eqs.
(Cl)—(C4).
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